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ABSTRACT

Pneumatic-actuated valves play an important role in many ap-
plications. When valves are critical to the successful opera-
tion of the system, prognostics of these valves becomes ex-
tremely important and valuable. In order to facilitate the val-
idation of prognostics algorithms for pneumatic valves, we
have constructed a pneumatic valve testbed for use with a
cryogenic propellant loading system. The testbed enables the
injection of faults with a controllable fault progression pro-
file. Specifically, we can introduce controllable pneumatic
gas leaks, the most common faults associated with pneumatic
valves. We focus on a valve that moves discretely between
open and closed position, and is controlled through a solenoid
valve. In this paper, we apply a model-based prognostics ap-
proach for pneumatic valves on the testbed. We demonstrate
the approach using real experimental data obtained from the
testbed.

1. INTRODUCTION

Pneumatic-actuated valves play a critical role in many sys-
tems. For example, they are used to control the flow of pro-
pellant in cryogenic propellant loading systems, and failures
can have an adverse impact on system safety and launch avail-
ability (Daigle & Goebel, 2011a). This motivates the need
for valve health monitoring and prognosis. To facilitate the
maturation of prognostics technology, testbeds can be con-
structed that allow for fault injection with controllable fault
progression profiles, which have been developed for electrical
power systems (Poll, Patterson-Hine, Camisa, Garcia, et al.,
2007; Poll, Patterson-Hine, Camisa, Nishikawa, et al., 2007),
electromechanical actuators (Balaban et al., 2010), and mo-

Chetan S. Kulkarni et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

bile robots (Tang, Hettler, Zhang, & DeCastro, 2011; Bala-
ban et al., 2013). For the purpose of maturing and validat-
ing valve prognostics approaches, we have developed a pneu-
matic valve testbed (Kulkarni, Daigle, & Goebel, 2013).

Whereas earlier work on valve prognosis used algorithms
centered on particle filters (Daigle & Goebel, 2011a, 2011b,
2010), in this paper we use a new model-based method based
on the measurement of valve open and close times, recently
developed in (Daigle, Kulkarni, & Gorospe, 2014). In real
valve operations, typically only valve position is measured,
from which the only meaningful information for prognostics
are the valve open and close times. The new approach is
therefore much simpler and requires significantly less com-
putation to isolate and identify faults, and predict end of life
(EOL) and remaining useful life (RUL). The approach still
follows the general estimation-prediction framework devel-
oped in the literature for model-based prognostics (Orchard
& Vachtsevanos, 2009; Daigle & Goebel, 2013). In (Daigle
et al., 2014), the approach was demonstrated in simulation;
in this paper, we apply the approach using real data from the
pneumatic valve testbed.

The structure of the paper is as follows. Section 2 discusses
the overall setup of the valve prognostics testbed. Section 3
presents the valve model. Section 4 provides the valve prog-
nosis framework, and Section 5 presents prognosis results us-
ing testbed data. Section 6 concludes the paper.

2. VALVE TESTBED

The valve prognostics testbed, shown in Fig. 1, has been
developed to demonstrate valve prognosis in the context of
cryogenic refueling operations (Kulkarni et al., 2013). The
dashed lines denote the electrical signals, including the data
acquisition I/O signals, power lines, etc. The solid lines de-
note the pneumatic pressure lines connecting the supply and
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the valves. Power is provided by both a typical power supply
and a battery backup supply, and includes a fail-safe mode to
isolate the valve prognostics testbed from the field cryogenic
loading system interface.

The testbed includes a discrete-controlled valve (DV), illus-
trated in Fig. 2, which is a normally-open valve with a linear
cylinder actuator. The valve is closed by filling the cham-
ber above the piston with gas up to the supply pressure, and
opened by evacuating the chamber to atmosphere, with the
spring returning the valve to its default position.

A three-way two-position solenoid valve (SV), illustrated in
Fig. 3, is used for controlling the operation of the DV valve.
The cylinder port connects to the valve, the normally closed
(NC) port connects to the supply pressure, and normally open
(NO) port is left unconnected, allowing venting to atmo-
sphere. When the solenoid is energized, the path from the

Figure 3. Three-way two-position solenoid valve.

NC port to cylinder port is open, allowing gas to pass from
the supply to the valve, thus actuating the valve. When deen-
ergized, the supply pressure is closed off and the path from
the cylinder port to the NO port is opened, thus venting the
actuation pressure in the DV valve, allowing the valve to open
due to the return spring. The solenoid is powered by 24 V DC
either through the power supply or the batteries.

The data from the different sensors is collected using an 8-
slot NI cDAQ-9188 Gigabit Ethernet chassis as the data ac-
quisition (DAQ) system that is designed for remote or dis-
tributed sensor measurements. For the testbed, control and
data acquisition must be done remotely to meet safety re-
quirements. A single NI CompactDAQ chassis can measure
up to 256 channels of sensor signals, analog I/O (AIO), digital
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I/O (DIO), and counter/timers with an Ethernet interface back
to a host machine. All the operations for the cDAQ-9188 are
controlled through an interface designed in LabVIEW. Ad-
ditional details of the testbed and data aquisition system are
described in (Kulkarni et al., 2013).

In this work, we focus on faults affecting the DV. Pneumatic
valves can suffer from leaks, an increase in friction due to
wear, and spring degradation (Daigle & Goebel, 2011a). Be-
cause friction and spring faults cannot be injected or their
rate of progression controlled, we are limited only to leak
faults, however, leaks are the most common faults found in
pneumatic valves. In the configuration shown in Fig. 1, two
different leak faults may be considered: (i) a leak to atmo-
sphere, and (ii) a leak from the supply. In the former, this
can manifest as a leak across the NO seat of the solenoid
valve, or a leak in the pressure line going to the pneumatic
valve. In the latter case, the fault can manifest as a leak across
the NC seat of the solenoid valve. To emulate these faults,
we installed two remotely-operated proportional valves, as
shown in Fig. 1. One valve leaks to atmosphere (henceforth
called the vent valve), while the other is installed on a bypass
line around the solenoid valve (henceforth called the bypass
valve).

The position of the vent and bypass valves can be controlled
through a current signal, continuous between 0 and 100%
open. In this way, we can control the fault progression
(growth of leak size) according to various progression pro-
files.

Fig. 4 illustrates a leak to atmosphere using the vent valve
(V1). The leak through V1 emulates a leak at the cylinder port
or across the NO seat. Similarly, Fig. 5 illustrates a leak from
the supply using the bypass valve (V2). The leak through V2
emulates a leak across the NC seat. The effect of these faults
on valve behavior is described in Section 3.

3. VALVE MODELING

In the following section, we present the model using
continuous-time. For implementation purposes, we convert
to a discrete-time version using a sample time of 1× 10−3 s.
This model was originally presented in (Daigle et al., 2014),
and we summarize it here for completeness.

We develop a physics model of the valve based on mass and
energy balances. The system state includes the position of
the valve, x(t), the velocity of the valve, v(t), the mass of the
gas in the volume above the piston, and the mass of the gas in
the pipe connecting the solenoid valve to the pneumatic valve
port:

x(t) =
[
x(t) v(t) mt(t) mp(t)

]T
. (1)

The position is defined as x = 0 when the valve is fully
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Figure 4. Solenoid valve leak fault injection when energized
on DV valve.
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Figure 5. Solenoid valve leak fault injection when de-
energized on DV valve.

closed, and x = Ls when fully open, where Ls is the stroke
length of the valve.

The derivatives of the states are described by

ẋ(t) =
[
v(t) a(t) ft(t) fp(t)

]T
, (2)

where a(t) is the valve acceleration, ft(t) is the mass flow
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going into the pneumatic port from the pipe, and fp(t) is the
total mass flow into the pipe.

The single input is considered to be

u(t) =
[
ut(t)

]
, (3)

where ut(t) is input pressure to the pneumatic port, which
alternates between the supply pressure and atmospheric pres-
sure depending on the commanded valve position.

The acceleration is defined by the combined mass of the
piston and plug, m, and the sum of forces acting on the
valve, which includes the force from the pneumatic gas,
Fp = (pt(t) − patm)Ap, where pt(t) is the gas pressures
on the top of the piston, and Ap is the surface area of the pis-
ton; the weight of the moving parts of the valve, Fw = −mg,
where g is the acceleration due to gravity; the spring force,
Fs = k(x(t) + xo), where k is the spring constant and xo
is the amount of spring compression when the valve is open;
friction, Ff = −rv(t), where r is the coefficient of kinetic
friction, and the contact forces Fc(t) at the boundaries of the
valve motion,

Fc(t) =


kc(−x), if x < 0,

0, if 0 ≤ x ≤ Ls,
−kc(x− Ls), if x > Ls,

(4)

where kc is the (large) spring constant associated with the
flexible seals. Overall, the acceleration term is defined by

a(t) =
1

m
(Fs − Fp − Ff − Fw + Fc). (5)

The pressure pt(t) and the pipe pressure, pp(t), are calculated
as:

pt(t) =
mt(t)RgT

Vt0 +Ap(Ls − x(t))
pp(t) =

mp(t)RgT

Vp
(6)

where we assume an isothermal process in which the (ideal)
gas temperature is constant at T , Rg is the gas constant for
the pneumatic gas, Vt0 is the minimum gas volume for the
gas chamber above the piston, and Vp is the pipe volume.

The gas flows are given by:

fp,in(t) = fg(ut(t), pp(t)) (7)
fp,leak(t) = fg(pp(t), pleak) (8)
fp,t(t) = fg(pp(t), pt(t)) (9)
fp(t) = fp,in(t)− fp,t(t)− fp,leak(t) (10)
ft(t) = fp,t(t) (11)

where fp,in is the flow into the pipe from the supply or at-
mosphere, fp,leak is a leak term with pleak being the pres-
sure outside the leak, fp,t is the flow from the pipe to the
chamber above the piston, and fg defines gas flow through

an orifice for choked and non-choked flow conditions (Perry
& Green, 2007). Non-choked flow for p1 ≥ p2 is given by
fg,nc(p1, p2) =

CsAsp1

√√√√ γ

ZRgT

(
2

γ − 1

)((
p2
p1

) 2
γ

−
(
p2
p1

) γ+1
γ

)
,

(12)

where γ is the ratio of specific heats, Z is the gas compress-
ibility factor, Cs is the flow coefficient, and As is the orifice
area. Choked flow for p1 ≥ p2 is given by

fg,c(p1, p2) = CsAsp1

√√√√ γ

ZRgT

(
2

γ + 1

) γ+1
γ−1

. (13)

Choked flow occurs when the upstream to downstream pres-
sure ratio exceeds

(
γ+1
2

)γ/(γ−1)
. The overall gas flow equa-

tion is then given by

fg(p1, p2) =



fg,nc(p1, p2) if p1 ≥ p2
and p1

p2
<
(
γ+1
2

) γ
(γ−1) ,

fg,c(p1, p2) if p1 ≥ p2
and p1

p2
≥
(
γ+1
2

) γ
(γ−1) ,

−fg,nc(p2, p1) if p2 > p1

and p2
p1
<
(
γ+1
2

) γ
(γ−1) ,

−fg,c(p2, p1) if p2 > p1

and p2
p1
≥
(
γ+1
2

) γ
(γ−1) ,

.

(14)

The only available measurement is the valve position, so we
have

y(t) =
[
x(t)

]
. (15)

Fig. 6 shows an example nominal valve cycle. The valve
starts in its default open state. The valve is commanded to
close at 0 s. Supply pressure (75 psig) is delivered to the
pipe and to the valve, causing the piston to lower, closing the
valve just after 1 s. At 4 s, the valve is commanded to open,
and the pipe is opened to atmosphere. The pipe pressure and
valve pressure drop, and once the pressure drops low enough,
the spring overcomes the pressure force and the piston moves
updwards. The valve completes opening just after 6 s. The
valve parameters were identified from known valve specifica-
tions, and unknown parameters estimated to match the nomi-
nal opening and closing times, which for the actual valve, are
both around 3.5 s.

As discussed in Section 2, we consider two different leak
faults, one in which there is a leak from the supply pressure
input to the valve (pleak is the supply pressure), emulated us-
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Figure 6. Nominal valve operation.

ing the bypass valve, and one in which there is a leak out to
atmosphere (pleak is atmospheric pressure), emulated using
the vent valve. In the former case, the valve will close more
slowly and open faster, and in the latter, the valve will open
more slowly and close faster. With a large enough leak, the
valve may fail to open or close completely. Fig. 7 shows the
changes in valve timing with the leak from the supply, and
Fig. 8 shows the changes in valve timing with the leak to at-
mosphere. Here, we consider a damage progression model
where the leak hole area increases linearly with time.

In the testbed, we cannot control the leak area, but only the
leak valve position, which varies nonlinearly with the ef-
fective leak area. So, unlike in (Daigle et al., 2014), we
must also consider this relationship, so that we can map from
open/close times to leak size to leak valve position, for which
we assume a particular damage progression profile. The rela-
tionship between the leak valve position and its effective area
is a function of the valve flow coefficient, which is nonlinear.
In this case, we assume that the effective area is equal to the
product of the square of the position (A2

leak) and a conversion
coefficient.
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Figure 7. Valve timing with leak from supply, with linearly
increasing leak area.
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kA2
leak = Cleak (16)

We define valve end of life (EOL) through open/close time
limits of the valves, as in real valve operations (Daigle &
Goebel, 2011a). The valve in the testbed is required to open
within 7 s and close within 6 s.

4. VALVE PROGNOSIS

We describe in this section the prognosis framework de-
veloped for the valve, following the general estimation-
prediction framework of model-based prognostics (Luo, Pat-
tipati, Qiao, & Chigusa, 2008; Orchard & Vachtsevanos,
2009; Daigle & Goebel, 2013). However, since we use only
valve timing values for prognosis, we use a simpler estima-
tion approach (Daigle et al., 2014), similar to that developed
in (Teubert & Daigle, 2013), as opposed to more complex and
computationally intensive filtering approaches used in previ-
ous works. We first formulate the prognostics problem, fol-
lowed by a description of the estimation approach and a de-
scription of the prediction approach.
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4.1. Problem Formulation

We assume the system model may be generally defined as

x(k + 1) = f(k,x(k),θ(k),u(k),v(k)), (17)
y(k) = h(k,x(k),θ(k),u(k),n(k)), (18)

where k is the discrete time variable, x(k) ∈ Rnx is the
state vector, θ(k) ∈ Rnθ is the unknown parameter vector,
u(k) ∈ Rnu is the input vector, v(k) ∈ Rnv is the process
noise vector, f is the state equation, y(k) ∈ Rny is the output
vector, n(k) ∈ Rnn is the measurement noise vector, and h
is the output equation.1

In prognostics, we are interested in predicting the occurrence
of some event E that is defined with respect to the states,
parameters, and inputs of the system. We define the event
as the earliest instant that some event threshold TE : Rnx ×
Rnθ × Rnu → B, where B , {0, 1} changes from the value
0 to 1 (Daigle & Sankararaman, 2013). That is, the time of
the event kE at some time of prediction kP is defined as

kE(kP ) ,

inf{k ∈ N : k ≥ kP ∧ TE(x(k),θ(k),u(k)) = 1}. (19)

The time remaining until that event, ∆kE , is defined as

∆kE(kP ) , kE(kP )− kP . (20)

In the context of systems health management, TE is defined
via a set of performance constraints that define what the ac-
ceptable states of the system are, based on x(k), θ(k), and
u(k) (Daigle & Goebel, 2013). In this context, kE represents
end of life (EOL), and ∆kE represents remaining useful life
(RUL). For valves, timing requirements are provided that de-
fine the maximum allowable time a valve may take to open or
close, and these define TEOL (Daigle & Goebel, 2011a).

The prognostics problem is to compute estimates of EOL
and/or RUL. To do this, we first perform an estimation step
that computes estimates of x(k) and θ(k), followed by a pre-
diction step that computes EOL/RUL using these values as
initial states. For the case of the valve, the future inputs are
known, i.e., the valve is simply cycled open and closed, so
there is no uncertainty with respect to future inputs.

4.2. Estimation

Since only valve position is measured, only valve timing val-
ues are useful for prognostics. We can obtain this information
from the continuous position measurement data by extracting
and computing the difference in time between when the valve
is commanded to move, and when it reaches its final position.
Using the model, we can map this time to the fault size that
corresponds to it. In order to obtain this result quickly, we

1Bold typeface denotes vectors, and na denotes the length of a vector a.

compute a lookup table that maps leak size to corresponding
open and close times, by simulating the model given different
leak sizes in the expected ranges. A similar approach is used
for current-pressure transducers in (Teubert & Daigle, 2013).

We are interested in mapping this leak size back to the posi-
tion of the leak valve, which we assume is increasing linearly.
For this, we simply take the square root (Eq. 16). Since this
transformed value is progressing linearly, we will essentially
be estimating the gain term k, lumped with the slope of the
leak valve position. So, given the estimated values of damage
progression, we can perform a regression to find the line that
fits this data, using the last N cycles.

For the leak to atmosphere, only closing times can be used
(Daigle et al., 2014). This is because, in the presence of this
leak, the valve may not get up to the full supply pressure when
the valve closes in time for the next cycle, so since the inter-
nal valve actuator pressure is not measured, we do not have a
correct initial condition for the simulation with which to esti-
mate the leak parameter value for the following opening time.
For the supply leak, we have analogous situation and can use
only opening times for leak parameter estimation.

4.3. Prediction

Given the current estimated leak parameter value, and the re-
gression parameters, we can compute the value of the leak pa-
rameter at any future time, defining the damage progression
equation. Using the lookup table, we can map the maximum
valve open/close times to maximum leak parameter values for
the two leak faults, and this defines the EOL thresholds in the
leak parameter space. Using the relationship between leak
size and leak valve position, we can then obtain correspond-
ing maximum values, and then solve for the time at which
that threshold is crossed, given the fitted line, and thus obtain
EOL.

Prediction is not performed until a fault is detected. To detect
faults, we use a threshold on the opening times and closing
times. If the mean valve opening or closing time, averaged
over the last 3 cycles, is over the threshold, then a fault is
detected. The regression is performed only over the data ob-
tained since fault detection, so that nominal valve behavior
is not used to estimate the fault progression parameters. The
use of a filter on the data for fault detection introduces a slight
lag, however in practice fault progression is very slow so this
lag is negligible relative to the true EOL. In general, more ro-
bust fault detection strategies may also be used, but for our
purposes a simple threshold works well.

We can isolate which fault is present by inspecting open/close
timing trends (see Fig. 8 and Fig. 7). Since the two faults
produce different qualitative changes on the valve timing, the
observed trends tell us which fault is actually present.
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Figure 9. Valve open times with a atmoshpere leak.

5. RESULTS

We present here experimental results using the valve prog-
nostics testbed. In each experiment, the valve is cycled open
and closed repeatedly, every 10 s, until the end of life condi-
tion is reached. The valve under consideration is considered
to be failed when it opens in 7 s or greater, or closes in 6 s
or greater. Fault detection thresholds of 4 s and 3.6 s are
used for the open and close times, respectively. The fault is
injected by linearly increasing the open percentage of the de-
sired leak valve in increments of 1%. We first present results
for the leak to atmosphere fault, followed by results for the
leak from supply fault.

5.1. Leak to Atmosphere

As described in Section 2, the leak to atmosphere fault is in-
jected by controlling the position of the leak valve V1. This
emulates a leak across the NO seat of the solenoid valve, or
a leak on the gas line going to the pneumatic valve. As de-
scribed in Section 3, this fault causes a decrease in opening
times and an increase in closing times. Fig. 9 shows the open
times of the valve during the fault progression, and Fig. 10
shows the close times. It is difficult to determine a trend in
the open times, and they do not cross the detection thresh-
old. The close times are very noisy, and do cross the closing
time threshold at the 48th cycle. Based on the open and close
times, the fault must be a leak to atmosphere, in agreement
with the model.

The estimated leak parameter values, based on the close times
of the DV, are shown in Fig. 11. In order to estimate the fault
progression parameters, the last 50 values are used. Since
the close times are quite noisy, a larger window is needed
for this purpose. The RUL predictions are given in Fig. 12,
where α = 0.3 represents a desired accuracy constraint, and
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Figure 10. Valve close times with a atmoshpere leak.
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Figure 11. Estimated leak parameter values based on valve
closing times for the atmospheric leak

RUL∗ denotes the true RUL. The predictions converge rela-
tively quickly after the fault is detected. The algorithm pre-
dicts RUL of the DV valve within the α-cone, until cycle 100.
After that point, the close times have more spread, as can be
seen from Fig. 10. Due to this, the algorithm overestimates
the RUL values towards the end of the experiment.

5.2. Leak from Supply

As described in Section 2, the leak from supply fault is in-
jected by controlling the position of the leak valve V2. This
emulates a leak across the NC seat of the solenoid valve. As
described in Section 3, this fault causes an increase in open-
ing times and a slight decrease in closing times. Fig. 13 shows
the open times of the valve during the fault progression, and
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Figure 13. Valve open times with a leak from supply.

Fig. 14 shows the close times. The observed trends are in
agreement with the model. A fault is detected at the 43rd
cycle based on the opening times.

Fig. 15 shows the estimated leak parameters, and Fig. 16
shows the RUL predictions. After detecting the fault the pre-
dictions converge relatively quickly. Since the opening times
are less noisy, only the past 15 cycles are used to determine
the fault progression parameters, and this improves conver-
gence. After entering the α-cone, the predictions for remain
until EOL.

For further validation, we present a second experiment for a
leak from the supply. The experiment is performed exactly
the same, however, performance variations exist from one ex-
periment to the next, and we must ensure that our approach is
robust to those variations. The open and close times for this
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Figure 14. Valve close times with a leak from supply.
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Figure 15. Estimated leak parameter values based on valve
opening times for the leak from supply.

experiment are similar to the previous experiment, with some
variations. In this case, the fault is detected later at around the
47th cycle in the opening times. The RUL predictions for this
experiment are shown in Fig. 17. Although the valve timing
is slightly different, the RUL predictions are just as accurate,
and, in fact, a little more so in this case.

6. CONCLUSIONS

In this paper, we described a testbed for injecting faults in
pneumatic valves. We developed a model of the valve includ-
ing leak faults, and presented a valve prognosis framework
that operates with limited measurements, using only valve
timing information for prognosis. We demonstrated the prog-
nosis framework with experimental data from the testbed for
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Figure 16. Predicted RUL values for the leak from supply.
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Figure 17. Predicted RUL values for the leak from supply
(Exp. 2).

both types of leak faults, thus providing some validation of
the approach.

Future work will involve validating the prognosis framework
with additional experimental data from the testbed and ap-
plying the framework to faults occuring in continuously con-
trolled valves.
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