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ABSTRACT 

Human healthcare data includes different signals related to 

the functioning of the human body such as blood pressure, 

intracranial pressure, heart rate, and so on. This kind of data 

plays an important role in ill patients in the intensive care 

unit. Unfortunately, the recorded data may include 

connection & human errors, measurement errors due to the 

movement of patients, and others. These errors are better 

known as artifacts and they should be recognized in case the 

data needs to be used for clinical purposes. Different methods 

have been proposed for artifact detection; however, the 

existing methods only analyze one signal at a time or rely on 

feature engineering. In this study, we present an alternative 

solution for artifact detection that analyzes multiple signals 

at once and does not require feature engineering. The method 

integrates signals such as Intracranial Pressure (ICP), 

Electrocardiogram (ECG), and Arterial Blood Pressure 

(ABP). Time raw domain data, frequency domain data, and 

the combination of both were studied as the input of neural 

network models. Four deep learning algorithms were 

employed: convolutional neural network (CNN), long short-

term memory (LSTM), bidirectional LSTM (BiLSTM), and 

transformer neural network. By performing a cross-

validation ensemble using a dataset of 39 patients with noisy 

signals, the time domain data with the LSTM model is found 

best in terms of accuracy with a performance of 94.81%. On 

the other hand, the frequency domain data with the CNN 

model is found best in terms of computational time. The CNN 

model takes 7 minutes and 3 seconds for training. 

This study shows that deep learning, raw data in the 

frequency or time domain, and cross-validation ensemble 

combined have great potential for data quality evaluation in 

healthcare. 

1. INTRODUCTION 

Data quality evaluation plays a critical role in artificial 

intelligence algorithms’ performance since they may be 

trained with defective information. To solve data quality 

problems, different preprocessing techniques have been 

developed as part of the general framework of machine 

learning.  

In healthcare applications, the data can be seriously affected 

by different factors such as sensor errors, patient movements, 

measurement errors, etc. These abnormalities can cause 

problems such as false diagnoses and inaccurate clinical 

alarms. In the medical area, these errors are commonly 

known as artifacts and their detection is critical due to the 

complexity of physiological data.  

Most importantly, healthcare data from the intensive care unit 

(ICU) has a high impact on human lives. The current death 

ratio in the ICU is 7% (Siddiqui, 2015). Patients with 

traumatic brain injuries are part of the ICU where a faster 

diagnosis through data-driven methods can save lives. 

Therefore, having good management of the data can help to 

make faster decisions and improve the safety and quality of 

patient care (Cascini et al.,2021). 

Some of the most important signals in patients with traumatic 

brain injuries are intracranial pressure, arterial blood 

pressure, and electrocardiogram. Intracranial pressure (ICP) 

measures the pressure inside the brain. To get this 

measurement, it is required to create a craniotomy to insert 

the ICP monitor. Arterial blood pressure (ABP) measures the 

pressure within the arteries using an invasive catheter placed 

at the radial or femoral artery. An electrocardiogram (ECG) 

measures the activity of the heart and different values or 

trends in this measurement can reflect arrhythmias and other 
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conditions. Overall, these three signals play an important role 

in the intensive care unit. 

From the Prognostics and Health Management (PHM) 

perspective, the gathered data can be used for diagnosis and 

forecasting in different applications. In the specific case of 

patients with traumatic brain injuries, PHM can be used for 

clinical diagnosis, making it faster and more efficient. 

However, as mentioned before, data quality in the healthcare 

area is highly compromised due to people’s involuntary 

movements or bedside care events. Hence, it is needed to 

evaluate the data quality first and then apply data-driven 

diagnosis using Machine Learning algorithms. 

Different techniques can be used for this purpose such as 

anomaly detection, regression imputation for missing values, 

duplicate data identification, and so on. However, the 

simplicity and deployability of the methods are important 

factors to take into account. From the medical point of view, 

artifact detection significantly improves data quality. 

Furthermore, different kinds of artifacts are in the data and 

their identification is complex due to the similarity between 

abnormalities caused by illnesses and measurement errors. 

Deep learning algorithms can identify patterns in 

complicated data without the need for domain knowledge. 

They are currently used in applications such as stock market 

forecasting, sentiment analysis, computer vision, etc. Given 

the flexibility of neural networks to work in different 

applications, deep learning is a feasible candidate for artifact 

detection. 

Considering that data quality evaluation plays an important 

role in data-driven methods due to its impact on algorithm 

performance, in this paper, we propose a novel method to 

detect artifacts by using multivariate signals and deep 

learning. Due to the complexity of medical data, domain 

knowledge is important when doing traditional artifact 

detection methods. Thus, the proposed deep learning 

methodology solves the problem by using the raw data as the 

input and extracting high-level features inside the neural 

network architecture. Neural network architectures including 

CNN, LSTM, BiLSTM, and Transformer neural networks are 

evaluated. Furthermore, a cross-validation ensemble method 

is performed to reduce overfitting and increase prediction 

power. 

2. LITERATURE REVIEW. 

In the last decade, data-based algorithms usage has been 

gaining popularity due to its flexibility to work in different 

industries. Deep learning, classical machine learning 

algorithms, and signal processing techniques can be used for 

data quality enhancement and predictions, which are co-

dependent due to the important role of data quality on 

algorithm predictions. In the literature, different algorithms 

and methodologies for data quality evaluation using artifact 

and anomaly detection are available (Megjhani et al.,2019; 

Feng, Loy, Zhang, and Guan, 2011; Edinburgh, Smielewski, 

Czosnyka, Eglen, and Ercole, 2019; Subramanian et al., 

2021; Gupta et al., 2022).  Also, from the prediction 

application standpoint, different neural network applications 

can be found due to their capacity to recognize patterns and 

automatically extract features (Roy et al. 2020; Bar et al. 

2015; Hussein, et al. 2019). 

In this section, these two main topics are listed and described 

in detail: data quality evaluation methods and deep learning 

prediction techniques.  

As for data quality techniques, Ning et al. (2017) proposed a 

tabular data quality improvement algorithm based on missing 

data imputation. The algorithm is based on a denoising auto-

encoder with a high rate of missing data. Further research 

needs to be done for the low rate of missing data. Liu et al. 

(2017) proposed a data quality framework for power grid 

data. The proposed framework is applied to the Chinese 

electric power dataset due to its complexity and lack of 

applied data quality methods. The framework gathered real-

time and historical data and gave support for data quality, 

storage, and management. Sulistyo et al. (2020) suggested a 

data enhancement method that deals with missing data. The 

study used Pentaho Data Integration (PDI) and the developed 

method was applied to a brand registration number permits 

dataset for Indonesian government institutions. Gu et al. 

(2021) developed a method for data quality improvement 

using crowd-based imputation and Expectation-

Maximization (EM) algorithm. The model was developed in 

two steps, first using EM and then using crowd imputation. 

The results showed that the quality was improved by 10% 

using EM and 5% using crowd imputation. Chen et al. (2021) 

proposed a system and data quality enhancement 

methodology based on transfer learning. For validation of the 

proposed framework, medical data such as TwADR-L and 

AskAPatient have been tested and show an increase of 

accuracy of 6% and 12 % in each dataset respectively. 

Furthermore, the analysis of the two datasets showed a high 

correlation between data quality and machine learning 

algorithm performance. 

As an important part of data quality evaluation, artifact 

detection is one of the main tasks. Then, artifact detection 

methods are also proposed by different authors. For instance, 

Megjhani et al. (2019) proposed an active learning approach 

for artifact detection in ICP signals. The method improved 

artifact labeling and showed better results than template 

machine, ICP stability, and threshold-based methods. Also, 

Feng, Loy, Zhang, and Guan (2011) developed an artifact 

detection solution for ICP based on signal decomposition. 

The method used Empirical mode decomposition (EMD) and 

a filtering method to detect artifacts. The filter included 

robust statistics as a threshold to determine the presence of an 

abnormality in the signal. More recently, Edinburgh, 

Smielewski, Czosnyka, Eglen, and Ercole (2019) proposed 

an artifact detection algorithm for Arterial Blood Pressure 

(ABP) signals. The proposed algorithm used a convolutional 
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neural network and an auto-encoder to detect artifacts. The 

algorithms showed a sensitivity and specificity of around 

90%. Dai et al. (2020) presented a framework that included 

different processing methods, machine learning techniques, 

and statistical techniques to specifically analyze ICP. This 

study also summarized previous approaches for ICP 

monitoring using data science and machine learning 

techniques, in which artifact detection plays a critical role in 

ICP analysis. Subramanian et al., 2021 proposed 

unsupervised techniques to detect artifacts in physiological 

data. The results show that KNN and 1 class SVM are the 

best options with the shortest contiguous length of artifact of 

14.5039 seconds for both algorithms. Gupta et al. (2022) 

presented an artifact detector method based on the Savitzky-

Golay filter (S-GF) with wavelet-based noise remover 

(WBNR). The artifact detector significantly increases the 

accuracy of automated detection of Bundle Branch Block 

(BBB), a cardiovascular complication, to 98.80%. 

As for deep learning prediction techniques, Roy et al. (2020) 

proposed a deep learning-based model for COVID-19 

diagnosis using lung ultrasonography images. The algorithm 

predicts the severity of the disease and the location of 

artifacts in the lung. Bar et al. (2015) proposed a 

Convolutional Neural Network (CNN) model to detect chest 

pathology based on 433 chest radiograph images. Krishnadas 

et al. (2021) suggested a malaria detection algorithm based 

on deep Learning and microscopic images of Peripheral 

Blood Smear (PCB). Both ResNet50 and DenseNet121 

models were implemented and obtained an accuracy of 

91.72% and 94.43% respectively. The models help with 

malaria detection in rural areas where the lack of health 

professionals increases the chance of malaria infection. 

Moreover, Patel, Das, Pant, and Jayasurya (2021) proposed a 

deep learning ensemble method to detect tuberculosis using 

radiographs. Weighted Ensemble and Stack generalization 

were used performing an accuracy of around 95.19%. 

Furthermore, Hussein, et al. (2019) proposed supervised and 

unsupervised learning approaches to perform risk 

stratification of tumors. For the supervised approach, the 3D 

convolutional neural network was used in combination with 

transfer learning. For improvement, the algorithm was 

incorporated with a computer-aided diagnosis (CAD) tool. 

For unsupervised learning, support vector machines were 

used to overcome the lack of data labeling in tumor 

identification. The methods were validated using pancreas 

and lung images. For supervised learning, a 5% improvement 

in accuracy with respect to deep learning methods was 

observed. Also, for unsupervised learning, the improvement 

of accuracy was found 24% with respect to SVM. 

To sum up, different approaches haven been taken to perform 

data quality, artifact detection, and deep learning prediction 

techniques. This happens because data-driven strategies have 

been taking an essential role in the medical field and the 

practical usage of data improves the efficiency of healthcare 

services. 

3. PROPOSED METHODOLOGY 

 
Figure 1: Data workflow 

The workflow of the proposed methodology is shown in 

Figure 1. Further details of each step are described as follows: 

3.1 Data windowing 

A data windowing of 10 seconds is considered for the 

analysis as suggested in (Edinburgh, Smielewski, Czosnyka, 

Eglen, and Ercole, 2019). Given that ICP, ABP, and ECG are 

signals with high sampling frequency, a ten-second time 

window will allow the algorithms to extract all the needed 

information for artifact detection. For example, an ECG 

signal can be seen clearly within a ten-second window in 

Figure 2.  

 

Figure 2: ECG signal 

3.2 Downsampling 

In medical data, different sampling frequencies appear due to 

the different protocols utilized by different data sources. 

Downsampling is needed to facilitate multivariate analysis. 

For multivariate time series analysis with deep learning 
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Eq. 1 

algorithms, a matrix works as the input of the neural network 

architecture. Therefore, in case we have different signals as 

columns, all columns should have the same number of points, 

which means the same sampling frequency. The 

downsampling does not affect spikes in the ECG signal 

because the peaks have a frequency of about 1.5 Hz and the 

downsampled sampling frequency is 125 Hz. Several signals 

have been used to verify the effectiveness of this technique 

and avoid the loss of information. Figure 3 shows an 

illustration of the used downsampling technique. 

 

Figure 3: Downsampling 

At the level matrix, we can see the effect of the 

downsampling in figure 4. As shown below, the signal ECG 

has more sample points than ICP and ABP. Then, the 

downsampling is applied to ECG to homogenize the three 

signals as represented on the right of the figure. 

 

Figure 4: Data matrix after downsampling 

3.3 Fourier transform 

Traumatic brain injury data predominantly contains 

information in the frequency rather than the time domain. 

Since the raw data is in the time domain, frequency domain 

conversion is performed by feeding the Fourier transform 

module with time series waves of ten seconds of ICP, ABP, 

or ECG. By using this approach, information on the raw data 

such as heart rate, pulsation rate, and others are considered in 

the analysis. In figure 5, we can see how the time data can 

show different information when seen from different 

perspectives.  

Figure 5: Fourier transform (Kalhara et al., 2017) 

The electrocardiogram (ECG) has different features that can 

be extracted easily with a frequency-domain transformation. 

In figure 6, we can see an ECG sample that shows features 

such as RR interval, QT interval, and so on. The figure shows 

how the frequency between peaks, and the duration of peaks 

can provide useful information for the algorithm. Thus, 

transforming the data to the frequency domain gives us a 

better picture of the signal. 

Figure 6: ECG properties (Carmona et al., 2013) 

3.4 Standardization 

Standardization is applied to each signal before it goes into 

the artificial neural network (ANN). This technique allows a 

faster convergence of the training process. As shown in 

equation 1, where σ and µ represent standard deviation (SD) 

and mean respectively, the Z score has been used to 

standardize the data. Each segment of ten seconds has been 

used as a reference to standardize the data. 

𝒁 =
𝒙 − 𝝈

µ
 

After applying standardization, the data will be more suitable 

to use since unscaled values can negatively affect the 

algorithm.  

 

Figure 7: Standard distribution (Kissell & Poserina, 2017) 

3.5 Data Splitting 

To train, validate and test the algorithm, data splitting is an 

important step in the proposed framework. The ratio of train, 

validation and test data is approximately 70%-15%-15%. The 

selected ratio is based on the common practice of using 70%  

of the data for training (Kebonye, 2021) and the fact that 

validation and testing should have similar sizes (15%-15%).   

The validation data should be used for hyperparameter tuning 

and the test data should be used for performance evaluation. 

It is recommended that the test data are composed of patients 
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that are not in the train or validation data. This way 

overfitting can be avoided. 

 

Figure 8: Data splitting 

3.6 Stratified Cross-validation 

Stratified cross-validation allows the algorithm to have a 

balanced number of classes in each fold. Each fold represents 

a subset of the dataset. This feature helps the algorithm train 

with subsets of data with a similar proportion of classes. 

Furthermore, it enhances robustness and reduces overfitting. 

As shown in figure 9, the classes are well distributed in each 

fold, allowing the algorithm to be trained in different subsets 

and increasing performance due to data diversity. Each model 

trained in each fold can be saved and used later as a predictor. 

Diverse results can be. obtained by using this method, which 

can be combined to get a final result. 

Figure 9: Stratified Cross-validation 

 

3.7 Deep learning algorithm 

Due to the complexity of medical data, deep learning 

algorithms are a good option to extract high-level patterns 

from the dataset. The final architecture for this methodology 

can vary depending on the performance, computational time, 

and hardware availability resources. Different algorithms 

such as recurrent neural networks, convolutional neural 

networks, and self-attention-based neural networks can be 

used to train the final model. In this study, CNN, LSTM, 

BiLSTM, and Transformer have been selected. CNN has 

been selected due to its ability to exploit spatial correlation, 

which can help recognize patterns between different signals 

when the input is a 2D matrix for multivariate time series 

analysis. LSTM, BiLSTM, and Transformer have been 

selected due to their known capacity to work with sequential 

data.  

Also, the advantage of deep learning algorithms over 

traditional machine learning, in this case, is the limited use of 

domain knowledge. Tedious feature engineering of medical 

data is not required since the selected algorithms can extract 

features directly from the raw data. Then, the proposed 

method reduces the algorithm time development, and it 

makes the proposed framework flexible to be used in other 

cases. In figure 10, we can see how a multivariate time series 

feeds the neural network architecture. The proposed 

framework works as shown in figure 10, making the training 

and prediction more efficient and accurate.  

Different sizes as the input of the neural network are 

presented in the presented study. The overall model 

architecture will not change when analyzing each case. Only 

the hyperparameter, which represents the size of the input 

signal, will change in each domain study. Also, the length of 

the signals either in frequency or time domain may have an 

impact on the model, but the main impact may be due to the 

valuable information in the analyzed domain.  

Figure 10: Artificial Neural network 

• Recurrent neural network 

A recurrent neural network is a kind of artificial neural 

network that allows temporal behavior connection of the data. 

Different algorithms are derived based on RNN, with Long 

short-term memory (LSTM) and Bidirectional LSTM the 

most popular due to their excellent results. 

✓ Long short-term memory  

Long short-term memory (LSTM) takes data as a sequence 

using feedback neural connections. For instance, this neural 

network can efficiently work with videos or audio since the 

sequence of the data has a meaning and the structure of the 

network is designed to take advantage of it. To do that, LSTM 

is composed of a cell, an input gate, an output gate, and a 

forget gate (Gers et al., 1999). Some of the successful 

applications of LSTM are speech recognition, sentiment 

analysis, video analysis, and others. 



ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2022 

6 

✓ Bidirectional LSTM  

Bidirectional LSTM (Bi-LSTM) works with hidden layers 

from two directions (Schuster & Kuldip, 1997). This way, it 

can work with data from the past and the future taking 

advantage of valuable information from sequence data. Some 

of the successful applications of this neural network 

architecture are speech recognition, language translation, 

handwriting recognition, and others. 

• Convolutional neural network 

A convolutional neural network (CNN) is an artificial neural 

network architecture based on convolution kernels that 

extract high-level features from the data. It includes the 

following layers: input, convolution, pooling, and fully 

connected layer (Bezdan & Džakula, 2019). For time series, 

one Dimensional CNN (1D-CNN) is commonly used, and it 

shows good results in areas such as finances, healthcare, 

energy forecasting, and so on. Each layer in the architecture 

has a specific function as described below:  

✓ Input layer: This layer contains the data in the provided 

form. 

✓ Convolutional layer: This layer scans the input in its 

dimensions. Important parameters are filter and kernel 

size.  

✓ Pooling layer: The function of this layer is to 

downsample the data after the convolutional operation. 

Typical convolutional methods are the maximum and 

average values. 

✓ Fully connected layer: It receives a flattened input and 

connects it to all neurons.  

 

• Self-attention-based neural network 

 

Self-attention neural network in an artificial neural network 

algorithm that works based on the context of the data. One of 

the most popular algorithms of this type is the transformer 

neural network. This architecture can take advantage of 

information from middle points of sequence data without 

analyzing all the data from the beginning. Thus, it can reduce 

the computational training time in comparison to other 

recurrent neural networks (Vaswani et al.,2017). Currently, 

this architecture is mostly used in Natural language 

processing (NLP) and Computer vision (CV). 

 

3.8 Major vote ensemble 

The ensemble method helps to increase diversity within 

algorithms and enhance prediction power. As shown in figure 

11, five models are ensembled and provide a final result. 

Each model represented the same architecture and algorithm, 

but a different subset of the dataset for training has been used. 

This approach is developed inside the cross-validation step, 

in which different subsets of the dataset are used for training.  

Given that different subsets are used as training data for the 

neural network architecture, each algorithm can give 

different results. The proposed methodology suggests using 

the average (major voting ensemble) for the predictions of all 

the trained algorithms, so artifact detection performance can 

be improved significantly. 

 

 

Figure 11: Major vote ensemble 

4. DATA SET DESCRIPTION 

The dataset was generated using 39 patients with severe 

traumatic brain injuries from the neuroscience intensive care 

unit of the University of Cincinnati Medical Center. The 

predominant collection duration of ICP, ABP, and ECG time 

series is about 5 days for each patient and a predominant 

subset of approximately 400 seconds has been taken for each 

patient for algorithm development. Each segment of data has 

a time window of 10 seconds and was labeled by a specialist 

as either artifact or non-artifact. The dataset contains three 

physiological signals: Intracranial pressure, Arterial Blood 

Pressure, and Electrocardiogram. For the purposes of this 

study, there were no missing values in the collected data. 

Table 1: Data description 

Data specifications 

Signals ICP, ABP, ECG 

Sample 

frequency 

125 Hz (ICP, ABP),  

500 Hz (ECG) 

# of samples 1670 

Task Artifact Detection 

Missing 

Values? 
No 

# of Patients 39 

# of Artifacts 911 

# Non-Artifacts 759 

A segment of the three signals can be considered an artifact 

if one of the signals (ICP, ABP, or ECG) contains an 

abnormality. The sampling frequency of the signals is 125 Hz 

for ICP and ABP, and 500 Hz for ECG. Different sample 

frequencies may appear in different datasets, but the same 

procedure should be followed for artifact detection. The 

dataset contains the following columns: 

• tICP: Timestamp of the ICP signal (Seconds) 

• ICP: Intracranial pressure measurement (mmHg) 

• tICP_start: Start measurement time of the ICP signal. 
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(b) 

(a) 

• tABP: Timestamp of the ABP signal (Seconds) 

• ABP: Arterial blood pressure measurement (mmHg) 

• tABP_start: Start measurement time of the ABP signal 

(Sec.) 

• tECG: Timestamp of the ICP signal (Sec.) 

• ECG: Electrocardiogram measurement (mV). 

• tECG_start: Start measurement time of the ECG signal. 

• manual_label: Manual label (Artifact=1, Non-

Artifact=1) 

• AbnormalSignal: Cause of the artifact (1: ICP, 2: ABP, 

3:ECG) 

• Patient: Patient number identification number (ID). 

The percentage of artifacts and non-artifacts in the dataset is 

55% and 45% respectively. In figure 12, we can see one 

normal signal (non-artifact) and two samples of artifacts due 

to ICP and ECG. The first plot shows a seasonal signal with 

a constant trend in ICP, ABP, and ECG. Given that the three 

signals show normal behavior; this segment is considered a 

non-artifact. The second plot shows disruptions in ICP, ABP 

and ECG. Given the abnormalities in ICP, ABP, and ECG, 

this signal is considered an artifact. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

     Figure 12: Signal samples (a) non-artifact (b) artifact 

5. PREDICTIONS & RESULTS 

The proposed methodology for artifact detection is validated 

on the test dataset that contains 270 samples including 

artifacts and non-artifacts. The results are given based on 

accuracy, True positive (TP), False positive (FP), False 

negative (FN), True negative (TN), and GPU time. The main 

three parameters for this study are accuracy, false negative, 

and GPU time. False negative is considered since a high false 

negative ratio implies that the algorithm allows artifact 

signals to pass as normal signals decreasing the overall 

quality of the data. 

Furthermore, three domains have been considered as the 

input of the neural network as follows: time domain, Fourier 

transformation, and time and Fourier transform combined. 

All domains are tested in the same neural network 

architecture of each deep learning algorithm (CNN, LSTM, 

BiLSTM, or Transformer) 

• Neural network architectures 

The neural network architectures have been defined by using 

the Optuna optimizer. The final architectures for each 

algorithm are defined in table 2 and 3: 

Table 2: CNN, LSTM & BiLSTM architectures 

 CNN LSTM BiLSTM 

# Input 

nodes 

256 50 96 

# Hidden 

layers 

3 1 2 

# nodes in 

hidden 

layers (HL) 

HL1: 64, 

HL2: 32 

HL3: 32 

HL1: 50 HL1: 32, 

HL2: 32 

Learning 

rate 

0.001 0.001 0.001 

Batch Size 32 32 32 

# of Epochs 200 200 200 

 

Table 3 describes the architecture of the transformer neural network. 

Different hyperparameters are defined in comparison to the CNN, 

LSTM, and Bilstm algorithms 

 

Table 3: Transformer architecture 

 Head 

Size 

# of 

heads 

# of 

blocks 

Multilayer 

Perceptron 

Units 

Transformer 256 2 2 128 
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• Time domain data approach 

For the time domain approach, the input for all networks is as 

shown in figure 13. The ECG signal has been donwsampled 

so it has1250 samples in 10 seconds as the other signals. 

 

Figure 13: Time domain matrix input 

As shown in table 4, LSTM has the best accuracy (94.81%) 

among the algorithms with time-domain data. In terms of 

computational time (GPU time), all the algorithms but CNN 

have a training time of more than one hour. The lowest False 

negative ratio is obtained by CNN. 

Table 4: Time domain results 

 CNN LSTM BiLSTM Transformer 

Input Time raw data 

Accuracy 87.78% 94.81% 91.11% 80.00% 

TP 91.55% 90.14% 90.85% 83.10% 

FP 16.41% 0.00% 8.59% 23.44% 

FN 8.45% 9.86% 9.15% 16.90% 

TN 83.59% 100.00% 91.41% 23.44% 

GPU 

time 

7min 24s 1h 4min 3h 26min 1h 22min 

• Frequency domain data approach 

For the frequency domain approach, Fourier transformation 

has been taken for all signals, and the input of all algorithms 

is shown in figure 14. In this case, half of the signal length is 

taken because for the Fourier transform half of the signal is 

mirrored because of conjugate symmetry. 

 

Figure 14: Frequency domain matrix input 

As shown in table 5, LSTM and BiLSTM have the best 

accuracy (92.96%) within the algorithms with frequency 

domain data. CNN has the lowest computational time (7 min 

3 sec) for training. LSTM has the lowest False-negative ratio. 

Table 5: Frequency domain results 

 CNN LSTM BiLSTM Transformer 

Input Fourier transformation data (Frequency domain) 

Accuracy 92.22% 92.96% 92.96% 91.85% 

TP 88.79% 96.48% 95.77% 90.14% 

FP 3.91% 10.94% 10.16% 6.25% 

FN 11.27% 3.52% 4.23% 9.86% 

TN 96.09% 89.06% 89.84% 93.75% 

GPU 

time 

7min 3s 1h 3h 31min 1h 20min 

• Time and frequency domain data approach 

For the time-frequency domain combined, the input for all 

algorithms is shown in figure 15. It can be seen that FFT and 

the time domain data have the same length. This is because, 

in the frequency domain, the whole length of the signal 

without deleting the mirrored part was taken. 

 

Figure 15: Time-Frequency domain matrix input 

As shown in table 6, BiLSTM has the best accuracy (92.59%) 

among the algorithms with the time-frequency domain 

features. On the other hand, CNN has the lowest 

computational time (8 min) and the lowest false-negative 

ratio. 

Table 6: Time-Frequency domain results 

 CNN LSTM BiLSTM Transformer 

Input Frequency and Time domain data 

Accuracy 91.85% 91.85% 92.59% 90.74% 

TP 95.07% 92.96% 92.96% 87.32% 

FP 11.72% 9.38% 7.81% 5.47% 

FN 4.93% 7.04% 7.04% 12.68% 

TN 88.28% 90.63% 92.19% 94.53% 

GPU 

time 

8min 57min16s 3h 30min 1h 21min 
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Overall, CNN has the lowest computational time and LSTM 

& BiLSTM have the best accuracies. We can see the 

difference between the performance in Figures 16 and 17 for 

accuracy and computational time respectively.  

 In figure 13, we can see that LSTM in the time domain has 

the best performance. For the other algorithms, the best 

performance occurs at the frequency domain (Fourier 

transform) 

 

Figure 16: Accuracy of different deep learning models utilizing 

different types of data 

In figure 14, we can see that, by far, the lowest computational 

time belongs to the CNN model. The training time for CNN 

is 7 min and for the other algorithms is between 1-4 hours. 

This suggests a much better use of hardware resources from 

the CNN model. 

 

Figure 17: Computational time calculated using different deep 

learning approaches  

6. CONCLUSIONS AND DISCUSSION 

In this study, a framework for data quality improvement 

using artifact detection has been developed. The framework 

was developed to leverage multiple signals through 

multivariate analysis and to provide artifact label annotation 

using both time and frequency domain data from patients 

with severe traumatic brain injuries in the neuroscience 

intensive care unit. The proposed framework establishes a 

data quality improvement PHM methodology that can be 

used in other areas with high-frequency data. 

In terms of performance, LSTM and Bi-LSTM have the best 

accuracy results. For LSMT, the average accuracy within all 

domains is 93.2% and the best accuracy is 94.81 in the time 

domain. For BiLSMT, the average accuracy within all 

domains is 92.22% and the best accuracy is 92.96% in the 

frequency domain.  

In terms of computational time, CNN has, by far, the best 

result. It only takes 7-8 minutes to train the algorithm whereas 

for the other algorithms it takes between 1-3 hours. 

In terms of the input of the neural network architecture, the 

frequency domain has overall the best results. Three out of 

four algorithms show better performance in the frequency 

domain than in the time and time & frequency domain 

approach. 

In terms of false-negative rate, the results vary for each 

algorithm depending on the input of the neural network (Time 

domain, Frequency domain, or Time & Frequency domain). 

The best false-negative ratio is 3.52% which comes from 

LSTM using frequency domain input for the neural network. 

In terms of preprocessing, the most feasible solutions are the 

frequency and time domain approaches separately. The 

combined time & frequency domain approach can cause 

some complexity in the preprocessing part of the algorithm 

because it includes merging the time and frequency domain 

data in the same neural network input. 

Overall, the LSTM model with time domain data as the input 

has the best performance in terms of accuracy (94.81 %) and, 

when using time domain data, it has the best false-negative 

ratio (3.52%). In terms of computational time, the CNN 

model has the best training time (7 minutes), which means 

that the use of hardware resources is the best among the other 

algorithms. Importantly, the accuracy and false-negative rate 

of the CNN model using time-frequency domain information 

is comparable (91.85% accuracy, 4.93% false-negative rate) 

to the optimal model which makes this an attractive option 

for online processing. 

In conclusion, the best options in terms of accuracy and 

computational time can be used under different requirement 

conditions. For instance, the CNN model can be used for an 

active learning approach in which computational time can be 

an important factor to consider. On the other hand, the LSTM 

model can be used in different conditions when retraining the 

model is not frequently required. In general, the two options 

have good accuracy. For CNN, the best accuracy is 92.22% 

in the frequency domain and for LSTM, the best accuracy is 

94.81% in the time domain. The selection of which algorithm 

can be feasible depends on the user requirements.  
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