
Deriving Prognostic Continuous Time Bayesian Networks
from Fault Trees

Logan Perreault, Monica Thornton, John W. Sheppard

Montana State University, Bozeman, MT, 59717, United States
logan.perreault@montana.edu
monica.thornton@montana.edu
john.sheppard@montana.edu

ABSTRACT

Probabilistic graphical models have been applied success-
fully to a number of Prognostic and Health Management (PHM)
applications. Continuous time Bayesian networks (CTBNs)
are one such model, and they are capable of representing dis-
crete systems that evolve in continuous time. In this work,
we propose a method for constructing a CTBN from a fault
tree, a model often used for evaluating system reliability. Ad-
ditionally, we provide a method for reducing the number of
required CTBN parameters by pruning unnecessary portions
of the fault tree. Furthermore, we take advantage of the infor-
mation encoded in the remaining gates of the tree and make
use of the Noisy-OR model, offering additional reductions
in the number of parameters needed to specify the CTBN
model. We show how a CTBN derived from a fault tree
can be combined with a CTBN derived from a D-matrix to
form a unified model. This allows for a description of faults
and effects that evolve in continuous time based on test out-
comes. We demonstrate the derivation and parameterization
processes using a running example, and show how the result-
ing model can be queried to obtain information about the state
of the system over time.

1. INTRODUCTION

In a variety of applications, complex systems have become
increasingly important, and their significance in fields as di-
verse as aerospace and medicine cannot be overstated. The
complexity of these systems, combined with the severity of
consequences in the event of system failure, underscores the
importance of diagnostics and prognostics in these critical do-
mains. Probabilistic graphical models (PGMs) provide a con-
venient method for performing diagnostics and prognostics in
complex systems, as reasoning about the model reflects rea-
soning about uncertainties in the actual system. There are a

Logan Perreault et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

number of viable models that can be selected for these tasks,
but in selecting a model, a balance needs to be struck between
finding one that can capture the most critical details of the do-
main while still retaining its transparency and tractability.

As our work focuses primarily on prognostics, we utilize a
framework that is equipped for modeling system change over
time, the continuous time Bayesian network (CTBN). A CTBN
is a PGM with demonstrated utility as a prognostic model that
can compactly describe complicated systems. As a result,
CTBNs have been applied successfully in a number of di-
verse domains. Despite their numerous advantages, however,
the PHM community has been slow to adopt these models.
We believe that this reticence is due, in part, to the difficulty
associated with constructing and parameterizing the networks
manually, or obtaining the necessary data required to use a
machine learning algorithm. To remedy this, we propose a
method for simplifying CTBN model construction through
an automatic derivation process where the CTBN is derived
from fault trees. This has the advantage of making CTBNs
easier to use while also reducing the potential for human er-
ror in building the network.

In this work, we describe the CTBN network structure that
corresponds to the structure of the fault tree and explain how
to parameterize the model using the logic gates found in the
fault tree, as well as other commonly available diagnostic in-
formation. The resulting CTBN contains a node for every
fault and effect. The CTBN’s structure describes the interac-
tion between faults and effects through time and works as a
prognostic model capable of predicting the likelihood of ef-
fects based on the occurrence of a set of faults. To aid in prog-
nostic tasks, we formally define how the derivation process is
performed and support this description by working through
an example derivation for a simple fault tree.

In addition, we also address some practical concerns related
to the use of CTBNs, and propose solutions intended to pre-
vent models from becoming intractable. These solutions in-
volve introducing a pruning process that eliminates redundant

1

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

Effect1
E1

Effect2
(E2)

Fault1
(F1)

Fault2
(F2)

Effect5
(E5)

Fault1
(F1)

Fault1
(F1)

Effect5
(E5)

Fault1
(F1)

Fault2
(F2)

Effect3
(E3)

Fault2
(F2)

Fault4
(F4)

Fault3
(F3)

Effect4
(E4)

Fault3
(F3)

Fault4
(F4)

Effect6
(E6)

Fault3
(F3)

Figure 1. Example fault tree with 6 distinct effects and 4 distinct faults.

information from the fault tree, and use a method that reduces
the space complexity of a CTBN node from exponential to
linear. Finally, we discuss how this fault tree derivation pro-
cess relates to previous work in constructing CTBNs from D-
Matrices (Perreault, Thornton, Strasser, & Sheppard, 2015).
The fault tree derivation process detailed in this work, along
with the D-matrix derivation process introduced in our previ-
ous work, will assist in the construction of prognostic CTBN
models. In simplifying this process, our goal is to eliminate
the barriers to entry associated with incorporating CTBNs
into the PHM community.

2. BACKGROUND

Before describing our proposed approach for deriving CTBNs
from fault trees, we first provide a brief overview of the con-
cepts on which this work was founded.

2.1. Fault Trees

Fault tree analysis (FTA) is a powerful and well-established
technique for evaluating system design in a reliability context.
In a number of critical domains, fault trees encode knowledge
about the system in a manner that is intuitive and easy to in-
terpret. A fault tree provides a graphical representation that
depicts the ways in which the failure of one or more system
components can lead to system failure. As shown in Figure
1, a fault tree is a directed acyclic graph (DAG) consisting of
a set of events and a set of logic gates. The events depicted
in Figure 1 consist of faults and their associated effects, and
the logic gates are either AND or OR gates. These logic gates
determine how faults at lower levels of the tree can contribute
to system failure.

Some fault tree representations may allow for redundancies
in the system that can cause the same component to appear in
multiple parts of the tree. These redundancies can also be in-
troduced when the system of interest is not represented easily

as a polytree. The process of converting the system to a cor-
responding polytree representation often involves duplicating
portions of the tree and placing them appropriately to avoid
cycles. The fault F1 in Figure 1 is an example of this kind of
duplication. While these redundant components do provide
valid information about the system, in many cases the infor-
mation they provide is already encoded at another location
in the tree. Furthermore, when these redundant components
are removed from the fault tree with a valid pruning process,
the resulting fault tree is easier to store, update and analyze.
Fortunately, the pruned tree remains functionally equivalent
to the original fault tree.

A related diagnostic model is the Fault Isolation Manual (FIM),
which often plays a significant role in the maintenance of
large systems (Simpson & Sheppard, 1994). FIMs are de-
rived from decision trees and are typically referred to as a
fault tree1. The internal nodes of the FIM correspond to a se-
ries of tests, and the leaves correspond to a fault. To use the
FIM, the user first performs the test specified by the root of
the tree and follows the branch specified by the test outcome
until reaching the leaf node corresponding to the diagnosed
fault. In this way, a FIM enables the isolation of individual
faults or ambiguity groups through the application of a struc-
tured sequence of tests (Strasser & Sheppard, 2013).

2.2. Continuous Time Bayesian Networks

While fault trees provide an overall snapshot of the diagnostic
dependencies of a system, they are unable to capture how the
system may change over time. A continuous time Markov
process (CTMP) is a model that describes a set of discrete
state variables X that evolve in continuous time, providing a
method for modeling domains that do not conform to a prede-
fined time granularity (Nodelman, Shelton, & Koller, 2002).
There are two major components that define the CTMP, an

1Note that FIM-based fault trees are different from fault trees developed
through FTA.

2

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

initial distribution over the state space P (X(0)) and an as-
sociated intensity matrix Q describing the state transition be-
havior. An entry qi,j inQ provides the intensity with whichX
is expected to transition from state xi to state xj , and is drawn
from an exponential distribution with a rate corresponding to
qi,j . Each diagonal entry qi,i is defined as the negative sum of
the entries in row i, thus ensuring that each row in the matrix
sums to zero.

A row containing a nonzero entry represents a transient state,
a state that will transition to another in time. Conversely, a
row consisting of all zeroes is an absorbing state, one in which
there is no way to transition to another state. In the event an
absorbing state exists, a Markov process will transition to it,
and will remain in that state permanently.

While CTMPs do provide a framework for modeling time di-
rectly, there are inherent limitations that prevent this model
from being applied to complex systems. In a CTMP, the sizes
of the initial distribution P (X(0)) and the intensity matrix Q
are exponential in the number of variables in the system, and
this exponential increase in the size of the state space makes
reasoning tasks difficult, if not intractable.

The continuous time Bayesian network (CTBN) mitigates this
problem by factoring the CTMP, taking advantage of the con-
ditional independencies among the variables in the system.
These conditional independencies are encoded in a directed
network structure G, where the nodes of G correspond to the
variables of the system and the edges connecting nodes rep-
resent a relationship between the variables. Specifically, an
edge from node A to node B indicates that the behavior of
variable B depends on the state of A. There are significant
modeling advantages associated with adopting this factored
representation, namely that rather than needing to parameter-
ize the model with a single exponentially sized probability
distribution and intensity matrix, local probability distribu-
tions and intensity matrices are defined over each variable in-
dividually. These matrices are conditioned on the states of the
parents of the node and are referred to as conditional intensity
matrices (CIMs).

To use the CTBNs within a diagnostic or prognostic context,
the state of the faults and effects are inferred via queries that
are applied over the course of time. In the event that there
is existing knowledge about the system, evidence can be set
to indicate the known states. Diagnostic and prognostic mod-
els typically consist of a network with fault and test nodes,
meaning that the evidence set on the test nodes describes the
test outcomes, and the state of the faults is inferred based on
this information. Queries about the faults, tests, and effects
can be used to request the associated probabilities over time
periods of interest.

3. RELATED WORK

Given the advantages afforded by PGMs, it is not surprising
that a fair amount of work has been done to extend fault trees
through the use of PGMs. Bobbio et al. provide a method
to map any static fault tree to a Bayesian network (BN), and
they demonstrate that this framework results in increased rep-
resentational power, the relaxation of some of the typical fault
tree constraints, and performance gains at the analysis level
(Bobbio, Portinale, Minichino, & Ciancamerla, 2001).

BNs are commonly used in the dependability analysis of safety
critical systems, because they provide a robust probabilis-
tic method of reasoning in the presence of uncertainty. By
design, however, BNs reason about static processes, which
makes them ineffective on the kind of structured stochastic
processes that evolve over continuous time, and these prob-
lems frequently occur in the real world. To address this con-
cern, work has been done to map dynamic fault trees to dy-
namic Bayesian networks (DBNs) (Montani, Portinale, & Bob-
bio, 2006). A DBN can model time-sliced stochastic func-
tions by discretizing time at some predetermined granular-
ity, effectively extending the Bayesian network to dynamic
processes by representing the state of the system at different
points in time. The method used by Montani et al. translates
the basic dynamic gates into a corresponding DBN model,
and the DBN is evaluated at different points in time.

In a DBN, the variables in the different time steps are related
to each other, and allowing these nodes to have probabilities
conditional on their state in a previous timestep allows the
model to account for dynamic behavior (Ruijters & Stoelinga,
2015). This ability to model dynamic behavior, the authors
contend, is something that would prove useful in modeling
dependability applications. DBNs, however, are not appro-
priate for use in all domains. If the application has a strong
temporal component but lacks natural time slices, either rele-
vant data will be excluded from the model, or all variables in
the system will need to modeled at the finest possible granu-
larity. The shortcomings of the BN and DBN framework in
time-sensitive complex domains motivates the idea that map-
ping fault trees to CTBN models could be an attractive alter-
native.

Previous work has been done to develop CTBNs that corre-
spond to fault trees. Specifically, a method was formulated
to translate the basic logical gates in a dynamic fault tree
to the corresponding CTBN model (Cao, 2011). Cao con-
structed CTBN nodes that were deterministic by forcing in-
stantaneous transitions using infinite rate values. We relax
this assumption to allow for effects that occur at some point
after the preceding faults. The resulting structure describes
the interaction between faults and effects through time, and
works as a prognostic model capable of predicting the like-
lihood of effects based on the occurrence of a set of faults.
While Cao’s method does provide an effective method for re-

3

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

lating fault trees and CTBNs, it fails to capture the temporal
dynamics necessary to model complex systems that change
through time.

The fault tree derivation process described in this work is re-
lated to our previous work in constructing CTBNs from D-
Matrices (Perreault et al., 2015). Like fault trees, D-matrices
are commonly used in diagnostic contexts and are employed
in a number of modeling tools. A D-matrix is an adjacency
matrix that represents explicit relationships between tests and
faults, and work has been done to use them in diagnostic con-
texts (Sheppard & Butcher, 2007). Within a prognostic con-
text, the CTBNs obtained from D-Matrices contain a set of
fault and test nodes. This set of faults is the same as the set
obtained during the fault tree derivation process, and in Sec-
tion 7 we show how a single CTBN can be formed by com-
bining the two derived networks into a single network capable
of predicting fault and risk events based on the application of
test evidence through time.

4. PRUNING PROCESS

Recall that redundant information in the fault tree may result
in an unnecessarily complex CTBN model. In this section, we
present a pruning process that alleviates this problem through
the elimination of redundant branches of the fault tree. To
motivate this pruning process, we refer back to Figure 1. Note
the effect E2 on the second level of the tree. Due to the OR
gate, this effect will have a value of 1 if and only if at least
one of F1, F2 or E5 are 1. In other words, we assume that E2

is 0 unless one of the following three rules applies:

(E2.1) F1 = 1→ E2 = 1

(E2.2) F2 = 1→ E2 = 1

(E2.3) E5 = 1→ E2 = 1

Now we focus on the subeffect E5 in this input set. E5 is
determined by another OR gate with a single fault F1, as an
input. This means E5 is determined by only a single rule:

(E5.1) F1 = 1→ E5 = 1

We can derive implied rules by taking advantage of the tran-
sitive property. In this case, we can combine rules (E5.1)
and (E2.3) to derive the rule F1 = 1→ E2 = 1. This rule is
implicitly followed byE2, but note that the rule is also explic-
itly specified by rule (E2.1). We say that effect E5 already
accounts for F1, since E2 = 1 if F1 = 1, regardless if F1

is a direct descendant or not. For this reason, it is redundant
to list F1 as a direct descendant of E2. Although this repre-
sentation may be advantageous in some situations where fault
trees are used, the complexity of a CTBN model is ultimately
driven by the number of dependencies in the model. For this
reason, we wish to remove the extraneous dependencies that
are already implicitly encoded by the fault tree.

Algorithm 1 Fault Tree Pruning Algorithm

1: procedure PRUNETREE
2: visited← new list()
3: for each child in GetChildrenOf(node) do
4: subnodes = PruneTree(child)
5: if IsFault(child) or GatesEqual(node, child) then
6: visited.Union(subnodes)
7: for each child in GetChildrenOf(node) do
8: if child ∈ visited then
9: RemoveChild(node, child)

10: else
11: visited.Add(child)

return visited

As shown, fault F1 under effect E2 is unnecessary and can
therefore be pruned from the fault tree while still retaining
the semantic meaning encoded by the fault tree. In general,
any direct descendant of an effect can be pruned if it is al-
ready accounted for by another child. In the case of an OR
gate, inputs that are also OR gates will account for all of their
children by producing implied rules via the transitive prop-
erty. We refer back to Figure 1. Fault F1 under E1 can be
pruned due to the chained rule F1 = 1 → E5 = 1 → E2 =
1 → E1 = 1. This rule can be simplified to the more basic
rule of F1 = 1 → E1 = 1, which makes the direct descen-
dant F1 unnecessary for the top level effect E1. We say that
F1 is already accounted for byE2 viaE5. By this same logic,
we can prune F2 and E5 from E1 since they are already ac-
counted for by E3 and E2 respectively. The nodes that can
be pruned in Figure 1 using the rules implied by OR gates are
shown with dashed lines.

A similar idea can also be applied to nested AND gates in a
fault tree. Consider effect E4 in Figure 1. The output of E4

is determined by the rule F3 ∧ F4 ∧ E6 → E4. Effect E6

is in turn determined by the rule F3 → E6. To obtain the
implied rules for E4, we can simply replace node E6 with
the logical expression that determines it. This results in the
rule F3 ∧ F4 ∧ (F3) → E4. Here we can see that F3 is
redundant in the logical expression. We say that effect E6

accounts for F3, and therefore E4 does not require F3 as a
direct descendant. The pruned F3 is highlighted in Figure
1 with a double outline. Note that in more complex cases
where subeffects have more than one child, implied rules may
involve lengthy chains of ANDed variables.

In general, components of a fault tree are accounted for by de-
scendants so long as they chain through the same type of gate.
For example, consider the component F3 that we pruned un-
der E4. We cannot remove the instance of F3 under E1, since
E4 is determined by an AND gate, and E1 is determined by
an OR gate. This is because F3 = 1 does not imply E1 = 1 if
the direct descendant is removed. If F3 = 1,E4 may still be 0
due to the requirement on F4. The same logic can be applied
in the reverse direction where an OR gate is nested below an
AND gate. For this reason, the pruning process only applies

4

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

when chaining through gates of the same type. We can think
of the gates as partitioning segments of the tree that allow for
implied rules. Algorithm 1 provides an outline of the process
required to prune redundant fault tree components.

5. DERIVING CTBN STRUCTURE

The structure of a CTBN takes the form of a directed graph
G = (V,E), where V is a set of nodes vi, and E is a set of
edges eij connecting node vi to vj . We can derive this struc-
ture directly using a fault tree as follows. First we obtain the
set of nodes V by extracting them directly from the faults and
effects in the fault tree. Note that a fault or effect may occur
in multiple locations of the fault tree, but the corresponding
node in the CTBN will occur only once. We must therefore
insure that no duplicates are added to the set V when iterating
through the fault tree components.

Next we introduce edges between the nodes to form the setE.
These can be obtained directly from the structure of the fault
tree. First note that faults only occur as leaves in the fault
tree. This means that faults occur on their own accord, and
do not depend on any other modeled variables. The corre-
sponding nodes in the CTBN therefore have no parents. Next
we consider the effects in the fault tree, whose states are de-
termined by its inputs. We represent this dependence on the
inputs by adding an edge from the nodes corresponding to
each input ui to the node corresponding to the effect. The
resulting CTBN has the same structure as the fault-tree after
it has been pruned, but is generally shown reversed with the
faults on top.

Network Construction Example

Recall the fault tree shown in Figure 1. We can derive the
network structure for a CTBN corresponding to this fault tree
by using the process described in the previous section. Figure
2 shows the constructed CTBN, consisting of the four faults
and six effects contained in the original fault tree. The dashed
lines indicate cases where edges can be removed using the
pruning process for OR gates, while the dotted line shows the
edge that is removed when pruning the nested AND gates.
Note that aside from the alterations due to the pruning pro-
cess, the structure of the CTBN is not determined by the type
of gates. In other words, parents are added to an effect re-
gardless of whether it is an AND or an OR gate. In the next
section, we show how these gate types are used to determine
the parameterization for a CTBN.

6. PARAMETERIZING THE CTBN

The task of parameterizing a CTBN involves populating the
initial distribution and the rates for the CIMs associated with
each node in the network. In general, this set of parameters
can be quite large. Let nX be the number of states in the
domain of variable X . Then for some node X , the number

of parameters required to populate all the associated CIMs is
(nX(nX−1)) ·

∏
A∈Pa(X) nA. In system reliability, the prior

probability that each components starts in a failing state is of-
ten known, and in this work we assume that all variables start
in a working state with a probability of 1.0. For our purposes,
we can assume the variables are binary, consisting of a fail-
ing state and a non-failing state. In this case, each node X
requires 2(|Pa(X)|+1) rates, which can make identifying pa-
rameters for even relatively small models a difficult task. We
aim to reduce the number of rates required to parameterize a
node by taking advantage of common reliability information,
and by exploiting behavioral information obtained from the
underlying fault tree.

6.1. Parameterizing Fault Nodes

To begin, consider a node Fi representing a fault variable
in the CTBN. By construction, Fi contains no parents, and
therefore has only a single unconditional intensity matrix.
This single CIM describes how quickly we expect a fault to
transition to a failing state, and back to a non-failing state.
This equates to failure and repair rates, which we denote us-
ing λ and µ respectively. As a CTBN is parameterized using
transition rates, we can insert these values directly into the
cells of a CIM.

Note that failure rates are often readily available for a system
for which a fault tree has been constructed. Alternatively, the
information may be represented in terms of the mean time
between failure (MTBF), which is simply MTBF = 1/λ.
The mean time to repair (MTTR) is also commonly available
for many diagnostic models, or may simply be set to 0 if no
repair policy exists. In this case the failing state is absorb-
ing, and the MTBF is instead referred to as the mean time to
failure (MTTF).

The intensity matrix for a fault F is shown below, where λi
and µi are the failure and repair rates respectively for fault F .

QF =

(f0 f1

f0 −λf λf

f1 µf −µf

)

6.2. Parameterizing AND Effects

Although we wish to model state transitions that occur over
time, eventually we expect the behavior of an effect node in
a CTBN to match the behavior of the corresponding static
logic gate. Let FX be the discrete function corresponding to
the gate from which variable X was derived. Then we expect
that limt→∞ P (X(t) = FX(Pa(X))) = 1.0. We ensure
this behavior for each CIMQX|Pa(X) by guaranteeing a non-
zero transition rate to the state produced by FX(Pa(X)), and
a zero rate from the state produced by FX(Pa(X)). This
results in an absorbing state that will eventually be reached,

5

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

F2F1

E2 E3

F4 F3

E5

E6

E1 E4

Figure 2. Example CTBN constructed from fault tree.

at which point the variable will remain in this state until a
change in at least one of the parents occurs.

In the case of a variable created from an AND gate, the FX

becomes the logical AND function. Here we expect FX to
produce a value of 1 if and only if all inputs are 1. To ensure
the desired behavior in the CTBN, we parameterize the CIM
for a node X where all parents are 1 as follows:

QX|Pa(X) =

(x0 x1

x0 −λX λX

x1 0 0

)
,

when FX(Pa(X)) = 1 (all ones).

Next, we turn our attention toward the remaining cases where
not all parents of the node are 1. In this case, the function FX

produces a value of 0, so we wish to describe the time it takes
to transition back to a state of 0 for the node in the CTBN. To
achieve this, we parameterize the CIM as:

QX|Pa(X) =

(x0 x1

x0 0 0

x1 µX|Pa(X) −µX|Pa(X)

)
,

when FX(Pa(X)) = 0 (not all ones).

Note that we are using a causal interpretation, meaning that
we are required to specify a rate for transitioning back to 0 for
only the instances where not all parents are on. Although this
specificity may be necessary in some cases, we may be able
to simplify the parameterization process by assuming the rate
is the same, regardless of the parent set. This means that X
transitions back to 0 at the same rate, so long as FX evaluates
to 0. Given this, a variable X derived from an AND node in
a fault tree can be specified using only two parameters. λX

defines the time it takes to transition to 1 in the event that all
parents are in state 1, and µX is used in all other cases to
indicate when X will transition back to 0.

6.3. Parameterizing OR Effects

When a variableX is created from an OR gate, FX is defined
as the logical OR function. In this case, we expect FX to
produce a value of 0 if and only if all the parents of node
X are 0. Again, we ensure that this CTBN node eventually
reaches state 0, we parameterize the CIM such that state 0 is
an absorbing state:

QX|Pa(X) =

(x0 x1

x0 0 0

x1 µX −µX

)
,

when FX(Pa(X)) = 0 (all zeroes).

Next we look at the cases where FX evaluates to 1. Since we
are dealing with a logical OR gate, this occurs whenever at
least a single parent is in state 1. In this case, we desire the
opposite behavior for node X , and need to parameterize the
CIMs such that the node eventually transitions to state 1:

QX|Pa(X) =

(x0 x1

x0 −λX|Pa(X) λX|Pa(X)

x1 0 0

)
,

when FX(Pa(X)) = 1 (not all zeroes).

Here again we are required to specify a rate parameter for ev-
ery possible state instantiation of the parents where at least
one parent is in state 1. This means that we require 2|Pa(X)|

parameters for node X . As in the case of the AND node in
the previous section, we can reduce this by making a simpli-

6

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

fying assumption. Specifically, we are able to make use of the
Noisy-OR model, since we interpreting the model as causal
(Perreault, Strasser, Thornton, & Sheppard, 2016). This al-
lows us to specify rates λXi

only for the cases where a sin-
gle parent is in state 1. This reduces the number of required
parameters to be linear in the number of parents rather than
exponential. The remainder of the parameters for the CIMs
where multiple parents are in state 1 are accounted for within
the Noisy-OR model.

6.4. Parameterization Example

We demonstrate how a CTBN constructed from a fault tree
can be parameterized by providing an example of the rates
that are required to specify the CIMs for the CTBN shown
in Figure 2. This specified CTBN is later used in our query
demonstrations in Section 8. We start with the four fault
nodes F1, F2, F3, and F4. In general these can be param-
eterized using 8 rates, corresponding to the failure rates and
repair rates. For this example, we assume that there is no
repair policy in place, therefore all repair rates are 0. This
reduces the number of necessary parameters, which now con-
sist of the four parameters for each fault. The MTBF for each
fault F1, F2, F3, and F4 is 1, 2, 4, and 8 respectively, mea-
sured in thousands of hours. This equates to failure rates of
λF1 = 1.0, λF2 = 0.5, λF3 = 0.25 and λF4 = 0.125. This,
along with the 0 valued repair rates, can be used to parame-
terize the faults as specified in Section 6.1.

Next, we parameterize the effects that were derived from AND
gates in the fault tree. This consists of E4 and E6 (the dotted
nodes in Figure 2). Each of these nodes can be parameter-
ized using two rates. These values indicate the time it takes
to transition to 1 when all parents are on, and the time it takes
to transition to 0 otherwise. After the pruning process is ap-
plied, each node has only a single parent. These parameters
λE4 = 0.3, µE4 = 1.1, λE6 = 0.7, and λE6 = 0.5 are used
to parameterize the four CIMs for E4 and E6 as shown in
Section 6.2.

Finally, we must parameterize the effects that correspond to
the OR gates in the fault tree. Specifically, we will need to pa-
rameterize E1, E2, E3, and E5 (the nodes outlined in dashed
lines in Figure 2). Using the Noisy-OR model, we need only
specify the rate for transitioning to state 0 given all parents
are in state zero, as well as the rates for transitioning to state
1 given each individual parent being in state 1. Let λX|Y be
the rate at which X transitions to 1 given that only parent Y
is in state 1. After pruning, E1 has only four parents, result-
ing in the five required parameters µE1 = 1.8, λE1|E2 = 2.0,
λE1|E3 = 1.2, λE1|F3 = 1.6, λE1|E4 = 0.9. E2 is parame-
terized with rates µE2 = 0.2, λE2|F2 = 0.3, λE2|E5 = 0.1.
E3 requires rates µE3 = 0.8, λE3|F2 = 2.2, λE3|F4 = 0.7.
Finally,E5 has only a single parent, meaning it can be param-
eterized using only the rates µE5 = 1.5 and λE5|F1 = 1.8.

F1 F2 F4 F3

T1 T2 T3 T4

Figure 3. Example CTBN constructed from D-matrix.

These rates can be used to generate the 16 + 4 + 4 + 2 = 26
CIMs required for the four OR-gate effect nodes by using the
process described in Section 6.3.

7. COMBINING FAULT TREES AND D-MATRICES

We have shown how a CTBN can be derived from a fault
tree. The resulting network consists of a set of fault nodes,
as well as a set of effect nodes that depend on these faults.
The constructed CTBN allows us to answer queries about the
expected behavior of effects over time, given information we
might know about the faults in the system.

In previous work, we have shown how to construct a CTBN
from D-matrices, which results in a network consisting of
fault and test nodes. Given a D-matrix DS and a fault tree TS
that both describe a single system S, the set of faults is the
same for both diagnostic models. A CTBN that models sys-
tem S as a whole can be obtained by merging the two CTBNs
derived from DS and TS .

Let CTBND be a CTBN constructed from a D-matrix DS ,
and let CTBNF be a CTBN derived from a fault tree FS .
Furthermore, let T be the set of test nodes in CTBND, E
be the set of effect nodes in CTBNF , and F the set of faults
contained in both CTBNs. A new model CTBNS can be ob-
tained for system S by combining both networks to obtain a
single CTBN with nodes T, E, and F. The nodes in the sets
T and E ultimately have the same parents and parameters as
they did in the original networks. The only difference is that
the nodes in the set F in the combined CTBN have more chil-
dren than they did prior to being merged, but this does not
affect their behavior or parameterization. Furthermore, fault
nodes in CTBND and CTBNF are parameterized using the
same method, meaning that there is no conflict when consol-
idating the faults from the individual CTBNs.

We demonstrate by way of example. Let us refer to the fault
tree used to construct the network in Figure 2 as FS . Now
let us assume that we also have a D-matrix available for the
same system S, which we refer to as DS . Figure 3 shows a
CTBN that could have been created from D-matrix DS . The
networks in Figures 2 and 3 can be merged to form a single
CTBN describing system S. This new CTBN consists of four
faults, four tests, and six effects. No additional parameteriza-
tion is required since all parent sets remain the same.

7

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

Table 1. Effect Parameters

C
IM

s

To
ta

lP
ar

am
s

N
oi

sy
-O

R
R

ed
uc

tio
n

G
at

e
R

ed
uc

tio
n

R
ed

uc
ed

To
ta

l

Original 148 296 -250 -23 23
Pruned 30 60 -26 -17 17

8. QUERY DEMONSTRATIONS

In the following subsections, we demonstrate how a derived
CTBN may be queried for information. To begin, we provide
a brief description of the model that was constructed, and dis-
cuss the observed reductions to the required number of pa-
rameters. We then ensure that the constructed model adheres
to the logical definitions provided by the original fault tree.
Finally, we provide an example of how a technician might
employ the constructed model to aid in the task of predicting
the occurrence of effects.

8.1. Required Parameters

We ran Algorithm 1 on the fault tree from Figure 1. We then
derived a CTBN as described in Section 5, and parameter-
ized the model using the rates from Section 6.4. Table 1 de-
scribes this network and provides attributes that demonstrate
the benefits of the pruning process and parameter reduction
techniques. The constructed network is shown by Figure 2,
and contains four faults and six effects. Each of the four faults
has a single intensity matrix associated with it, which can be
parameterized using basic reliability information. Since the
complexity of the model is driven by the number of param-
eters required for the effects, we restrict our focus to these
CIMs only. Table 1 shows how many parameters are neces-
sary to specify the effects in the network, and how the number
of parameters is affected by the techniques discussed so far.

Note that the total number of parameters required for the
CTBN is double the number of CIMs. This is because we are
working with binary variables, and as such each CIM only re-
quires two off-diagonal rates. Next we observe that although
there is a significant difference between the number of CIMs
in the original fault tree as compared to the pruned version,
the application of the Noisy-OR model narrows the gap be-
tween the number of required parameters considerably. While
this may be the case for this particular model, it does not hold
in general. When a fault tree has an effect determined by an
AND gate, the Noisy-OR model cannot be applied, in which
case the pruning process may be crucial in reducing the num-
ber CIMs. Finally, we observe that by making use of the in-

formation encoded by the gates in the fault tree, the number
of required parameters is halved. This is because the gate
structure requires rates of 0.0 for states that do not conform
to the output of the corresponding discrete function, leaving
only a single required parameter per CIM.

8.2. Behavior Validation

To validate the network structure derivation and parameteri-
zation process, we perform a series of queries that test for the
expected behavior already discussed. Recall that a fault will
transition between failing and non-failing states according to
failure rates and repair rates, with no additional dependen-
cies on other variables in the network. For this reason we
are more interested in the effects in the network. A model
that properly encodes the information of a fault tree will en-
sure that effects eventually reach a state that corresponds to
the output of the discrete gate function it is associated with.
As discussed in Section 6, with a fixed state instantiation of
parents, limt→∞ P (X(t) = FX(Pa(X))) = 1.0.

To demonstrate this behavior, we assign evidence E to the
parents of an effect X . We do this for all combinations of
parent instantiations, and in each case assign a determinis-
tic initial distribution to X that conforms to the gate output
FX(E). We then query for the probability of X at several
discrete timesteps to observe its behavior. We used Impor-
tance Sampling as the underlying inference algorithm, which
uses weighted samples to provide approximate solutions to
the submitted queries (Fan & Shelton, 2008). In all cases, we
ran inference until 10, 000 samples were generated.

Table 2 shows these queries for effects E3 and E4. The first
column indicates which variable is being queried, while the
second column describes the evidence that was applied to the
parents over the interval of interest. The third column shows
the output of the logical gate function FX , which is dependent
on the evidence as well as the gate type for the effect. The
last four columns show the probability that effect X is in the
state corresponding to the gate output at the specified times,
or P (X(t) = FX(E)). For this experiment, we queried this
probability distribution at times t = 0.1, 1, 10, and 100. Note
that due to the conflicting prior distribution, the probability at
time t = 0 is always 0.0.

Note that in all cases, the probabilities start near 0.0, and ap-
proach 1.0 as time increases. Although the table only shows
queries performed on effects E3 and E4, similar results were
obtained for the remaining four effects. By time t = 100,
all effects in the network had a 1.0 probability of being in the
state corresponding to the logical gate output. The differences
in the time it takes to reach this level of certainty stems from
the differences in the rates that were used to specify the corre-
sponding CIMs. This experiment demonstrates that the model
exhibits the desired behavior, which supports the correctness
of the structure derivation and parameterization process.

8

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

Table 2. Queries of Synthetic Network

Effect Evidence Gate Output t = 0.1 t = 1 t = 10 t = 100
E3 (OR) F2 = 0, F4 = 0 F 0.073 0.531 0.999 1.0
E3 (OR) F2 = 0, F4 = 1 T 0.067 0.499 0.997 1.0
E3 (OR) F2 = 1, F4 = 0 T 0.198 0.901 1.0 1.0

E4 (AND) E6 = 0, F3 = 0 F 0.105 0.668 1.0 1.0
E4 (AND) E6 = 0, F3 = 1 F 0.111 0.671 1.0 1.0
E4 (AND) E6 = 1, F3 = 0 F 0.083 0.687 1.0 1.0
E4 (AND) E6 = 1, F3 = 1 T 0.030 0.255 0.935 1.0

8.3. Use Case

Although applying evidence to the parent set of an effect is
able to demonstrate the desired behavior, in practice the faults
and effects cannot be observed directly. For this reason, we
turn our attention to the CTBN obtained from merging the
models derived from D-matrices and fault trees. This process
introduces tests into the model, thereby incorporating directly
observable variables. Evidence can be applied to these new
nodes based on the test outcomes, and queries can be con-
structed that determine the probability of faults and effects
through time.

To start, we derive a CTBN from the D-matrix shown below.
This results in the network structure shown in Figure 3. We
parameterized the model using failure and repair rates, along
with false alarm and non-detect probabilities as described in
previous work (Perreault et al., 2015). All tests and faults
are assumed to start in a working state at time 0, therefore
the initial probability distribution is set to (1.0, 0.0). We use
the failure and repair rates that were discussed in Section 6.4.
The non-detect probabilities for the tests are set to 0.02, 0.02,
0.01, and 0.01, while the false alarm probabilities are 0.01,
0.04, 0.02, and 0.01.

D =

T1 T2 T3 T4

F1 1 0 0 0

F2 1 1 1 0

F3 0 0 1 0

F4 0 0 1 1

The resulting CTBN is merged with the fault tree derived
CTBN from the previous experiment as described in Section
7. This model is similar to the fault tree derived network, ex-
cept that there are now four additional nodes corresponding to
the tests defined in the D-matrix. Without running any tests,
we can query the model to observe the expected behavior of
each test, fault, or effect. For example, a technician may first
query the probability of each effect at time t = 1.0 in the fu-
ture. These probabilities are shown in the left-most group in
Figure 4. Note that E4 has been omitted from this chart for
clarity, since each probability was approximately 0.0.

Based on these results, there is no one effect that appears par-
ticularly likely. Given this, the technician may decide to run
test T3 and observe a failed outcome. By applying evidence
that T3 is in a failed state at time t = 0, we obtain the new
probabilities for each effect shown in the second group in Fig-
ure 4. These new probabilities do not offer any additional
clarity, as there appears to be a fairly uniform increase in each
effect’s likelihood.

Next the technician runs test T1 and determines that it passes.
After applying this evidence in addition to the evidence for
T3, we are left with the new distribution shown in the third
group in Figure 4. Given this evidence, we see that E1, and
to a lesser extent E6, are likely to occur at time t = 1.0 in
the future. The remaining effects have all become relatively
unlikely.

Finally, the technician may run test T4 and observe a pass-
ing outcome. This drastically changes the distribution again,
showing E3 as being very probable, with all remaining ef-
fects being extremely unlikely. The magnitude of the change
is due to the fact that the passing outcome for T4 was itself
unlikely given the previous evidence. This highlights the ne-
cessity of probabilistic models like CTBNs, which are capa-
ble of encoding more information than a D-matrix or a fault
tree alone.

9. CONCLUSION

In this work, we have demonstrated how the structure of a
fault tree can be mapped to the network structure of a CTBN.
Furthermore, we show that the resulting CTBN can be speci-
fied using a reduced set of parameters. This is accomplished
by taking advantage of attributes of the associated fault tree.
We show how tests can be introduced into this model and
demonstrate the way in which the model might be used in
practice. For future work, we hope to use the structure of
a multi-level fault tree to encode the behavioral relationship
between a child and its parents. We intend to use this as a
parameter reduction technique similar to Noisy-OR, which
would allow for more compact CTBN representations.

CTBNs have been applied successfully to several practical

9

ANNUAL CONFERENCE OF THE PROGNOSTICS AND HEALTH MANAGEMENT SOCIETY 2016

No Evidence T3 Failed T1 Passed T4 Passed
0

0.2

0.4

0.6

0.8

1
P(

X
(1

.0
)=

Fa
il)

Probability Distributions After Test Observations

E1 E2 E3 E5 E6

Figure 4. Use Case Query Results

domains where discrete systems evolve in continuous time.
To date, use of CTBNs has been limited within the PHM
community, and we contend that practitioners are hesitant to
adopt this model due to the labor-intensive process associated
with the construction and parameterization of the model. By
automating the structure generation process and reducing the
number of required parameters, the process of constructing
a prognostic CTBN is greatly simplified. We hope that this
work will encourage the adoption of CTBNs for the task of
modeling discrete state systems.

ACKNOWLEDGMENTS

This work was funded in part by a NASA STTR under con-
tract NNX14CJ45C. We would also like to thank the mem-
bers of the Numerical Intelligent Systems Laboratory (NISL)
at Montana State University for their support.

REFERENCES

Bobbio, A., Portinale, L., Minichino, M., & Ciancamerla, E.
(2001). Improving the analysis of dependable systems
by mapping fault trees into Bayesian networks. Relia-
bility Engineering & System Safety, 71(3), 249–260.

Cao, D. (2011). Novel models and algorithms for sys-
tems reliability modeling and optimization (Disserta-
tion). Wayne State University.

Fan, Y., & Shelton, C. R. (2008). Sampling for approxi-
mate inference in continuous time Bayesian networks.
In Tenth international symposium on artificial intelli-
gence and mathematics.

Montani, S., Portinale, L., & Bobbio, A. (2006). Dy-
namic Bayesian networks for modeling advanced fault
tree features in dependability analysis. In Proceed-
ings of the European safety and reliability conference
(p. 1415-1422).

Nodelman, U., Shelton, C. R., & Koller, D. (2002). Con-
tinuous time Bayesian networks. In Proceedings of the
eighteenth conference on uncertainty in artificial intel-
ligence (pp. 378–387).

Perreault, L., Strasser, S., Thornton, M., & Sheppard, J. W.
(2016). A noisy-or model for continuous time Bayesian
networks. In Proceedings of the Florida artificial intel-
ligence symposium. (To Appear)

Perreault, L., Thornton, M., Strasser, S., & Sheppard, J.
(2015). Deriving prognostic continuous time Bayesian
networks from D-matrices. In IEEE AUTOTESTCON
Conference Record.

Ruijters, E., & Stoelinga, M. (2015). Fault tree analysis: A
survey of the state-of-the-art in modeling, analysis and
tools. Computer Science Review, 1516, 29 - 62.

Sheppard, J., & Butcher, S. (2007). A formal analysis of
fault diagnosis with D-matrices. Journal of Electronic
Testing, 23(4), 309–322.

Simpson, W. R., & Sheppard, J. W. (1994). System test and
diagnosis. Norwell, MA: Kluwer Academic Publish-
ers.

Strasser, S., & Sheppard, J. (2013). An empirical evaluation
of Bayesian networks derived from fault trees. In Pro-

ceedings of the IEEE aerospace conference (pp. 1–13).

10

