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ABSTRACT 

Wheel bearing fault diagnosis and monitoring for 

automobiles are getting more attention as the market 

shifts towards electric vehicles (EV) and autonomous 

vehicles (AV). Electric drivetrains are expected to 

have longer lifespan than the reliable life of low-cost 

wheel bearing designs. The probability of having a 

failed wheel bearing in an EV thus increases. In an AV 

setting, most of the rides are taken by people who are 

unfamiliar to the vehicle, removing the human as a 

viable sensor to detect wheel bearing defects. Fleet 

managers will be required to pay a high price to inspect 

potential defects. The implementation of a wheel 

bearing fault detection system can help reduce these 

costs. 

In our previous work, a method for injecting wheel 

bearing brinelling failure was developed. In this paper, 

we propose a wheel bearing brinelling fault detection 

algorithm using wheel speed sensor. The proposed 

algorithm detects wheel bearing faults by identifying 

peaks in the wheel speed spectrum at bearing critical 

frequencies. To implement this approach, we leverage 

phase domain transform technique to normalize 

against effect of varying speed. A wavelet filtering 

technique is employed to enhance the bearing fault 

signatures prior transforming the wheel speed signal 

into frequency domain. Post-processing techniques are 

developed to smooth the high-variance wheel speed 

spectra and improve the detectability of the wheel 

bearing faults. A regression model is then developed 

to calculate the wheel bearing health indicators. The 

results show that the proposed algorithm achieves high 

performance in detecting wheel bearing fault. 

1 INTRODUCTION  

Bearing fault diagnostics and condition monitoring is 

a well-established field that is mainly focused on 

industrial applications such as manufacturing, power 

generation and locomotive transportation. This is due 

to their high failure rate relative to other components.  

For example, bearings account for  70% of gearbox 

failures in wind turbines (Machado de Azevado, 

Araujo, & Bouchonneau, 2016). 

Automotive applications, in contrast, has received less 

attention as wheel bearings are designed to last the 

vehicle life, have lower failure rate, and can be easily 

detected by the vehicle’s owner in an event of a failure.  

As the industry shifts towards AV and EV, the vehicle 

lifespan is expected to reach million miles (Motavalli, 

2020). Designing a wheel bearing to last million miles 

becomes unrealistic due to the higher quality material 

quality required and associated cost. This increases the 

bearing failure rate within the vehicle life, making a 

solid case for a wheel bearing fault detection system 

for EV and AV. This paper demonstrates wheel 

bearing fault detection capabilities, using only signals 

that are widely available on modern vehicles. 

1.1 Background 

1.1.1 Wheel Bearing Failure Modes 

Wheel bearings are critical components of a vehicle’s 

chassis system. They are designed to translate the 

wheel rotational motion into linear vehicle with 

minimal friction (Lee, 2018) and without noticeable 

noise or vibration (Sutherlin, 2017).
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The most common failure modes in automotive wheel 

bearings, are contamination ingress and Brinell 

damage (Sutherlin, 2017). Contamination ingress is 

caused by seal damage, which exposes the bearing to 

contaminant and water ingress. This will ultimately 

lead to the lubricant degradation and corrosion of the 

bearing.  

Bearing Brinelling is caused by a heavy impact load 

during operating cycle, such as striking a pothole or 

curb. This leads to permanent indentations, known as 

Brinell marks, on the bearing outer raceway (fixed to 

the chassis), the inner raceway (rotates relative to the 

fixed outer raceway), or the rolling elements 

themselves. A Brinell mark caused by a curb strike 

will lead to an increase in vibration and audible noise 

(Fahrni, G. & Crichton, D., 1999) (Daggupati, 

Karedla, B., Chavan, C., & Risam, G., 2016). 

1.1.2 Bearing Condition Monitoring 

Bearing condition monitoring (BCM) is a widely 

studied field, and many algorithmic detection 

techniques rely on identifying impulses at the bearing 

critical frequencies, summarized in Table 1.  
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Table 1. Bearing Critical Frequencies (Randall & 

Antoni, 2011) 

Note that the frequencies are presented in units of 

samples per rotation of the inner race, not samples per 

second (Hz), so bearing rotational speed is not a factor. 

These frequencies are a function of the number of 

rolling elements, 𝑁, and bearing geometric 

parameters. More details on the geometric variables 

needed to calculate these critical frequencies can be 

found in our previous work (Garner, Drame, Du, & 

Sadjadi, 2021). 

Various techniques have been studied to identify 

bearings faults. Most of the published fault detection 

methods use accelerometer to record the bearing 

vibration (McFadden & Smith, 1984), ) (Sawalhi, 

Randall, & Endo, 2007), (Abboud, Elbadaoui, Smith, 

& Randall, 2018). 

The goal of this research work is to adapt techniques 

from the existing literature to  develop a bearing 

condition monitoring algorithm using wheel speed 

sensor signals. The remainder of the paper is organized 

as follows: Section 2 outlines the materials and 

methods used for fault injection, data collection, and 

the signal processing algorithm used to detect bearing 

faults. Section 3 then shares results and discussion 

from over 1400 vehicle-level tests, including 

discussion of detection performance.  

2 MATERIALS AND METHODS 

2.1 Experimental Setup and Fault Injection  

The proposed wheel bearing fault detection algorithm 

was developed and validated using vehicle data with 

healthy and faulty components. Experimental bearing 

samples with varying levels of degradation were 

created by applying the Brinell fault injection 

procedure described in our previous work (Garner, 

Drame, Du, & Sadjadi, 2021).  

The experimentally fault injected bearings with 

various fault levels are summarized in Table 2.  

 

Table 2. Experimentally fault injected bearings for 

algorithm development and validation 

The injected bearings are divided into two sets: 

development and validation, labeled as ‘Dev’ and 

‘Val’ respectively. Development bearings were used 

in algorithm development, whereas validation 

bearings data were not look at until the algorithm 

performance assessment phase. The vibration column 

refers to the bearing ground-truth defined as a relative 

“vibration multiple”. Given that wheel bearing 

vibration is function of speed, the speed-average 

vibration is measured at four speeds: 400, 600, 820, 

950 RPM. The area under the vibration vs. speed is 

then used to define the speed-average vibration. 

Finally, the vibration ground-truth is provided by the 

ratio between an individual bearing’s vibration and the 

average vibration of a healthy bearing, as summarized 

in Figure 1. More details are provided in our previous 

work (Garner, Drame, Du, & Sadjadi, 2021).  The 

duration and distance columns on the other hand, 

Health State Class ID Vibration [X] Duration [h] Distance [km] Health State Class ID Vibration [X] Duration [h] Distance [km]

F1 0.9 19 268 R1 0.6 50 720

F2 1.4 27 388 R2 1.3 34 488

F3 1.6 15 220 R3 1.0 29 374

F4 0.7 20 267 R4 1.3 29 369

F5 0.7 22 285 R5 3.2 10 144

F6 2.9 9 121 R6 3.5 10 139

F7 3.7 8 123 R7 4.2 15 213

F8 3.8 9 137 R8 3.7 2 32

F9 3.3 2 31 R9 4.5 2 29

F10 4.0 2 30 Dev R10 5.1 14 185

F11 3.6 2 27 Val R11 5.9 4 59

F12 3.6 2 28

F13 4.0 2 26

F14 4.8 2 28

F15 5.4 7 86

F16 6.5 15 223

F17 6.2 4 58

F18 6.9 2 29

Dev

Val

Dev

Val

Front Axle Rear Axle

Severe Fault

Mild Fault

Healthy

Severe Fault

Mild Fault

Healthy
Dev

Val

Dev

Val

Dev

Val
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summarize the total amount of test data collected for 

each bearing.  

 

Figure 1. Bearing ground-truth calculation 

2.2 Data Collection 

In total, 1400 vehicle-level tests, with a variety of 

healthy and faulty wheel bearings, were conducted to 

collect data on a MY17 Bolt EV. The main signals of 

interest included Wheel Speed (WS), Steering Wheel 

Angle (SWA), Longitudinal Acceleration (AX), Brake 

Torque (BT), and Axle Torque (AT). These signals 

were collected with a sampling frequency of 100Hz 

under various noise factors as shown below: 

• Maneuver (lane change, parking lot, cruise)  

• Passenger count (0, 3 passengers) 

• Road surface (rough, smooth) 

• Tire pressure (22, 30, 38, 47psi) 

• Tire type (summer, worn, winter) 

2.3 Fault Detection Algorithm 

In this section the components of the wheel bearing 

fault detection algorithm is discussed in more detail, 

including motivating evidence, mathematical 

formulations, and design considerations. Algorithm 

performance and results will be discussed in section 3. 

The end-to-end fault detection algorithm is shown in 

Figure 2. 

 
Figure 2. Wheel bearing fault detection algorithm 

block diagram 

2.3.1 Phase Domain Transform 

The first step of the wheel speed spectral analysis is 

normalization for rotational speed by transforming  the 

wheel speed signal to the phase domain.  In this 

domain, each data sample is evenly spaced by 

rotational phase of the wheel, not by time. Figure 3 

shows an example of the phase domain transform 

above and below the quantization speed, which is 15 

kph for the MY17 Bolt EV. 

 

Figure 3. Illustration of the phase domain 

transformation above and below the WSS 

quantization speed 

When the vehicle is travelling below the WSS 

quantization speed, the pulse count signal is updated 

at a slower rate than data is sampled. Therefore, the 

phase domain transformation requires  down sampling 

to only have one data point per phase.  

Above the quantization speed, the pulse count signal 

is updated at a faster rate than data is sample. In these 

cases, the calculated wheel speed is interpolated to 

estimate a value for the skipped pulse.  

2.3.2 Preprocess Filter 

Transient impulses in the phase-domain wheel speed 

signal are good indicators of a bearing defect. To 

amplify these transient impulses, a wavelet filter is 

applied to the wheel speed signal. This technique has 

been used in numerous bearing fault detection 

methods (Kankar, Sharma, & Harsha, 2011) (Guo, 

Liu, Li, & Wang, 2020). 

 

Figure 4. Comparison of phase-domain wheel speed 

data and wavelet shapes 
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Figure 4 shows phase-domain wheel speeds from a 

healthy bearing and a faulty bearing (ID R10). In this 

example, local peaks in the wheel speed are observed 

on the faulty bearing. These local peaks occur when a 

rolling element passes through a damage portion of 

one of the bearing raceways. More than 30 different 

wavelet types were investigated. The results show that 

any wavelet similar in shape to those shown in Figure 

4 yields good performance.  

2.3.3 Vehicle Maneuver Enabler 

To ensure the bearing fault detection algorithm is 

enabled during normal driving cycle, a set of enabling 

conditions is defined below:  

A data sample 𝑖 shall be enabled if all the following 

are true: 

𝑀𝑖𝑛𝑆𝑝𝑒𝑒𝑑 <  𝑊𝑆[𝑖] < 𝑀𝑎𝑥𝑆𝑝𝑒𝑒𝑑        ( 1 ) 

𝐵𝑟𝑎𝑘𝑒𝑇𝑜𝑟𝑞𝑢𝑒[𝑖] < 𝑀𝑎𝑥𝐵𝑟𝑎𝑘𝑒𝑇𝑜𝑟𝑞𝑢𝑒 ( 2 ) 

𝐴𝑥𝑙𝑒𝑇𝑜𝑟𝑞𝑢𝑒[𝑖] < 𝑀𝑎𝑥𝐴𝑥𝑙𝑒𝑇𝑜𝑟𝑞𝑢𝑒       ( 3 ) 

|𝑆𝑊𝐴[𝑖]| < 𝑀𝑎𝑥𝑆𝑡𝑒𝑒𝑟𝑖𝑛𝑔𝐴𝑛𝑔𝑙𝑒           ( 4 ) 

At high speeds,  wheel speed samples are interpolated 

to populate the under-sampled phase domain. The 

maximum speed is set based on Nyquist interval to 

avoid aliasing. At low speed any speed fluctuations 

related to a bearing fault are not as detectable. Thus, a 

minimum speed limit shall be set. During acceleration 

or braking events, external forces are being applied to 

the wheel hub assembly. These external forces may 

influence the fault detection performance, hence the 

need to set a limit on the maximum brake torque and 

maximum axle torque. Additionally, artifacts are 

introduced to the wheel speed spectrum by lateral 

wheel slip during high steering events. It is then 

required to set a limit on the maximum steering wheel 

angle to minimize slippage between the tires and the 

road surface. The parameters for this enabler are 

calibratable and tuned using healthy and faulty 

bearings data, with the goal of identifying the optimal 

driving maneuvers that result in the best wheel bearing 

fault detection performance. Table 3 shows the default 

enabling parameters for MY17 Bolt EV. 

Parameter Default Value 

MaxSpeed 15 kph  

MinSpeed 8 kph  

MaxBrakeTorque 700 Nm 

MaxAxleTorque 500 Nm 

MaxSteeringAngle 150 degrees 

Table 3. MY17 Bolt EV Enabling Parameters 

2.3.4 Short-Time Fourier Transform 

As summarized in previous section the goal of the 

proposed algorithm is to identify fault signatures at the 

bearing critical frequencies. For Brinell dent failures, 

damage on both the inner and the outer race are 

expected.  

A Short Time Fourier Transform (STFT) with partial 

enablement is used to implement a real-time fault 

detection algorithm. This technique requires both a 

minimum and maximum window length, and 

computes spectra only for windows of data that are 

continuously enabled. The Fast Fourier Transform 

(FFT) will be calculated if the minimum length criteria 

are met, even if the enablement is interrupted before 

the buffer is full. The need for full buffers is therefore 

eliminated, allowing the algorithm to run passively in 

unconstrained maneuvers and yield a sufficient 

detections rate.  

 

Figure 5. STFT Frequency Detection Performance 

A Receiver-Operating Characteristics (ROC) curve is 

used to assess which frequencies in the wheel speed 

spectrum yield promising fault detection results. The 

area under the ROC curve at each frequency in the 

STFT of the two faulty bearings is shown in Figure 

5.At both harmonics of the BPFO, a large spike is 

observed in the ROC detection area of the severely 

faulted bearing, and a small peak in ROC detection of 

the mildly faulted bearing. However, no significant 

peaks are observed at BPFI. Peaks related to anomalies 

such as wheel misbalances or shaft misalignments are 

also observed at integer orders (shown by grey 

gridlines). These peaks are not related to the bearing 

state-of-health and are therefore ignored in this 

analysis. This analysis confirms that BPFO and its 

harmonics are promising frequencies to consider for 

bearing failure detection. However, the  BPFO ROC 

area of 0.75 is not sufficient as a classifier and requires 

further signal post-processing to improve the fault 

detection performance.  

2.3.5 Road Surface Enabler 

The interaction of the wheels with irregularities on the 

road surface causes more random input to the wheel 

speed signal on rough roads. This variation in road 

surface will impact the fault detection robustness, 
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hence the necessity to disable the algorithm when the 

vehicle is on a rough road. This can be done using a 

road roughness indicator. 

𝑅𝑜𝑎𝑑𝑅𝑜𝑢𝑔ℎ𝑛𝑒𝑠𝑠 = ∑ 𝐷𝐹𝑇𝑊𝑆[𝑖]2𝑖𝑢𝑝𝑝𝑒𝑟

𝑖=𝑖𝑙𝑜𝑤
      ( 5 ) 

where 𝐷𝐹𝑇𝑊𝑆 is the amplitude spectrum of the wheel 

speed signal, 𝑖𝑙𝑜𝑤𝑒𝑟  is the index of a lower bandpass 

frequency in the wheel speed spectrum, and 𝑖𝑢𝑝𝑝𝑒𝑟  is 

the index of an upper bandpass frequency in the wheel 

speed spectrum.  

This indicator serves as an additional enabler. If the 

road input energy for a given wheel speed STFT buffer 

is too high, that buffer will be rejected from further 

analysis. This way, results can be limited to only those 

calculated on smooth road surfaces.  

2.3.6 Spectrum Maturation 

In development of the wheel bearing fault detection 

algorithm, significant wheel speed variance impacting 

the fault detection performance is observed as the 

vehicle drives. To reduce the effect of wheel speed 

variance, a low-pass filter is applied to the spectra.  

 

Figure 6. Spectrum Maturation Performance 

Figure 6 shows the effect of using a moving mean filter 

to mature the wheel speed spectra. An improvement in 

ROC detection area at the 2nd harmonic of the BPFO 

can be observed. Note that the two bearings shown 

here are the same as those summarized in Figure 5. An 

unmatured ROC area of 0.82 is enhanced to 0.94 for 

the severe fault. For the mild fault, some improvement 

can be observed, but a maximum ROC area of 0.65 is 

still very poor, and these mild faults are unlikely to be 

detected. 

2.3.7 Spectrum Normalization 

The detectability of wheel bearing faults in the wheel 

speed spectra is further improved by normalizing the 

amplitude at the BPFO to the noise floor at 

surrounding frequencies. This results in an 

enhancement of the BPFO peaks. The following peak 

height normalization metric is used. 

𝑃𝑒𝑎𝑘𝐻𝑒𝑖𝑔ℎ𝑡(𝑘) =
𝑚𝑎𝑥({𝐷𝐹𝑇𝑊𝑆(𝑚)}𝑚=𝑘−𝑤

𝑘+𝑤 )

𝑚𝑒𝑑𝑖𝑎𝑛({𝐷𝐹𝑇𝑊𝑆(𝑛)}𝑛=𝑘−𝑊
𝑘+𝑊 )

    ( 6 ) 

This normalization formula above calculates the ratio 

of the maximum value in a small window (𝑤) versus 

the median value in a larger window (𝑊 > 𝑤) about 

some center frequency index 𝑘. 

2.3.8 Spectrum Indicator Fusion 

After calculating the wheel bearing health indicators 

(peak height and amplitude), the final stage of the 

wheel bearing fault detection algorithm is to fuse 

together these health indicators to an estimate of the 

overall level of vibration. A variety of classification 

and regression methods were explored, and in order to 

avoid the risk of overfitting to the exact injected faults, 

it was decided to select the simplest method with the 

least number of parameters. The raw and normalized 

spectra result at different harmonics of the BPFO are 

fused together using a linear regression model:  

𝐻𝐼𝑓𝑖𝑛𝑎𝑙 = 𝐶 + 𝑎1 ∗ 𝐷𝐹𝑇𝑊𝑆(1 ∗ 𝐵𝑃𝐹𝑂) + 𝑏1 ∗

𝑃𝑒𝑎𝑘𝐻𝑒𝑖𝑔ℎ𝑡(1 ∗ 𝐵𝑃𝐹𝑂) + ⋯ + 𝑎3𝐷𝐹𝑇𝑊𝑆(3 ∗
𝐵𝑃𝐹𝑂) + 𝑏3 ∗ 𝑃𝑒𝑎𝑘𝐻𝑒𝑖𝑔ℎ𝑡(3 ∗ 𝐵𝑃𝐹𝑂)               ( 7 ) 

Here, C is the regression constant, a is the coefficient 

for amplitude health indicator at BPFO harmonics, and 

b is the coefficient for peak height health indicator at 

BPFO harmonics. The regression coefficients are 

tuned on vehicle data using classic least-squares 

regression on experimental data from a variety of 

bearing health stages, ranging from brand new healthy 

to severely faulty. The regression coefficients are 

calibratable parameters that may vary for the front and 

rear wheels, given their differences in geometry. 

3 RESULTS AND DISCUSSION 

The results of applying the wheel bearing fault 

detection algorithm shown in Figure 2 to the full data 

set are shown below. All development bearings are 

shown in black, and all validation bearings are shown 

in lighter grey. 

 

Figure 7. Bearing results 

The boxplots in Figure 7 show the outputs of the 

bearing fault detection algorithm health indicators. 
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Each box shows the 25% to 75% percentile range of 

the health indicators calculated for each wheel 

bearing. 

Overall, the algorithm performance on the rear wheels 

is exceptional. The validation bearings (in lighter 

grey) show the algorithm adapts well to bearings not 

used in development. With these outputs, it is possible 

to choose a threshold such that there are no false 

positives, 97% true positives for the two severe faults, 

and an average of 54% true positives for mildly faulted 

bearings. Figure 8 shows the positive detection rate for 

each bearing with a threshold of 2.7. 

 

Figure 8. Detection rates with a threshold at HI > 2.7 

These positive detection rates give the probability that 

any one sample from these bearings will be detected 

as faulty. Note that this rate in monotonically 

increasing with bearing fault severity, evidence that 

the algorithm generalizes well and that the health 

indicator is correlated to the defined ground-truth of 

the wheel bearing. Therefore, in the cases where a 

false negative is issued, there is still a chance the next 

sample will issue a true positive. Overall, the wheel 

bearing fault detection algorithm meets the 

performance expectations, as it can detect severe faults 

with a high true positive rate, and mild faults with a 

moderate true positive rate.  

4 CONCLUSION 

This paper presented a novel health indicator 

calculation and fault detection algorithm for 

automotive wheel bearings that consumed only signals 

that are widely available in modern vehicles. It was 

shown that this algorithm achieves high performance 

on the test vehicle’s wheels.  

The performance results of the wheel bearing fault 

detection algorithm was assessed on a single vehicle 

by comparing a health indicator to a threshold. In a 

fleet-management setting, there is added depth by 

allowing for fleet-wide comparisons of health 

indicators. Ideally, this algorithm should be 

implemented such that all vehicles in the fleet can 

share their calculated health indicators with a central 

repository. This repository could take advantage of 

advanced techniques, such as anomaly detection, to 

improve upon the presented fault detection 

performance.  
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