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ABSTRACT

Prognosis of the time of first occurrence of events, partic-
ularly failures, is a problem that has been studied and an-
alyzed from different perspectives, being referred to as the
“first-hitting time” or “first-passage time” problem, among
other names. Within the Prognostics and Health Manage-
ment community, as well as in other disciplines, the prob-
abilistic benchmark for computing the Time-of-Failure con-
sists of Monte Carlo simulations where the failure event is de-
fined as the moment when the health of the monitored system,
typically described by a health indicator, crosses a predeter-
mined threshold that denotes a region known as hazard zone.
More recently, this problem was formalized through the in-
troduction of new probability measures based on the concept
of uncertain event, which correct widely used expressions for
these purposes, and extend the typical threshold criterion for
declaring a failure (or other event) to a broader notion of un-
certain event likelihood. Following a step-by-step approach
supported by code programmed in Python language, this pa-
per verifies the correctness of the aforementioned probability
measures, illustrating with a simple example how exactly the
same results are obtained using either these new probability
measures or the universally accepted benchmark.

1. INTRODUCTION

Prognosticating the time at which an event will occur in the
future is a concurrent problem for a wide scientific spectrum,
including: physics (Nyberg, Ambjörnsson, & Lizana, 2016),
chemistry (Szabo, Schulten, & Schulten, 1980), biology (Hu,
Cheng, & Berne1, 2010), neurobiology (Tuckwell, 1988),
epidemiology (Lloyd & May, 2011), psychology (Navarro &
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Fuss, 2009), finance (Bakshi & Panayotov, 2010), economy
(Abbring & Salimans, 2021), reliability engineering (Pieper,
Dominé, & Kurth, 1997), and Prognostics and Health Man-
agement (PHM) (Daigle & Goebel, 2013), to name some ex-
amples (Redner, 2001). It can often be found in the literature
under the name of first-hitting time or first-passage time. Re-
search in the literature often shows thresholds to declare the
occurrence of events (Redner, 2001), although the concept of
non-threshold-triggered events under the notion of uncertain
hazard zones had been introduced years ago in failure prog-
nosis (Orchard & Vachtsevanos, 2009). The probability dis-
tribution for the occurrence time of non-threshold-triggered
events was finally rigorously formalized in a recently pub-
lished work (Acuña-Ureta, Orchard, & Wheeler, 2021). This
problem is central in the Prognostics and Health Management
(PHM) engineering discipline, although, unlike other disci-
plines, there are applications where the difficulty of requir-
ing to solve the problem in real-time is added, which turns
the prognostic problem into a very challenging task. Conse-
quently, the scientific articles that refer to the study of faults
in systems show a noticeable inclination to address aspects of
anomaly detection and fault diagnosis, in much greater pro-
portion than the amount of articles that refer to fault progno-
sis.

The PHM engineering discipline is born and is strongly moti-
vated by applications (Goebel et al., 2017). Adding to this the
growing popularity of machine learning methods, most of the
research in PHM has been oriented to the use of these data-
driven techniques to monitor the health condition of systems.
Due to these and other reasons, research in more fundamental
aspects in terms of theory still needs to be addressed and ma-
tured. The drawback of not proceeding on a solid theoretical
basis is that mathematical guarantees and fundamental limits
of performance cannot be established. Furthermore, reflec-
tion on research results seen purely from the point of view of
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intuition can lead to biased conclusions, as evidenced earlier
in (Acuña & Orchard, 2018) regarding failure prognosis.

In this article, fundamental PHM issues are addressed under
an approach that seeks to be pedagogical and invites reflec-
tion, which are: What are the theoretically correct ways to
calculate the probability distribution of the failure time when
prognosticating? How can this calculation be carried out?
Can we verify the correctness of the Theory of Uncertain
Event Prognosis (Acuña-Ureta et al., 2021) in light of the an-
swers to the previous questions? Different ways to calculate
the probability distribution of the time of occurrence of a fu-
ture system failure are presented and analyzed in Section 2,
where the inconsistency of one of them (frequently used) is
also exposed and it is explained how it leads to to wrong re-
sults based on a biased intuition. Section 3 explains step by
step, with a concrete example of fatigue crack growth, how
to implement an approach based on the Theory of Uncertain
Event Prognosis and it is verified that it leads to correct results
when compared with the ground truth given by definition. Fi-
nally, conclusions are provided in Section 4.

2. TIME-OF-FAILURE PROBABILITY DISTRIBUTION

There are two widely known ways used in PHM-related arti-
cles to characterize the time of occurrence of a future event
in prognostic routines: Whereas some authors prefer mathe-
matical definitions, others prefer to use a more intuitive ap-
proach. However, intuitive approaches may present theoreti-
cal inconsistencies and may not coincide with the results ob-
tained from strict mathematical analysis. A third form has
emerged (Acuña-Ureta et al., 2021), developed with math-
ematical rigor, that generalizes the prognostic problem and
leads to the same results that are obtained by definition. This
third way generalizes the problem using the concept of un-
certain events. These three different approaches are now pre-
sented and discussed for clarity purposes.

2.1. Prognostics: Definition of Time-of-Event

Following the same definition widely accepted in various dis-
ciplines of engineering and science, the time of occurrence of
an event is defined from the hit with a threshold experienced
by a variable of interest for the first time. In the context of
PHM, you would have:

1. A health indicator Yk (random variable subjected to
sources of uncertainty) as a variable of interest.

2. A threshold x̄, which determines which values of the
health indicator correspond to a fault condition and
which do not.

3. An event E , which would be the occurrence of a sys-
tem failure, which is triggered once the health indicator
crosses the failure threshold coming from an operational
health condition.

With all these elements, the time τE in which the failure event
E occurs for the first time in the future, considering kp as
the present time, can be defined as (Redner, 2001; Daigle &
Goebel, 2013)

τE(kp) := inf{k ∈ N : {k > kp} ∧ {System Failure at k}}.
(1)

The wide and rigorous acceptance of this definition, adopted
even in the community of applied mathematics, poses a reli-
able base as a benchmark to be able to validate or refute any
other type of characterization.

It is very important to note that this definition conceptually
and mathematically describes τE as a random variable, since
the system failure depends on a health indicator that depicts a
stochastic process provided its evolution is subject to sources
of uncertainty. Nonetheless, this definition does not explic-
itly describe the probability distribution of τE . The default
method for computing its statistics is through Monte Carlo
simulations, which is described later in Section 3.1.

2.2. Prognostics: An intuitive yet biased approach

Consider that the probability distribution for the failure indi-
cator of a system at the current time, which we denote as kp.
Under this scenario, it is not straightforward to deduce how
the probabilities of τE are calculated, the latter being defined
according to Equation (1).

Figure 1. Illustration of probability mass quantification cross-
ing a threshold in a system with monotonic degradation.

For now, a first step towards calculating the probabilities of
τE would be to propagate the uncertainty about the health in-
dicator into the future, as shown in Figure 1.

Suppose that the health indicator Yk corresponds to the length
of a crack. We could define that when a certain length,
or threshold, is reached, then a system failure event occurs.
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Therefore, a graph can be constructed with the probability
mass crossing the threshold at each time in the future, as
shown at the bottom of Figure 1. Note that the graph de-
scribes an increasing curve starting at zero and reaching the
value one. Naturally, the first intuition would be to estab-
lish that this curve corresponds to the Cumulative Distribu-
tion Function (CDF) of τE . Mathematically, this could be
expressed as:

P(τE ≤ k) =

k∑
j=kp

P(Yj ≥ x̄) (2)

=

k∑
j=kp

∫ +∞

x̄

p(yj)dyj . (3)

Up to this point the intuition seems to make sense, although
you need to understand the assumption behind it. For the
aforementioned probability curve to be increasing, it is re-
quired that the dynamics of the health indicator be monotonic.
In other words, monotonic degradation is a requirement. But
what would happen if this assumption did not hold, i.e., if
the system experiences regenerative phenomena? This new
situation is illustrated in Figure 2.

Figure 2. Illustration of probability mass quantification cross-
ing a threshold in a system that presents regenerative phenom-
ena.

In this situation, the probability curve is not increasing, so it
cannot be interpreted as a CDF. If it is not the CDF of τE , then
what is it? We know for a fact that, for example, systems such
as batteries present regenerative phenomena, and even so they
have time of failure and therefore a CDF associated with it.
Is it that in those cases this is not the way to calculate that
CDF? What would be the methodology then? Clearly there
is a valid question here, and unfortunately it has not been an-
swered by the community yet. Elaborating an answer would

require really understanding how the equality established in
Equation (2) is justified, as well as the assumption of mono-
tonic degradation. However, as far as we know, there is no
mathematical proof to support this calculation (this is why we
refer to it as “intuitive”), although it has been widely applied
in articles dealing with the prognostic problem, specially in
particle-filtering-based prognostic frameworks.

Figure 3. Cumulative Distribution Function (CDF) and Prob-
ability Mass Function (PMF) of τE calculated according to
the definition provided in Section 2.1 (ground truth) and ac-
cording to an intuitive, yet biased, approach explained in Sec-
tion 2.2.

This approach to calculate the probability distribution of τE
does not need to have a mathematical proof to be refuted. It
would be enough to show a counterexample and empirically
verify that it is not correct, even under the monotonic dynam-
ics hypothesis that it requires. Let us assume the following
linear system that characterizes a health indicator Yk:

yk+1 = ayk + ωk, k ≥ kp, (4)
ykp = 1, (5)

where kp = 0, a = 1.2 is a fixed constant, and ωk ∼
N (0, σω

2) is Gaussian white noise with standard deviation
σω = 0.1. We can calculate the resulting probability distri-
bution of τE following the intuitive method hereby presented
and compare it with the benchmark that is established by def-
inition in Section 2.1. This can be done with great precision,
since the health indicator is represented by a Gaussian linear
system, so the probability mass that crosses the threshold can
be calculated analytically. The results are shown in Figure 3
and show that the results differ one another, from which it is
concluded that the intuitive approach must be ill-defined, and
obeys a biased intuition.
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2.3. Prognostics: Theory of Uncertain Event Prognosis

Although τE is well defined in Section 2.1, that definition
does not explicitly indicate how the probability of event E
(system failure in this context) occurring in time k is cal-
culated, that is, the calculation of P(τE = k), k > kp, is
not made explicit. In (Acuña-Ureta et al., 2021), expressions
for performing this computation in both continuous-time and
discrete-time are derived and rigorously demonstrated; in ad-
dition, the notion of “uncertain event” is introduced in the
context of prognostics. All this gives rise to what we will
know as Uncertain Event Prognosis Theory. Next, we will
present in a very simple way how this calculation is carried
out for the discrete-time case. Later in Section 3, simulations
explained step by step are carried out in order to verify em-
pirically that the expressions of this theory lead us to exactly
the same results that are obtained by definition, according to
what is established in Section 2.1.

A qualitative notion of event, denoted by E , is required to ob-
tain a probabilistic expression for its future occurrence time.
In PHM, we can define

E = “System failure”. (6)

A binary stochastic process {Ek}k∈N is defined so that, at
each time k, it indicates whether or not the event E occurs
with a certain probability. Thus,

P(Ek = Ec) = 1− P(Ek = E), (7)

where Ec denotes the non-occurrence of E . Suppose that kp ∈
N is the present time and it is sought to determine the moment
in the future at which E will occur for the first time, i.e., we
want to characterize τE = τE(kp). This time instant can be
formally defined as

τE(kp) := inf{k ∈ N : {k > kp} ∧ {Ek = E}}. (8)

In other words, under this formulation the random variable τE
indicates Time-of-Failure. Considering that the occurrence of
E at time k depends on the health indicator, denoted as yk, the
probability distribution of τE is given by (Acuña-Ureta et al.,
2021):

P(τE = k) :=

∫
Ykp+1:k

P (Ek = E|yk) · . . .

. . .

k−1∏
j=kp+1

(
1− P (Ej = E|yj)

)
· . . .

. . . p(ykp+1:k)dykp+1:k. (9)

In simple words, this expression states that the probability of
system failure occurring for the first time in a future instant of
time k, k > kp, can be computed from averaging all the pos-

sible future evolution for the health indicator, evaluating how
likely it is that there is system failure at time k and that it has
not occurred before. Two elements are required to compute
Equation (9):

• Joint probability density of future health indicators
p(ykp+1:k), which is given by the dynamic model of the
system.

• An uncertain event likelihood function P (Ek = E|y) :
Y ⊆ R → [0, 1]. This probability function can be inter-
preted as how likely is the system to incur failure at time
k, given a health condition y ∈ Y.

3. GENTLE VERIFICATION OF FAILURE TIME PROBA-
BILITY DISTRIBUTION COMPUTATION

This section explains step by step how the computation of the
probability distribution of the time of occurrence of a future
event is carried out in two different ways: the former pre-
sented in Section 2.1, which follows a classic approach where
the event is triggered because a variable of interest crosses a
threshold, and the latter, where the Theory of Uncertain Event
Prognosis presented in Section 2.3 is adopted using an uncer-
tain event likelihood function. If both ways are equivalent,
they logically should lead to the same results.

We start by importing –part of– some libraries, such as
numpy, matplotlib and scipy, which allow us to use
some basic math functions, to plot and to work with Gaussian
probability distributions, respectively:

#### Import libraries
import numpy as np
import matplotlib.pyplot as plt
from scipy.stats import norm

Without lost of generality and in order to maintain a peda-
gogical tone, in this section we will use as a case study a
simple fatigue crack growth model for prognostics, which is
one-dimensional and lacks exogenous inputs. The dynamic
model for the case study is as follows:

xk+1 = xk + eωkC(β
√
xk)

n, (10)
yk = xk + νk, (11)

where ωk ∼ N (0, σ2
ω) and νk ∼ N (0, σ2

ν) are white Gaus-
sian noise, and C, β and n are fixed constants. The variable
xk denotes the actual crack length, whereas yk denotes a mea-
surement of xk, that is corrupted with noise.

A criterion must be defined to declare the occurrence of an
event, which in this context will be understood as a failure
event. It will then be assumed that such an event is defined as
follows:

E = “Measured crack length greater than or equal to x̄”,
(12)
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where x̄ corresponds to a maximum tolerance for the length
of a crack before declaring a failure event. On the other hand,
when prognosticating, we start from a present time or cycle
that we denote by kp, and end in a horizon time or cycle,
which we denote by kh. Therefore, parameters must be de-
fined for the model and for the simulations:

#### Parameters
C = 0.005
beta = 1
n = 1.3
sigma_w = np.sqrt(2.98)
sigma_v = 1.0
x_bar = 100
kp = 100
kh = 1000
cycles = np.arange(kp, kh)
x = [0]*len(cycles)
y = [0]*len(cycles)
x[0] = np.exp(-10)
y[0] = norm.cdf(x[0], x_bar, sigma_v)
N = 10**6

Making a parallel between the parameters declared in the
script and the mathematical notation, we have that

• C: Equivalent to C.

• beta: Equivalent to β.

• n: Equivalent to n.

• sigma w: Equivalent to σω .

• sigma v: Equivalent to σν .

• x bar: Equivalent to x̄.

• kp: Equivalent to kp.

• kh: Equivalent to kh.

• cycles: List of cycle numbers, starting from cycle kp
and ending at kh.

• x: List to store actual crack lengths as a function of the
cycle number.

• y: List to store measured crack lengths as a function of
the cycle number.

• N: Equivalent to N , the number of Monte Carlo simula-
tions.

We can also define functions for Equation (10), of state tran-
sition, and for Equation (11), of measurement:

#### Functions
def state_transition(x): # state transition

return x + np.exp(norm.rvs(0, sigma_w))*
C*(beta*np.sqrt(x))**n

def measurement(x): # measurement
return np.random.normal(x, sigma_v)

The function state transition implements Equation
(10). It receives the crack length in cycle k as an argument,
i.e. xk, takes a realization of the noise ωk, and returns a new

crack length for the next cycle k + 1, i.e. xk+1. Similarly,
the function measurement implements Equation (11). It
receives as an argument the length of the crack in cycle k,
i.e. xk, takes a realization of the noise νk, and returns the
length of the crack that would be recorded for cycle k, i.e.
yk, assuming that a sensor with precision σν was used.

With all the elements exposed, we proceed below to explain
step by step how to prognosticate the probability distribution
for the future occurrence time of the event E (see Equation
(12)) using Monte Carlo simulations under two different ap-
proaches: a classic one based on hitting a threshold and an-
other based on the notion of uncertain event.

3.1. Prognosis conceiving threshold-triggered events

The most classic approach, and the one that constitutes the
default benchmark to characterize the probability distribution
of the time of future occurrence of an event, is to proceed by
definition as explained in Section 2.1. Nonetheless we need
a computational method to compute the probability distribu-
tion. The most standard procedure consists on performing
Monte Carlo simulations and assume that the event is trig-
gered by the hit of a variable of interest with a threshold. Re-
call that the time of the future event triggered by a threshold
is defined mathematically as

τE(kp) := inf{k ∈ N : {k > kp} ∧ {Yk ≥ x̄}}. (13)

In simple words, this expression establishes that τE = τE(kp)
is the time or cycle greater than kp in which a variable of inter-
est, the measured crack length Yk in this case study, reaches
for the first time a value greater than or equal to x̄, the thresh-
old. Naturally, τE is a random variable since Yk is a random
variable. As a consequence, there is a probability distribution
associated with τE .

In various scientific disciplines, including the PHM com-
munity, this mathematical expression is conceptually under-
stood and simulations are performed to try to characterize the
probability distribution of τE based on this conceptualization,
which are explained below.

#### Monte Carlo simulations: Classical
#### threshold-triggered event approach
ToE_prob_threshold = [0]*len(cycles)
for i in range(N):

for k in range(1, len(cycles)):
x[k] = state_transition(x[k-1])
y[k] = measurement(x[k])
if (y[k] >= x_bar):

ToE_prob_threshold[k] += 1/N
break

The future event can occur at any moment between kp
and kh, and each moment will have an associated prob-
ability of occurrence. Therefore, we define a list (or ar-
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ray) ToE prob threshold where these probabilities are
stored.

Figure 4. Illustration of a single possible trajectory for the
measured crack growth. As soon as the length of the crack
hits the threshold, i.e. yk ≥ x̄, for any k ≥ kp, the event
E is declared to have occurred at cycle k. If we repeat this
procedure N times (with N → +∞), a histogram can be
constructed, which would approximate the probability distri-
bution of τE with arbitrary precision. Note that the curve is
not increasing since it is corrupted by measurement noise.

To calculate the probability distribution of τE , N possible
ways (with N → +∞) in which the measured length of the
crack can evolve are simulated, to which we refer to as tra-
jectories. Figure 4 illustrates the simulation of a single trajec-
tory. Each of these simulations are iterated in the outer for
loop, associating each trajectory with a particular value taken
by the variable i. The evolution of each trajectory is then
built within the inner for loop indexed by k, that indicates
a cycle. Each simulated trajectory leads to a time or cycle in
which the threshold is hit for the first time, that in the script is
checked with the if condition. By storing this information,
a histogram can be constructed to characterize the probability
distribution that is sought.

3.2. Prognosis conceiving uncertain events

This section explains how to compute the probability distri-
bution of the future occurrence time of an event (system fail-
ure) using the Theory of Uncertain Event Prognosis presented
in Section 2.3, taking the previous fatigue crack problem as
an illustrative example. Since we already have the dynamic
model given by Equations (10)-(11), we only need to define
the uncertain event likelihood function:

P (Ek = E|yk) = P (yk ≥ x̄) . (14)

Hence, Equation (9) can be written as

P(τE = k) =

∫
Ykp+1:k

P (yk ≥ x̄) · . . .

. . .

k−1∏
j=kp+1

(
1− P (yj ≥ x̄)

)
· . . .

. . . p(ykp+1:k)dykp+1:k. (15)

It can be noted that while maintaining the notion of a
threshold-triggered event, the Theory of Uncertain Event
Prognosis still explicitly provides a way to calculate the prob-
ability distribution of τE . Moreover, it can be shown that im-
plementing Equation (15) is equivalent to following the pro-
cedure in Section 3.1. However, going a little further, we will
work on the notion of an event so that it is conceptually trig-
gered without a threshold. Let us note that

P (Ek = E|yk) = P (yk ≥ x̄) (16)
= P (xk + ωk ≥ x̄) (17)

= P
(
xk − x̄

σν
≥ z

)
(18)

= Φx̄,σν
(xk), (19)

where z ∼ N (0, 1), and Φµk,ση (·) depicts the CDF of a
Gaussian distribution of mean x̄ and standard deviation σν .

Figure 5. Illustration of a single possible trajectory for the
actual crack growth. There is no longer threshold to hit, but
there is a likelihood for the declaration of occurrence of the
event E at each cycle. The probability with which one of these
trajectories triggers the event at cycle k for the first time is
equal to the probability of event occurrence at time k mul-
tiplied by the probability of non-occurrence of the event in
previous cycles. If we repeat this procedure N times (with
N → +∞), we can average the results to approximate the
probability distribution of τE with arbitrary precision.

Thus,

P(τE = k) =

∫
Xkp+1:k

Φx̄,σν (xk) · . . .

. . .

k−1∏
j=kp+1

(1− Φx̄,σν
(xj)) · . . .
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. . . p(xkp+1:k)dxkp+1:k. (20)

Note that the definition of the uncertain event likelihood func-
tion in turn produces an important difference between Equa-
tion (15) and Equation (20). In Equation (15), there is inte-
gration with respect to the future trajectory of the measured
crack length yk (health indicator) and the event is declared
once this variable exceeds the threshold x̄, as shown in Fig-
ure 4. In contrast, in Equation (20) there is integration with
respect to the future trajectory of the actual crack length xk

and the event has a likelihood of occurrence (hence the con-
cept of the uncertain event likelihood function), as shown in
Figure 5.

The emergence of a likelihood function in this case is because
the measurement noise is no longer simulated, as it is in the
noisy trajectory for yk shown in Figure 4. In contrast, the
uncertainty of the measurement noise (its precision) is now
analytically incorporated into the calculations, so the region
that denotes the hazard zone with red color, now seems to
have a color hue, as shown in Figure 5. The more intense
the red color, the greater the probability of occurrence of a
system failure event.

As in Section 3.1 above, we proceed with the standard method
of Monte Carlo simulations to compute Equation (20). How-
ever, we need to define a new function that expresses our un-
certain event likelihood function:

def uel_funtion(x): # uncertain event likelihood
return norm.cdf(x, x_bar, sigma_v)

Additionally, Equation (20) can be approximated with Monte
Carlo simulations as

P(τE = k) ≈ 1

N

N∑
i=1

Φx̄,σν (x
(i)
k )

k−1∏
j=kp+1

(
1− Φx̄,σν (x

(i)
j )

)
.

(21)

Then we proceed to show how to compute the probability dis-
tribution of τE .

#### Monte Carlo simulations: Uncertain event
#### likelihood function approach
ToE_prob_uelf = [0]*len(cycles)
for i in range(N):

prob_nE_past = 1.0
prob_E = 0.0
for k in range(1, len(cycles)):

x[k] = state_transition(x[k-1])
prob_E = uel_funtion(x[k])
ToE_prob_uelf[k] += prob_E*prob_nE_past/N
prob_nE_past *= 1 - prob_E

The future event can occur at any moment between kp and
kh, and each moment will have an associated probabil-
ity of occurrence. Therefore, we define a list (or array)
ToE prob uelf where these probabilities are stored.

We use Monte Carlo simulations to approximate the probabil-
ity distribution of τE with Equation (21), so N possible ways
(with N → +∞) in which the actual length of the crack
can evolve are simulated, to which we refer to as trajecto-
ries. The ith trajectory is a sequence of possible actual crack
lengths {x(i)

kp
, x

(i)
kp+1, . . . , x

(i)
kh
}. Each of these values is ran-

domly computed using the function state transition
and the value obtained in the previous cycle as argument. In
the variable prob E we store Φx̄,σν

(x
(i)
k ), while in the vari-

able prob nE past we store
∏k−1

j=kp+1

(
1− Φx̄,σν

(x
(i)
j )

)
.

Figure 5 illustrates the simulation of a single trajectory. Each
of these simulations are iterated in the outer for loop, associ-
ating each trajectory with a particular value taken by the vari-
able i. The evolution of each trajectory is then built within
the inner for loop indexed by k, that indicates a cycle. For
each simulated trajectory there is a likelihood of event occur-
rence at a time k.

3.3. Comparison between both approaches

To verify that the methodology based on the Theory of Un-
certain Events, shown in Section 2.3, effectively leads to
exactly the same conclusions as proceeding by definition,
as shown in Section 2.1, we proceed to obtain approxima-
tions with Monte Carlo simulations by executing the algo-
rithms described in Sections 3.1 and 3.2. Results are gener-
ated at different numbers of simulations, denoted by N , in
particular for N ∈ {102, 103, 104, 105}. These results are
presented in Figure 6, where ToE prob threshold and
ToE prob uelf are plotted against cycle.

From Figure 6 it can be seen graphically that, as the value of
N increases, it is corroborated that both algorithms converge
to the same probability distribution for τE , thus ratifying the
correctness of the Theory of Uncertain Event Prognosis in
this case study. It can also be seen that there is an appar-
ent slightly higher rate of convergence with the algorithm de-
scribed in Section 3.2. This is because while in the algorithm
in Section 3.1 the noise that affects the health indicator is sim-
ulated taking random realizations, in the algorithm in Section
3.2 that noise is analytically incorporated beforehand into the
calculation.

It is important to remark that the Theory of Uncertain Event
Prognosis is much more general and its correctness has al-
ready been mathematically proven regardless of the case
study, since it is stated in a general and abstract way. How-
ever, through this specific comparison, the veracity of this
result can be more evident, especially for those readers who
have a more applied background and do not have advanced
knowledge in mathematics that allows them to understand the
theoretical background.
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Figure 6. Computation of the probability distribution of τE using the algorithms shown in Sections 3.1 (in yellow) and 3.2 (in
blue). As can be seen, both algorithms converge to the same result as N → +∞, thus verifying the correctness of the Theory
of Uncertain Event Prognosis in this particular example.

4. CONCLUSION

Three different ways of calculating the time to failure of a sys-
tem have been presented in this article; by definition (bench-
mark widely accepted in the scientific community in general),
according to an intuitive approach, and finally through the
Theory of Uncertain Event Prognosis. Taking into account
the approach by definition as ground truth, it is shown that
the second approach actually corresponds to a biased intu-
ition, having valid conceptual arguments that question it and
also evidencing that in practice the results it leads to do not
match what establishes the ground truth. On the other hand,
the Theory of Uncertain Event Prognosis is also tested. For
this, Monte Carlo simulations are carried out, showing in a
very simple way how to carry out an implementation in the
Python programming language. It is graphically verified that
the simulations do indeed converge to the same results as the
ground truth.

In Section 3.2 it was shown how it is that a definition of the
uncertain event likelihood function can be re-expressed, thus
transforming the prognostic problem. Within the future re-

search work, it is intended to explore how it is that these like-
lihood functions allow to assimilate uncertainty analytically.
It is also intended to explore the potential computational sav-
ings that this can mean, especially for real-time applications.

Given that the Theory of Uncertain Event Prognosis was orig-
inally presented in a very abstract way with advanced math-
ematics, its potential has not yet been exploited. It was nec-
essary to show its practicality with concrete implementations
in order to establish a bridge between theory and practice, for
which this article is expected to contribute.
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