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ABSTRACT

Unmanned ground combat vehicles are obligated to traverse
safely to their destination in an extensive variety of hazardous
situations along with challenging terrains and the objective of
the paper is to aid this intent. In circumstances of restricted
operations of the autonomous vehicle, the composite systems
of the vehicle should ensure its safety. However, the current
fleets of autonomous vehicles are lacking the ability to pre-
dict and operate as effectively as possible in a restricted op-
erational domain. This paper proposes an approach to create
safety diagnostics for unmanned ground combat vehicles by
mainly depending on probabilistic predictions of critical situ-
ations. The predictions are achieved by a recursive Bayesian
model along with constantly examining the changing envi-
ronments which effect the perception sensor readings and the
current behavior of the unmanned ground combat vehicles.
To verify and validate the approach that this paper describes,
the Mississippi State University autonomous vehicle simula-
tor was used to run simulations of an autonomous vehicle af-
fected by a fixed set of environmental parameters which were
also used for computing the risk of failure using a Recursive
Bayesian and Markov models. Finally, simulations are con-
ducted for two scenarios to illustrate the effectiveness of the
proposed approach.

1. INTRODUCTION

The last decade has witnessed eruptive growth in the field
deployment of unmanned systems, which include unmanned
ground vehicles (UGVs) and unmanned aerial vehicles
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Figure 1. Sequential ODD Architecture.

(UAVs). The UGVs have been routinely used for surveil-
lance, providing a relatively safe impasse in the scrimmage
against improvised defence technologies, and in aiding the
process of search and rescue efforts. For unmanned ground
combat vehicles (UGCVs) to perform autonomously in all
kinds of terrains, research has shown that UGCVs must
be capable of adapting and learning from the environment
rather than having the behaviour of the system to be hard
coded. As an outcome, these adaptive systems utilize var-
ious approaches that empower them to respond to different
operational environments and to carry out desired maneuvers
based on the limit of their capabilities. One such role for
the adaptive system is to engage the UGCV into a minimal
risk condition in situations of the vehicles operational design
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Figure 2. Process of Discerning Critical Situations.

domain (ODD) suffering from a deteriorated functionality
(Koopman & Fratrik, 2019) (Colwell, Phan, Saleem, Salay,
& Czarnecki, 2018). The ODD for autonomous vehicles
(AVs) can help specify the safe operational domain of the
vehicle (Hillen & Reich, 2020). The development process of
the AV domain directly aligns with functional safety aspect
of the vehicle and the processes involved in defining an ODD
are shown in Figure 1. For most modern AVs, the system
boundaries were exclusively considered to identify failures
of the automated driving systems (ADS) and these failures
were recognized through different analysis methods like fault
tree analysis or hazard and risk analysis. The complexity
of this research lies in how a UGCV in a military applica-
tions can overcome the challenges of traversing through ever
changing natural obstacles when compared to the reinforcing
obstacles which are encountered by autonomous vehicle in a
conventional structured scenario.

The limitation in sensing capabilities under certain conditions
would lead to the reduced operation of the UGCV. A failure
operational analysis involves a sequence of steps which ini-
tially start out as recognizing possible failure modes and their
root causes, this is followed by prioritizing those modes based
on the level of risk that they hold and finally associating the
appropriate risk diminution or correct strategy.

In AVs, the limited availability of perception sensors is over-
come by using a different sensor configuration. The finite

state essence of the discrete controller may possibly lead to
incorrect behaviour of the complete system if an unforeseen
situation occurs and for which there is a lack of any prede-
fined contingency. For this reason, it becomes important to
have a sense of a complete set of admissible scenarios and
also to develop a structured decision-making process for each
of the previously mentioned scenarios. The failure probabil-
ities can be determined with the help of state machines and
failure propagation trees and they can be updated with any
changes on circumstances as this would help define if a ma-
neuver should continue. With the decision-making process
realized, the state sequences could be compared and this in
turn would help in realizing better manoeuvrability of the ve-
hicle.

Current generation of autonomous vehicles do not rely on
predicting critical situation and hence are restricted in defin-
ing an effective reduced operational domain (ROD) which
is adequately functional even in a hazardous situation. The
ROD is essentially a limited ODD which an AV system shifts
to in scenarios of reduced functional capacity. This paper
emphasizes on a prediction model in situations where an AV
has to traverse in extreme weather conditions. In order to
model the real-life performance of safety critical systems and
make accurate predictions, the Markov chain and Recursive
Bayesian methods are used.

Predicting future state transition sequences is the main contri-
bution of this paper to eventually form RODs. The modelling
of a complete ROD is outside the scope of this paper. Ex-
isting models do not utilize probabilistic methods to predict
occurrences of a failure which consequently may affect the
state transitions of vehicle maneuvers (Colwell et al., 2018).
Figure 2 gives a good representation of the role played by
the process of discerning critical situations probabilistically
to eventually determine the ROD of the vehicle and this paper
gives more emphasis on the Markov process. The operational
context of AVs and the expert domain as depicted in Figure
2 are reminiscent to the world environmental space modeling
and feature specific environmental space derivation from the
ODD architecture.

The paper is organized such that section 2 focuses on the pro-
cess of addressing the risk probabilities followed by section 3,
which describes the off-road vehicle simulations along with
the reasoning for how well the risk probability predictions
align with the simulation results. Section 4 reports the re-
sulting state sequences based on the simulation results and
finally, section 5 presents the conclusion for this paper.

2. RISK PROBABILITIES

This paper manly emphasises on determining the risk proba-
bilities of a vehicle travelling in an unstructured scenario (off-
road). The finite state machine (FSM) shown in Figure 3 is
derived specifically to address states that would represent ve-
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Figure 3. Ideology-Specific Finite State Machine.

hicle maneuvers both for structured and unstructured environ-
ments faced by UGCVs. In this paper, we propose to use the
Bayes Filter to predict the probability of transitioning to a par-
ticular state based on the previous state and the sensor noise
affecting the stochastics of transitioning. Scenario conditions
that will be utilized as an example in the analysis of the pre-
sented approach include bad weather conditions like rain and
snow. The probability of transitioning to a particular set of
conditions is achieved using the Recursive Bayesian method,
then the Markov process is used to predict future state tran-
sition probabilities assuming that the transition probabilities
are constant over time and not affected by changing environ-
mental parameters.

2.1. Finite State Machine

Usually, a number of aspects have to be taken into consid-
eration when developing an ODD for an autonomous vehi-
cle. In case of no fallback contingency, the finite state na-
ture of a controller could lead to inappropriate behaviour
when encountered with an unforeseen situation (Balogh &
Obdržálek, 2019). The finite state machine in this paper has

emphasis on unstructured environments which is pristine to
this field of research. It is important to have an organized
decision-making process for maximum possible situations
and this can be done by hierarchically designating standard
decision-making processes along with finite state machines
(FSM) (Sales, Fernandes, Osorio, & Wolf, 2012).

Since this paper focuses on traversing through unstructured
or off-road environments along with structured counterparts,
there is an adjoining challenge of facing a lack of a prior
knowledge of an AV traversing through various terrains.
Similarly, there are other challenges like restricted sensing
ranges, motion planning and motion control across incon-
sistent vegetation categories, elevation changes, localization
limitation in remotely operating scenarios (Park, Ramezani,
& Grizzle, 2013).

The finite state machine proposed in Figure 3 provides funda-
mental maneuvers of an autonomous vehicle which can also
drive off road. However, the FSM’s states will be fundamen-
tally used to study the stochastics of the autonomous vehicle’s
maneuvers. The state selection aspect of FSM’s mainly relies
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Table 1. Predefined Probability References for Environmental Parameters.

on corroboration and observability of the vehicle’s stochas-
tics (Hejase, Kurt, Aldemir, & Ozguner, 2018). So, to cap-
ture the resultant probabilistic models, state transition proba-
bilities are required, and these transition probabilities can be
best represented by a trellis diagram in terms of simplifying
probabilistic calculations (Kurt, 2011).

The stochastics of a Trellis-based representation can be ob-
tained by appointing probabilities to the edges of the trel-
lis representation which tally to the FSM’s state transitions.
Once the probabilities are assigned, graph search methods
can be implemented to compute the probability of the vehi-
cle to reach either a desired state which is n transitions away
or a potentially desired final state from an initial state repre-
senting the current system conditions. By implementing the
graph search method, it is possible to establish a probability
estimate of a coveted outcome. It is important to notice that
there are certain states in the FSM that require a restriction
in terms of the number of transition and so the concept of an
extended finite state machine is adopted to apply counters to
the number of transitions (Huang & Shi-yu, 2001). With a
counter as a trigger condition for the finite state machine as
shown in Figure 3, when the trigger condition is fulfilled, the
transition is set off and thereby bringing the state machine
to the following state from the current state. For example, the
Figure 3 shows a counter set to a limit of 3 when the state tran-
sition occurs from slow to change lane, this counter prevents
the transition to change lane if the transition occurs more than
twice consecutively.

It is also crucial to mention that this paper focuses on off road
or unstructured environments in which case counters are not
applied due to the repetitive nature of most actions in such
scenarios. The FSM is mainly used for the understanding of
AV predictions rather than the control of a vehicle.

2.2. Recursive Bayesian Method

Based on the level of risk encountered which can be repre-
sented as the probability of failure caused by environmen-
tal conditions, the recursive Bayesian method will be used
to calculate decision probabilities. Given an explicit situa-
tion along with its consequent decisions for traversal, with
all the motion planning and vehicle control defined, the ac-
tual traversal tends to vary with the dynamic environment
effecting vehicle’s sensor readings, which in turn force the
decision-making process of the vehicle to choose a safer
traversal domain with a better probability of reaching the
destination (Brito & Griffiths, 2016). Incorrect control in-
put to the UGCV could essentially lead to catastrophic fail-
ures in multiple security levels and the risk for the vehicle
can be identified as a degree of probable consequences or a
threat symbolizing both the chance and sternness of some-
thing undesirable happening or a critical situation transpiring.
Bayesian methods rely on new information to revise probabil-
ities. Since we have the inflow of different observation data
(s which is the snow parameter and o is the obstacle coverage
parameter) from the sensors, we could determine the state (x)
transition probability as given by

P (xt|s, o, xt−1) =

P (o|xt)P (xt|s, xt−1)

P (o|xt)P (xt|s, xt−1) + P (o|¬xt)P (¬xt|s, xt−1)

(1)

In Eq. (1) which is a Recursive Bayesian method represen-
tation, P (xt|s, o, xt−1) represents the probability of transi-
tioning to a future vehicle state from the current state given
the perceived vehicle sensor data for various scenarios. The
sensor data used in Eq. (1) is from Table 1.
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Table 1 can be referred for predefined probability values
which are derived from the PAS 1883:2020 standard. The
PAS 1883:2020 standard is generally for ODD scenarios def-
inition, where the specifics of environmental factors affect-
ing the vehicle at different intensities are explained. The en-
vironmental factors at different intensities are broken down
into probability values for different states and these values are
shown in Table 1. Stochastic analytics and model prognosis
help in enabling decision capabilities for reduced operational
domain of autonomous vehicles.

From Eq. (1) the state transition probability values for differ-
ent state transitions can be obtained based on the defined sce-
nario (Fox, Hightower, Liao, Schulz, & Borriello, 2003).To
be more specific, for our example, Eq. (1) would use values
from the Table 1 assuming that the combined transition prob-
ability has to be calculated for multiple factors like obstacle
coverage and different snow levels affecting the probability of
transitioning to a particular state. Once calculated for a sin-
gle iteration, all the transition probabilities for the finite state
machine would form the transition probability matrix (TPM).
The TPM is represented in Eq. (2). More details about the
TPM calculations are described in the next section.

2.3. Markov Process

With the transition probabilities achieved from Bayesian
methods in different scenarios, these probabilities can be used
to interface with the Markov process which integrates am-
biguousness of the adeptly developed initial probabilities and
the quantified errors obtained from network’s inspection. In
the Markov process, the probabilities can be defined by the
waning of the vehicle’s behaviour over a certain set of duty
cycles. A transition probability matrix (TPM) with n number
of states is shown in Eq. (2), where pab is the probability of
transitioning from state a to state b in a single phase or duty
cycle.

TPM =

p11 .. .. p1n
: : : :

pn1 .. .. pnn

 (2)

By Markov theory, the future criterion of a state behaviour
is independent of past behaviours in every manner and so,
the probability of pab only depends on its present state’s (a)
behaviour. To generate a homogeneous Markov chain, the
transition probability matrix used for every phase would be
one and the same along with independence of time. We use
homogeneous Markov chains because the transition proba-
bilities between two different states depend on the time step
difference. So, as shown in the Eq. (3), the prospective state
vector is achieved by multiplying the current phase state tran-
sition probabilities by the transition probability matrices from
current phase to all the previous ones. In Eq. (3), the transi-
tion probability at duty cycle t would be P (t). TPMt would

be the transition probabilities from t to t+1 transitions phases
(Tabatabaee & Ziyadi, 2013).

P (t+ 1) = P (t)× TPMt

= P (0)× TPM1 × TPM2 × ...× TPMt
(3)

Back to our example, the homogeneous Markov chain can
be used to predict the transition probabilities of Follow Way-
points and Fail State scenarios, as shown in Figure 4 and Fig-
ure 5, respectively.

Figure 4. TPM and Markov Model for Follow Waypoints
State.

The states representing each transition probabilities are
shown in Figure 4 and Figure 5 in a column manner above
the TPMs for both the scenarios. The results from the
Markov chain show that we are able to predict the system’s
risk probabilities with the help of sensor readings for weather
and environmental obstacles faced by the UGCV, these re-
sults have been persistently observed by simulating a vehicle
with the above discussed environmental parameters (Hejase,
Kurt, Aldemir, & Özgüner, 2018). The simulation results are
discussed in the next section.

In Figure 4, the TPM is calculated with the obstacle cover-
age at 0% and with no snow levels leading to visibility of less
than 3 km. The TPM1 matrix contains state transitions from
a from state represented by rows of the matrix to a to state
represented by columns of the matrix and the exact values
of the TPM are calculated using Eq. (3) and the above men-
tioned environmental parameter values for obstacle coverage
and snow levels. The Markov chain is used to predict the
state transitions from the Follow Waypoints state (represented
by row 2 of the TPM1 matrix) at its next phase, which ends
up being the Cruise state at 40%, assuming that the environ-
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mental parameters remain the same. Figure 5 shows a TPM
which is calculated with obstacle coverage at 100% and with
high snow levels leading to visibility of less than 0.5km. In
this case, the Markov chain is used to predict the state tran-
sitions from the Accelerate Towards West state after 5 duty
cycles, which ends up being Fail state at 98%, this probabil-
ity is assuming that the environmental parameters remain the
same.

Figure 5. TPM and Markov Model for Fail State.

3. OFF-ROAD VEHICLE SIMULATION

To simulate an off road or unstructured environment for an
autonomous vehicle to traverse in different weather condition,
the Mississippi State University Autonomous Vehicle Simu-
lator (MAVS) (Hudson, Goodin, Doude, & Carruth, 2018)
is used. The goal of simulating the vehicle’s traversal is to
illustrate the results with the previously discussed TPM and
Markov chain approach.

The following sub sections discuss and show the simula-
tion results for a good weather condition scenario and a bad
weather condition scenario, respectively. The results obtained
are categorized based on the FSM (shown in Figure 3) into
state sequences that help in breaking down the vehicle’s state
at every sampling time of 2 s. Some parameters have been
commonly utilized to have less discrepancies when compar-
ing the simulation results between the good weather and the
bad weather scenarios. The destination point is (32 m, 130
m) and source point is (0 m, 0 m) for both simulations with
randomly placed obstacles. LIDAR and camera data is used
for both the simulations to determine their states or maneu-
ver criteria. However, MAVS provides the ability to use radar

data as well. The sensor data for the LIDAR and the camera
are replicas of the Velodyne’s Puck lidar sensor and the Flea3
USB3 camera unit, respectively.

Figure 6. MAVS Simulation of a Clear Weather Scenario.

3.1. Good Weather Leading to Exit State

In the case of good weather scenario, the MAVS simulator
containing the cube scene scenario (Hudson, Goodin, Miller,
Wheeler, & Carruth, 2020) file which contains a flat terrain
and randomly placed obstacles is used. Obstacles are ran-
domly placed, and the vehicle uses A* algorithm to traverse
across the terrain (Li, Liu, Zhang, & Zhao, 2014). How-
ever, when the path is not found the vehicle has a fallback to
the Potential Field, RRT, and RRT* path planning algorithms
sequentially (Qureshi & Ayaz, 2016). The good weather sim-
ulation does not contain any extreme weather parameters set
to the simulation.

The complete simulation takes 22.92 s, and Figure 6 shows an
image of the simulation in a good weather scenario. Figure 7
shows the path traversed by the vehicle by avoiding obstacles.
The vehicle is set to traverse at a desired speed of 18 m/s.
Figure 8 shows the speed data of the vehicle at intervals of 2
s and the throttle is set using a PID controller.

The vehicle’s orientation data from source to destination at
intervals of 2 s is shown in Figure 9 and the vehicle control
module is set to use the pure pursuit algorithm. It can be ob-
served that with a clear weather scenario, the vehicle is able
to reach its destination by avoiding all the obstacles success-
fully.
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Figure 7. Vehicle Path Data for Good Weather Simulation.

Figure 8. Vehicle Speed Data for Good Weather Simulation.

Figure 9. Vehicle Orientation Data for Good Weather
Simulation.

3.2. Bad Weather Leading to Fail State

The scene used for bad weather scenario is the same as good
weather scenario. The vehicle uses A* algorithm to tra-

Figure 10. MAVS Simulation of a Snowy Weather Scenario.

verse across the terrain and similar to the good weather sce-
nario, the vehicle has a fallback to the Potential Field, RRT,
and RRT* path planning algorithms sequentially. The bad
weather simulation is set to high snow which indicates that
the visibility is less than 0.5 km (Czarnecki, 2018).

The complete simulation takes 25.5 s, and Figure 10 shows
an image of the simulation in a bad weather scenario. Figure
11 shows the path traversed by the vehicle by avoiding obsta-
cles. Figures 12 and 13 show the speed data and orientation
data of the vehicle at intervals of 2 s, respectively. Similar to
good weather scenario, PID controller and pure pursuit algo-
rithm are used. Since the particulate matter of snow affects
the LIDAR readings, we observe that the vehicle does not
reach its destination and goes into Fail state. The vehicle is
blocked by an obstacle at coordinates (26.1 m, 92.8 m). The
next section describes how the states were assigned based on
the observation data from the simulations

4. STATE SEQUENCE RESULTS

After analysing and combining the observation data from
both the good and bad weather simulations, each maneuver
made by the vehicle is divided into states from the FSM.
The changing speed is divided into different states based on a
change in speed of 3 m/s from the previous value. In a similar
manner, the orientation data is used to determine the vehicle’s
state if there is an orientation change of 0.3 rad in either the
towards west or towards east direction.

The state sequences are arranged for both the good weather
scenario and the bad weather scenario as shown in Figure
14. It can be observed that the state sequence for the good
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Figure 11. Vehicle Path Data for Bad Weather Simulation.

Figure 12. Vehicle Speed Data for Bad Weather Simulation.

Figure 13. Vehicle Orientation Data for Bad Weather
Simulation.

weather enables the vehicle to safely maneuver around the
obstacles and reach its destination. However, the bad weather
leads the vehicle into a Fail state before reaching its destina-

Figure 14. State Sequence Results.

tion, this was observed to be caused by the snow effecting the
LIDAR’s ability to detect obstacles. Since the vehicle gets
blocked by an obstacle and is not able to find an alternative
path, the vehicle goes into Fail state from Cruise state.

The probability distribution in Figure 15 and Figure 16 rep-
resent the sequence of state transitions from Figure 14 for
good weather and bad weather conditions respectively. The
probability distributions are computed from the methodology
described in the risk probabilities section of this paper.

Using Recursive Bayesian method, we can realize that with
progressive sampling time, the fail state for bad weather con-
ditions tends to show a gradual increase in probability, and
this can be considered as a prediction for critical situations.
The sampling time considered is 2 s and prediction is 6 s into
the future as shown in the Figure 17 for 3 state sequences of
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Figure 15. Probability Distribution Good Weather.

Figure 16. Probability Distribution Bad Weather.

good and bad weather conditions. In Figure 17 each state in
each plot has 3 stages for the 3 successive sampling times.
The upper end of the floating bar is representative of the 6th
sampling time, the middle part of the bar is representative
of the 4th sampling time, and the lower end of the floating

bar is representative of the 2nd sampling time. The predicted
probability is observed with the updated value substituting the
prior value for the state transition probability in the Recursive
Bayesian formula.

Figure 17. Predicted Probability Distributions.

5. CONCLUSION

The above-described simulations manifest the Markov deci-
sion probabilistic evaluation and shows that the risk estima-
tion for a vehicle can be achieved by breaking down the vehi-
cle’s maneuvers into states and predicting how different envi-
ronmental parameters can affect the vehicle’s ability to reach
its future states. By estimating the risk, it can form a major
part of later defining the reduced operational domain (ROD)
for an autonomous vehicle and this in turn would enable the
safe traversal of the vehicle across any terrain.

The paper helps in understanding how a bad weather scenario
leads to increased risk of failures along with estimating the
prediction of a potential crash at different sampling times.
With the results provided by the paper, adequate preventive
measures can be taken depending on how soon a failure might
occur.
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NOMENCLATURE

s observation data for the snow parameter
o observation data for the obstacle coverage
x states from the Finite State Machine
km kilometer
s seconds
m meter
rad radians
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