
A Modeling Framework for Prognostic Decision Making and its
Application to UAV Mission Planning

Edward Balaban1, Juan J. Alonso2

1 NASA Ames Research Center, Moffett Field, CA, 94035, USA
edward.balaban@nasa.gov

2 Stanford University, Stanford, CA, 94305, USA
jjalonso@stanford.edu

ABSTRACT

The goal of prognostic decision making (PDM) is to utilize
information on anticipated system health changes in select-
ing future actions. One of the key challenges in PDM is find-
ing a sufficiently expressive yet compact mathematical rep-
resentation of the system for use with decision optimization
algorithms. In this paper we describe a general modeling ap-
proach for a class of PDM problems with non-linear system
degradation processes and uncertainties in state estimation,
action effects, and future operating conditions. The approach
is based on continuous Partially Observable Markov Deci-
sion Processes (POMDPs) used in conjunction with ’black
box’ system simulations. The proposed modeling framework
can be cast into simpler representations, depending on which
sources of uncertainty are being included. The approach is il-
lustrated with a mission planning case study for an unmanned
aerial vehicle (UAV). In the case study a PDM system is
tasked with optimizing the vehicle route after an in-flight
component fault is detected. A stochastic algorithm (based
on particle filtering) is used for decision optimization, with
a second, deterministic algorithm providing a performance
evaluation baseline. Both algorithms utilize a UAV physics
simulator for generating predictions of future vehicle states.
Performance benchmarking is done on a set of mission sce-
narios of increasing complexity.

1. INTRODUCTION

Decision-making in complex aerospace applications (our area
of interest) encompasses the selection of actions at numer-
ous levels of system abstraction. At the lower levels decision
making can mean selecting controller gain values in a sub-
system or defining the allowable movement range for a con-
trol device. At the mission level decision making can involve
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modifications to the vehicle route. At the highest levels, de-
cision making can extend to allocating assets for a mission
from a fleet of vehicles or even reorganizing a logistics chain.

Prognostic Decision Making (PDM) can be defined as the
process of selecting system actions informed by predictions
of the future system health state. While in many respects
PDM is similar to other planning and decision optimization
problems (such as those from the fields of optimal control or
path planning), there are two key reasons, in our opinion, to
consider it as a distinct problem type. First, incorporating
information, however imperfect, about the evolution of the
system health parameters may help increase decision quality
and reduce the state estimation uncertainty. Doing that may
prove to be a non-trivial task, as health degradation processes
in aircraft or spacecraft components often have complex de-
pendencies on operating conditions, environmental factors,
and the degradation processes occurring in the other parts of
the system. Second, selecting actions appropriately may, in
turn, help improve subsequent prognostic estimates. In nomi-
nal operations, incorporation of prognostics into the decision-
making could help optimize vehicle performance and min-
imize maintenance costs. In situations where the vehicle
is experiencing in-flight malfunctions, having the additional
source of information provided by prognostic methods could
be crucial to ensuring a safe mission outcome.

In order to make the prognostic decision making problem
tractable for an aerospace application, it may need to be sub-
divided into smaller sub-problems, with the information ex-
change organized for overall decision coherency (Balaban
& Alonso, 2012). The goal of the work described in this
paper is to further develop modeling techniques and algo-
rithms for solving the types of sub-problems that require
representation of uncertainties in state estimation (including
in payoffs/rewards), action outcomes, and future operating
conditions. Our modeling approach is based on continuous
Partially Observable Markov Decision Processes (Bertsekas,
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1995). As a generalization of the more traditional state-space
representations and Markov Decision Processes (Bellman,
1957b), the same POMDP framework can be used to describe
problems with some or all of the aforementioned sources of
uncertainty absent.

A mission replanning case study for an unmanned aerial ve-
hicle is used as an illustrative example. It is extended from
a mission replanning study for a ground vehicle (Balaban &
Alonso, 2012). While the general ideas for the two studies
are similar, additional challenges present themselves when
implementing PDM for a flight vehicle. With motion now
conducted in three dimensions (six degrees of freedom), the
task of estimating a future vehicle state is inherently more
complex. In addition, the system needs to produce its ac-
tion recommendations as quickly as possible since, unlike a
ground vehicle, an airplane cannot simply stop, enter a safe
mode, and wait for the decision-making process to complete.
The longer the process takes, the worse the fault condition
may become and the further from the optimal flight path the
vehicle may end up.

Exact solutions of problems formulated as POMDPs are gen-
erally not achievable (Pineau, Gordon, & Thrun, 2006), there-
fore some type of an approximate algorithm needs to be uti-
lized. In this work an algorithm based on particle filtering
(Gordon, Salmond, & Smith, 1993) is implemented, with a
second, deterministic algorithm used for validation and per-
formance assessment purposes. The latter algorithm is based
on backtracking search (Knuth, 1968).

In the near term, the case study described in this work is
meant to pave the way for PDM flight demonstrations on
the Edge 540 electric UAV (Hogge, Quach, Vazquez, & Hill,
2011). The Swift electric UAV (Denney, Pai, & Habli, 2012),
being developed at NASA Ames Research Center, is under
consideration as an advanced follow-up test platform. The
Swift is significantly larger than the Edge 540 (13.0 meter vs
2.45 meter wingspan) and can fly longer missions (7-8 hours
aloft projected vs. approximately 0.3 hours for the Edge 540).
The longer flight endurance is expected to allow for a greater
variety of gradually developing fault modes to be introduced
into the test scenarios.

The rest of the paper is organized as follows. Related research
efforts are briefly reviewed in the next section. Section 3 de-
scribes our modeling methodology. The mission replanning
case study is defined in Section 4. The prototype vehicle
health management architecture used to implement the case
study is described in Section 5. A UAV physics simulator
(Section 6) is one of the components of this architecture. The
simulator includes prognostic degradation models for some of
the vehicle components. Section 7 presents the two decision-
making algorithms (deterministic and stochastic), which are
tested on a set of simulated missions of varying complexity

(Section 8). Section 9 provides a summary of the work per-
formed and outlines our plans for future research.

2. RELATED WORK

This section highlights some of the research efforts that, we
believe, form a representative sample of the current state of
the art in PDM. Most of the PDM research to-date has been
done for low-level component control, with a few projects us-
ing prognostics in solving higher-level planning and schedul-
ing problems.

Pereira, Galvao, and Yoneyama (2010) developed a Model
Predictive Control (MPC) system that distributes control ef-
fort among several redundant actuators based on prognos-
tic health information. Damage accumulation is assumed
to be linearly dependent on the exerted control effort. The
approach is tested in simulation on a tank level regulation
problem. Brown and Vachtsevanos (2011) also incorporate
prognostic information into a model-predictive controller and
apply it to optimizing performance (in simulation) of an
electro-mechanical actuator. The work includes recommen-
dations for error analysis and for estimation of uncertainty
bounds in long-term Remaining Useful Life (RUL) predic-
tions. Bogdanov, Chiu, Gokdere, and Vian (2006) investigate
coupling of a prognostic lifetime model for servo motors with
a family of LQR controllers.

Edwards, Orchard, Tang, Goebel, and Vachtsevanos (2010)
propose a set of metrics to quantify the impact of input
uncertainty on non-linear prognostic systems. The met-
rics are incorporated into a feedback correction loop in or-
der to demonstrate RUL extension for a non-linear, non-
Gaussian system (a helicopter gear plate experiencing a fa-
tigue crack fault). An algorithm based on particle filtering
is used for uncertainty estimation. The work done by Tang,
Hettler, Zhang, and Decastro (2011) contains elements of
prognostics-enhanced control, but also extends into prognos-
tic path planning for an unmanned ground vehicle. RUL esti-
mates were used either as a constraint or as an additional ele-
ment in the cost function of the path-planning algorithm, with
the algorithm based on Field D* search (Ferguson & Stentz,
2006). Methods for estimating and managing prediction un-
certainty were also developed.

In our work we aim to build on the above efforts by explor-
ing the benefits and the challenges of performing prognostic
decision making in a more general framework, where the sys-
tem model is treated as a ’black box’. Our approach to doing
this is described next.

3. MODELING APPROACH

The mathematical modeling approach adapted for this work
is meant to be general and applicable to a wide variety of
systems with degradation processes. A POMDP formulation
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was chosen as the basis since it allows for transition costs,
rewards, and action outcomes to be expressed in probabilistic
terms. The main elements of a model are described below:

State space: S ⊆ Rn

Action space: A ⊆ Rm

Observations: Z ⊆ Rp

Transition
function:

T (s, a, s′) = pdf(s′|s, a) : S ×A× S →
[0,∞)

Observation
function:

O(z′, a, s′) = pdf(z′|s′, a) : S×A×Z →
[0,∞)

Belief state: b(s) = pdf(s)

Belief space: B - the set of all belief states

Initial belief: b0

Belief
update:

baz(s′) ∝
O(z′, a, s′)

∫
S

T (s, a, s′)b(s)ds

Policy: π(a, b) = pdf(a|b) : A × B → [0,∞), Π
is the set of all policies

Costs: C = {c1(s, a), ..., c|C|(s, a)} ⊆ R|C|

Cost
functions:

ci(s, a, c) = pdf(c|s, a) : S × A × R →
[0,∞), where c is a specific real value,
i ∈ {1, . . . , |C|}

Rewards: R = {r1(s), ..., r|R|(s)} ⊆ R|R|

Reward
functions:

ri(s, r) = pdf(r|s) : S × R →
[0,∞), where r is a specific real value,
i ∈ {1, . . . , |R|}

Features: X = {x1(s), . . . , x|X |(s)} : S → R|X |

Constraints: G = {g1(s), . . . , g|G|(s)} : S → B|G|

Objective
function:

Jπ(b0) : Π×B → R

System states in S are not defined explicitly, but rather ob-
tained through a ’black box’ simulator, such as the one de-
scribed in Section 6. The simulator takes an estimate of the
current state and the desired action as inputs and generates
a state estimate for the next time step as the output. Com-
pared to discretized state representations, this approach helps
to avoid the ‘curse of dimensionality’ (Bellman, 1957a), re-
sulting from the exponential growth in the size of the state
space with the number of state vector components. It also
mitigates discretization errors. While a discretized formula-
tion does not require a system simulator, we believe that em-
ploying such a formulation would quickly become impracti-
cal for all but the simplest PDM problems.

The concept of a continuously valued action space A allows
us, in conjunction with the simulator, to represent not only the
system actions, but the loads and environmental conditions
imposed onto the system as well. Observations Z most often

come from sensor readings, but can also be manual measure-
ments of a quantity such as the length of a crack. The tran-
sition probability function T (s, a, s′) allows us to model the
uncertainty in estimating the future loading conditions and
their effects on the system state (s denotes the current state, a
the action taken in the current state, and s′ is the next state).
The observation function O(z′, a, s′) describes the probabil-
ity of seeing an observation z′ if a state s′ is achieved as a
result of an action a.

Since in real life it is often not possible to know the exact
state the system is in, the belief state b(s) is defined as the
probability density of being in a particular state s. A policy
π(a, b) is then defined as the probability density of taking a
specific action a given a belief state b. In practical terms, a
policy allows us to define what actions the system should take
given the belief distribution over possible states.

A cost is defined probabilistically as a value dependent on the
current system state and the action taken in it. A cost can be
the amount of energy needed to transition to the next system
state or the corresponding measure of component wear. Re-
wards, on the other hand, depend only on the system state
achieved. Reward functions define the desirability of a state
as a probability density over the real domain. Features are
also functions defined over state variables that enable reason-
ing over the various properties of a state. Unlike rewards,
feature values are not meant to be used in an additive manner
directly and are thus defined as point estimates.

Constraints are defined as inequalities of the form gi(s) ≥ 0
on the components of the state of the system. Strict equality
constraints can be defined as well, although they are less use-
ful in the current context. Constraints can be used to define
regions of nominal and off-nominal system behavior, as will
be done shortly for system health.

Finally, features, costs, and rewards are combined into an ob-
jective function Jπ that, given an initial belief state b0 and
a policy π, can compute a single evaluation metric of that
policy. Several objective functions can be defined for multi-
criteria reasoning. Given the predominantly non-negative
transition costs in a typical PDM application, a separate dis-
count factor (often used in value and objective functions to
guarantee convergence and encourage shorter solutions) is
likely unnecessary. Negative costs correspond to self-healing
or commanded recovery events and, while certainly valid,
should not dominate the non-negative costs (e.g. energy con-
sumption or component wear), given a properly designed ob-
jective function. Terminal states are defined through the con-
straints in G, including (but not limited to) constraints on ve-
hicle health parameters or position.

Now that the modeling framework has been described, the
key system health management concepts can be defined
within it:
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• Health parameters: H = {h1, . . . , hH} is a subset of
state vector elements that describes the health state of the
system.

• Fault: A subset of constraints Gfault ∈ G defines sig-
nificant deviations from the expected nominal behav-
ior (with respect to vehicle health). A fault occurs if
∃i, gi(s) = false, gi ∈ Gfault. At least some of the
health parameters H are expected to be included in the
constraints of Gfault.

• Failure: Another subset Gfailure ∈ G defines states where
the system loses its functional capability with respect to
a health parameter h ∈ H .

• System failure: System failure is defined through a
boolean function F : B → B, which indicates when the
entire system is believed to be effectively non-functional
(F is defined via the Gfailure set). System failure can
be indicated when a single gi ∈ Gfailure is believed to
be violated, for example, or a larger subset of them.
More generally, the function could also be defined as
F : B → [0, 1], mapping the belief space to a proba-
bility of system failure.

• End of Life (EoL): End of Life in this set of definitions is
synonymous with system failure. Time of EoL is defined
similarly to (Daigle, Bregon, & Roychoudhury, 2012) as
tEoL , inf{t ∈ R : (t ≥ tp) ∧ (F(b) = true)}, where
tp is the time of prediction (or, alternatively, the present
time).

• Remaining Useful Life (RUL): RUL = tEoL − tp

The diagnostic problem then becomes the process of deter-
mining the current belief state, bt. The prognostic problem
can be stated as the process of determining, at time t, the be-
lief state b(t+∆t), given the current policy π (with ∆t > 0).
The prognostic decision making problem is then the process
of finding (or approximating) π∗, such that

π∗ = arg max
π∈Π

Jπ(bt),

where Jπ(bt) is an objective function computed using a pol-
icy π given a state of belief bt at time t. Time (or an alterna-
tive index) can be discretized.

Given this general framework for describing the system, its
actions, and the state of system health, we can recast it de-
pending upon the problem at hand. While in some cir-
cumstances representation and quantification of uncertainty
is necessary to increase the decision accuracy, in others the
downsides of having a random process present in the rea-
soning system outweigh the benefits. When in real-time use
aboard an air vehicle, for example, running the simulation in
the deterministic mode (supplying the expected value of the
next state) may often be preferable. For the purposes of devel-
opment and verification, it may also be beneficial to start with
a deterministic state transition system. Enabling uncertainty

in the effects of an action would turn the system into a con-
tinuous Markov Decision Process (MDP) (Bertsekas, 1995).
Adding uncertainty in state estimation would turn it into a
continuous POMDP.

While exact solutions for problems posed as deterministic
state-space representations can be produced using a variety
of search techniques, as the amount of uncertainty increases
computing exact solutions becomes more and more challeng-
ing. In certain cases (linear system model, quadratic objec-
tive function) continuous MDP problems can be solved ex-
actly using Differential Dynamic Programming (Jacobson &
Mayne, 1970). In other cases approximate methods are re-
quired. The two algorithms described in Section 7, back-
tracking search and Particle Filter, can be used with both de-
terministic and stochastic next-state representations. The for-
mer will produce an exact solution if the states are defined
deterministically, while the latter will generate approximate
solutions in both cases.

4. MISSION REPLANNING CASE STUDY

Our case study is based on a UAV mission scenario where
the vehicle is tasked with visiting a set of waypoints and re-
turning back to the point of origin. Such a mission profile
is typical of reconnaissance or geophysical survey missions,
for example. For tasks of this type the order of visiting the
waypoints is often less important than which waypoints were
actually reached. Further scenario details are listed below.

Given:

• The waypoint set is defined as wp = {wpi}Ni=1, where
a waypoint wpi = {(xi, yi, zi),Gi, ri} is specified by
its Cartesian coordinate vector (xi, yi, zi), waypoint-
specific constraints subset Gi (e.g. on airspeed or bank
angle), and a reward value ri.

• A path p = (wpj)
M
j=1 is defined as an ordered subset of

wp (i.e. M ≤ N ). P is the set of all possible paths.
• The aircraft starts its mission at waypoint wp1 (home

runway) and is required to return there for a mission to
be considered a full or a partial success.

• An initial path p0 is specified (p0 is not necessarily opti-
mized).

• hh ∈ [0, 1] is the normalized system health index (1 is
full health and 0 indicates failure). The constraint on sys-
tem health is defined as gh(s) = hh ≥ 0.

• he ∈ [0, 1] is the normalized remaining energy index (1
is full charge and 0 indicates depleted energy). The con-
straint on energy is defined as ge(s) = he ≥ 0.

• A healthy vehicle is able to complete p0 within the en-
ergy and component health constraints (before either
reaches 0).

• Energy and health transition costs between a pair
of waypoints a and b are defined as ce(wpa, wpb)
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and ch(wpa, wpb), respectively (the costs are history-
dependent). Ce(p) and Ch(p) are the corresponding cu-
mulative costs for a path. Similarly, the cumulative path
reward is denoted byR(p).

• A fault f occurs at a time tf , that makes it impossible
to complete p0 before EoL. The fault magnitude changes
with time, loading conditions, and environmental factors.

Find:
p∗ = arg max

p∈P
R(p),

where p∗ is a path that maximizes cumulative reward.

A waypoint wpi is considered to be reached if the vehicle
achieves a position (xi ± εx, yi ± εy, zi ± εz), with all of the
applicable constraints satisfied. Here εx, εy , and εz are the
predefined maximum position error values.

5. PHM REASONING ARCHITECTURE

The reasoning architecture used in this work consists of the
four main components: the diagnoser (DX, for diagnostics),
the decision maker (DM), the vehicle simulator (VS), and the
vehicle itself (Figure 1).

The execution process is initiated with an input route p0 and
an initial fault set F0 supplied to the decision maker. This
can be done at the beginning of a mission (in that case the
fault set may be empty) or if a fault is diagnosed in flight. A
fault set F is one or more fault descriptors. A fault descriptor
fi consists of a fault type d and a fault magnitude m. Fault
magnitude m is generally normalized to the interval [0, 1].

DM utilizes VS to evaluate and, optionally, optimize the input
route (according to the criteria in Section 4). An initial opti-
mization can be performed if a successful completion of the
input route is deemed unlikely. Alternative routes sent to VS
consist of an ordered set of waypoints (with vectors Γ of spe-
cific values for waypoint parameters). DM also informs VS
of the relevant fault modes. VS simulates the candidate path,
pc, and returns the reward and cost estimates for it. Once DM
finalizes the route recommendation p∗, it is sent to the vehicle
for execution.

As the mission proceeds, DX continues to monitor observa-
tions Z (e.g. sensor readings) generated by the vehicle to
detect any new fault conditions. The current prototype im-
plementation, meant to primarily test the PDM algorithms,
includes only a minimal diagnostic functionality. Future
versions will incorporate a fully-featured diagnoser, such as
HyDE (Narasimhan & Brownston, 2007) or QED (Daigle &
Roychoudhury, 2010). One of our long-term goals is to unify
diagnostic and decision making processes around a single,
comprehensive system model. For the near future, however,
if the diagnoser utilized is model-based (as is the case for both
HyDE and QED), a separate diagnostic model would need to
be constructed.

A new fault condition triggers a reevaluation of the vehicle
route by DM. Another event type that triggers a reevaluation
is a significant deviation of the predicted component degra-
dation rates from the rates observed as the flight progresses
further. This mechanism is implemented by storing the pre-
dicted component degradation curves for the proposed route
(p∗) before it is sent to the vehicle for execution.

6. VEHICLE SIMULATOR

Given an estimate of the current vehicle state and the desired
action, the simulator is used to generate an estimate of the
next state in its innermost loop. The state vector includes
the aircraft position, velocity, acceleration, orientation, lift,
drag, thrust, battery voltage, battery charge remaining, com-
ponent temperatures, and other data. When an entire path p
is provided, the simulator can generate reward and cost esti-
mates R(p), Ch(p), and Ce(p). For that, the route is divided
into segments where the key elements of vehicle dynamics
can be considered constant (i.e. acceleration, bank angle, an-
gle of climb/descent, etc). The segments are further divided
into time steps. The size of a time step, dt, can be specified
as one of the simulation parameters (it is adjusted automati-
cally for segments where higher precision in position control
is required, such as during take-offs and landings). As the
simulator is primarily intended to provide estimates of transi-
tion costs and rewards for DM in a computationally efficient
manner, it does not employ a closed loop controller to achieve
precise trajectory following.

The aerodynamic forces are calculated in a right-handed,
velocity-oriented, local-level frame of reference, with the ori-
gin at the center of mass of the aircraft. The position of the
center of mass {x(t), y(t), z(t)} is computed in an inertial
right-handed Cartesian frame of reference, with the origin at
the take-off/touch-down end of the runway. There are cur-
rently three elements of the vehicle model with non-linear,
action-dependent degradation aspects: battery voltage, bat-
tery temperature, and motor temperature (subsections 6.5 and
6.6). The simulator is implemented in MATLAB (MATLAB
version 7.11.0.584 (2010b), 2010). The rest of the section
provides further details of the simulator, describing the key
equations and assumptions.

6.1. Lift and drag

Lift L and drag D are calculated as

L =
1

2
ρ∞v

2
∞SCL, (1)

D =
1

2
ρ∞v

2
∞SCD, (2)

CD = CD,p + CD,i, (3)

where L is lift, ρ∞ is the freestream density, v∞ is the
freestream velocity, CD,iis the coefficient of induced drag,
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Figure 1. Reasoning architecture

and CD,p is the coefficient of profile drag. Using Prandtl’s
Lifting Line theory:

CD,i =
C2
l

πeAR
, (4)

where AR is the planform aspect ratio and e is the span effi-
ciency factor. From (3) and (4):

CD = CD,p +
C2
l

πeAR
, (5)

CD,p(α,Re) is obtained from experimental wind tunnel data
for a similar airfoil (Miller, 2008; Lewis, 1984), with α de-
noting the angle of attack (in radians) and Re the Reynold’s
number. The thin airfoil assumption is made, thus

Cl = 2πα. (6)

6.2. Equations of motion for straight, accelerated flight

Force balance equations in x and z directions give

ẍ =
1

m
(T −D)− g sin γ, (7)

z̈ =
1

m
L− g cos γ, (8)

where γ is the flight path angle, g is the acceleration of grav-
ity, and m is the mass of the aircraft.

6.3. Equations of motion for turning flight

Assume a constant airspeed (i.e. dv/dt = 0, v here equivalent
to the freestream velocity), balanced flight (no skidding or
slipping) during turns. From the equation of equilibrium in
the horizontal direction:

Fc = L sinφ cos γ =
v2

r
m, (9)

where φ is the bank angle, r is the turn radius, and Fc is the
centrifugal force. Then

r =
v2

L sinφ cos γ
m. (10)

From the vertical equation of equilibrium, the lift required is
now

L = mg
cos γ

cosφ
, (11)

Considering the trajectory of a generalized climbing (or de-
scending) turn to be a helix, the x, y, z coordinates are
parametrized as follows:

x(t) = r cos(t), (12)
y(t) = r sin(t), (13)
z(t) = 2r sin(γ)t. (14)

6.4. Power and current

The power P required to generate the desired thrust T is ex-
pressed as

P =
1

ηp
Tv and (15)

P =ηmE
dq

dt
, (16)

where q is the battery charge required, E is the battery volt-
age, and ηp and ηm are the propeller and motor efficiency
coefficients, respectively. Charge q can then be expressed as

dq =
1

ηtηmηp

Tv

E
dt, (17)

The electrical transmission efficiency coefficient is denoted
by ηt. Propeller efficiency for a specific airspeed is currently
approximated as a quadratic function, with the maximum ef-
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ficiency achieved at cruise airspeed vc is

ηp = ηp,max

(
−
(
v

vc

)2

+ 2
v

vc

)
. (18)

In the future versions of the simulator equation 18 will be re-
placed with experimentally-derived curves for the propellers
used.

6.5. Battery charge and voltage at the terminals

The battery model is adapted from the work described by
Daigle, Saxena, and Goebel (2012), which, in turn, is based
on battery models by Barsali and Ceraolo (2002), M. Chen
and Rincon-Mora (2006), and Saha, Quach, and Goebel
(2012). Three main processes are captured in the model: the
ohmic drop (also known as the I-R drop), the parasitic resis-
tance (accounting for self-discharge), and the concentration
polarization. Out of the three, the concentration polarization
resistance is the primary contributor to the non-linearity of
the battery output voltage as a function of its state of charge.
The state of charge (SoC) is defined as

SoC = 1− qmax − qb
Cmax

, (19)

where qb is the current charge in the battery (assumed to
be held by capacitance Cb), qmax is the maximum possible
charge, and Cmax is the maximum possible capacity. The
concentration polarization resistance is expressed as:

RCP = RCP0 +RCP1 exp (RCP2(1− SoC)), (20)

where RCP0, RCP1, and RCP2 are empirical parameters.
The resistance (and, consequently, the voltage drop at the
battery terminals) increases exponentially as SoC decreases
(Saha et al., 2012). End of discharge is considered to have
occurred when the voltage drops below a predefined thresh-
old. Further details of the model can be found in (Daigle,
Saxena, & Goebel, 2012).

6.6. Battery and motor temperatures

Being able to predict battery temperatures is important for
the following reasons: (a) temperature influences the inter-
nal battery resistance (although this effect is, at present, not
included into the model) and (b) excessive temperatures can
lead to premature capacity degradation and, beyond a certain
point, to thermal runaway and battery failure (Y. Chen, Song,
& Evans, 1996). In an electric motor overheating can also
result in failure due to stator winding insulation damage or
rotor magnet delamination (Milanfar & Lang, 1996). Battery
and motor temperatures are currently estimated with the fol-
lowing simple model:

dT =
1

Ct
(RI2 + h(Ta − T ))dt, (21)

where R is the electrical resistance of the component, Ct is
the thermal inertia coefficient, h is the thermal transfer coef-
ficient, I is the current, T is the component temperature, and
Ta is the ambient temperature.

The thermal transfer coefficient h is estimated using the as-
sumption that the motor and battery cooling systems are de-
signed to keep these components operating at some nominal
temperatures To in straight and level cruise flight, with Ic cur-
rent being drawn from the batteries. Given these conditions,
dT ≈ 0, thus

h =
RI2

c

To − Ts
, (22)

where Ts is the standard ambient temperature for which the
cooling system was calibrated. Ct is estimated empirically.

7. ALGORITHMS

For the case study described in Section 4, the model is recast
as a constraint-satisfaction problem, with states under consid-
eration concentrated in multi-dimensional clusters represent-
ing the waypoint coordinate vicinities, acceptable airspeed
and bank angle ranges, possible system health conditions, etc.

7.1. Backtracking Search

Backtracking Search (BT) is a recursive, depth-first algorithm
that, in our case, attempts to sequentially build up a path p
from a set of waypoints {wpi}Ni=1 until one or more of the
constraints in G are violated (Algorithm 1). When that hap-
pens, the algorithm will back up to the last known nominal
state and attempt to build the rest of the path through a dif-
ferent set of waypoints. The algorithm keeps track of the best
objective function value found, J∗, and the path that produced
it, p∗, returning them after the search is complete (for this al-
gorithm J = R). If the system simulator is used in the de-
terministic mode, then the algorithm is guaranteed to find the
optimal solution (or solutions). For the purposes of bench-
marking, the deterministic mode is used, with specific values
assigned to waypoint parameters. With this the worst case
computational complexity is O(N !), where N is the number
of waypoints. Unlike an exhaustive search algorithm, how-
ever, BT is capable of skipping regions of search space where
constraints are violated, which, in practice, results in a signif-
icant execution speed up.

7.2. Particle Filter

Particle Filter algorithms (also known as Sequential Monte
Carlo algorithms) are a family of non-Gaussian/non-linear
methods for approximating posterior distributions in partially
observable, controllable Markov Chains (where time is dis-
cretized). While often used for system state estimation and
prediction (Orchard, 2007), the general approach is suitable
for other appropriately formulated problems and in our case
is applied to vehicle path selection.

7
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Algorithm 1 BT

1: inputs: p, p∗, J∗, {wpi}Ni=1
2: outputs: p∗, J∗
3: if |p| > N then
4: return
5: end if
6: {b,R, Ch, Cp} ← simulate(ptest)
7: if F(b) = false then
8: J ← R,
9: if J > J∗ then

10: J∗ ← J
11: p∗ ← p
12: else
13: return
14: end if
15: end if

. recurse through the remaining waypoints
16: for i← 1, N do
17: if wpi /∈ p then
18: BT(b, {p, wpi}, p∗, {wpi}Ni=1)
19: end if
20: end for

The PF algorithm (Algorithm 2) is initialized with a set of
k particles, each particle pi containing the starting waypoint
wp1 and assigned the weight of wi = 1/k . During each
of the iterations of the algorithm (and for each particle), the
path associated with a particle is sampled randomly out of the
set of unvisited waypoints up to the maximum length of N .
Each sample is tested in the simulator and the particle weight
updated proportionally to the objective function value (now
incorporating costs in addition to rewards). Unless system
failure is believed to be likely for even the shortest path ex-
tensions, the particle path is extended by one waypoint (the
first one in the randomized remaining waypoints set τ ).

The number of algorithm iterations, D, is equal to N for the
deterministic simulator mode and can be set to D > N oth-
erwise, to help prevent potentially promising particles from
being ruled out too early. The highest weight particle is iden-
tified and stored after each iteration, to enable interruptibil-
ity. Particle weights are then normalized and the particles are
resampled. The overall computational complexity of the al-
gorithm is O(N2).

8. EXPERIMENTS

For the experiments described, the physics simulator (Sec-
tion 6) was used with the parameters for the Edge 540 electric
UAV (Figure 2). The Edge 540 is 2.44 m long, with a 2.54
m wingspan (Hogge et al., 2011). It is powered by two elec-
tric motors connected in series through a single drive shaft.
The motors drive a 0.66 m two-bladed propeller. The current
for the motors is supplied by a set of four Li-Poly recharge-
able batteries, which can store a total of 43200 coulomb. The
average flight time is approximately 20 minutes.

Algorithm 2 PF

1: inputs: {wpi}Ni=1,K
2: outputs: p∗
3: p1, . . . , pK ← {wp1}
4: w1, . . . , wK ← 1/k
5: for d← 1, D do
6: for k ← 1,K do
7: τ ← permute({wpi}Ni=1 − pk)
8: l← −1
9: repeat

10: l← l + 1
11: ptest = {pk, {wp1, . . . , wpl}}
12: {b,R, Ch, Cp} ← simulate(ptest)
13: wk ← ΘT · {R,−Ch,−Cp},
14: until F(b) = true
15: if l ≥ 1 then
16: pk ← {pk, {wp1}τ}
17: end if
18: end for
19: j ← arg max

j
wj

20: p∗ ← pj
21: {w1, ..., wK} ← {w1, ..., wK}/

∑K
i=1 wi

22: {p1, ..., pK} ← resample({p1, ..., pK}, {w1, ..., wK})
23: end for

8.1. Setup

A set W of ten sequentially numbered waypoints is created,
with each waypoint associated with a reward value (Table 1
and Figure 3). Test scenarios with progressively increasing
numbers of waypoints are then created (the 7-waypoint sce-
nario contains waypoints 1 through 7, the 8-waypoint sce-
nario contains waypoints 1 through 8, and so on). As the
UAV transitions between waypoints 2 and 3 (in the original,
unoptimized order), a fault is injected into one of the motors,
m2. The motor loses power, however the rotor can still spin.
The fault has the following consequences on the aircraft per-
formance:

Figure 2. Edge 540 UAV (courtesy of NASA LARC)
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• The available maximum thrust is reduced;
• There is now a parasitic mechanical load on the remain-

ing motor, m1, which not only has to provide propul-
sion, but also spin the rotor of m2 (there is no disconnect
mechanism);

• As a consequence, m1 draws more current in order to
execute the intended flight path;

• Increase in current results in heat build-up inside the mo-
tor housing which is not sufficiently dissipated by normal
cooling mechanisms;

• The heat, if allowed to build up, will eventually raise the
internal temperature of m1 to the level where the motor
windings insulation begins to melt and a short circuit can
occur, irreversibly damaging the motor (assumed to be
70◦C, as measured on the motor housing);

• The increased amount of current required to drive the re-
maining motor also means a higher rate of battery dis-
charge and a higher rate of heat build-up inside the bat-
tery;

• Reducing the airspeed to decrease the motor current
would increase the traverse time and, below a certain
threshold, result in an aerodynamic stall;

The fault is injected by changing the motor efficiency coeffi-
cient ηm1

(nominally 0.85, reduced to 0.4). The waypoints are
selected in such a way as to make it impossible for the UAV
to visit all of them in the original order before either energy
depletion or vehicle health deterioration beyond the point of
failure. DM is then expected to rearrange and/or reduce the
set of waypoints to maximize the mission payoff (i.e. find
an optimal path), while remaining within the constraints on
energy consumption and vehicle health degradation:

p∗ = arg max
p∈P

R(p), s.t. Ce(p) ≥ 0, Ch(p) ≥ 0

The waypoint ordering matters because load profiles associ-
ated with the different routes may affect the degrading com-
ponent and the energy consumption differently. Scenarios
with greater numbers of waypoints offer the algorithms more
choices on how to maximize mission payoff, but with the
choices comes an increase in computational time.

Note that for this case study alternative strategies of handling
the fault (such as switching between powered and gliding
flight to let the motor cool down) are not considered.

Experiments were conducted by running the two algorithms
on the same set of scenarios and recording the reward values
achieved and the number of simulation calls made. BT search
was executed once for each scenario, while PF was run 30
times per scenario. The results for the latter were averaged
and the standard deviation of them was computed. The vehi-
cle simulator was used in the deterministic mode, in order to
enable comparison between the two algorithms.

Table 1. Waypoint parameters

x(m) y(m) z(m) V (m/s) φ(deg) r

1 0 0 0 30 20 41

2 500 2500 450 30 10 52

3 4500 4200 900 35 20 60

4 3800 1440 550 35 10 71

5 500 −1500 750 45 25 39

6 −2300 −500 850 40 30 46

7 1100 4000 400 30 20 33

8 1800 −700 700 30 25 95

9 1200 6200 500 25 30 85

10 150 5200 600 40 15 30
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Figure 3. Waypoint locations and reward values

8.2. Results

In the result tables below (Tables 2-5), R is the path reward
and n is the number of simulator calls made during a partic-
ular scenario. The number of simulator calls, rather than the
actual algorithm runtime, is used as a platform-independent
metric∗. In the case of PF, mean and standard deviation val-
ues are provided for R and n. Ratios R/n and µR/µn are
used as metrics of algorithm efficiency.

Backtracking Search

As can be seen in Table 2, BT search starts becoming imprac-
tical for the more complex scenarios, as the number of sim-
ulation calls grows exponentially. Still, the results serve as
a useful evaluation baseline for PF, providing the maximum
reward values achievable for a scenario.

∗As a point of reference, a simulator call during a 10-waypoint scenario
(dt = 5 seconds) typically took on the order of 0.005− 0.010 seconds to
complete on a system with an Intel i7-2620M dual core CPU (2.70 GHz),
with 8 Gb of RAM, running Windows 7 Professional (64-bit).
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Table 2. Backtracking search results

scenario R n R/n
7 waypoints 236 57 4.14

8 waypoints 298 241 1.23

9 waypoints 383 1598 0.24

10 waypoints 413 10117 0.04

Particle Filter

Since PF is stochastic, the algorithm was executed 30 times
for each scenario and each K (number of particles) setting.
The results were then averaged. Three K settings were used:
10, 20, and 30 (tables 3, 4, and 5, respectively). The average
reward performance of the algorithm (and its standard devia-
tion) steadily improve as the number of particles is increased
(second column). The performance increase obviously comes
at an additional computational cost (third column).

Table 3. Particle Filter results (K=10)

scenario µR(σR) µn(σn) µR/µn
7 waypoints 230.2(12.8) 145.6(8.4) 1.58

8 waypoints 285.5(17.4) 199.2(13.8) 1.43

9 waypoints 368.6(21.7) 292.0(18.7) 1.26

10 waypoints 382.9(39.9) 331.2(20.5) 1.16

Table 4. Particle Filter results (K=20)

scenario µR(σR) µn(σn) µR/µn
7 waypoints 232.4(2.5) 288.4(10.2) 0.80

8 waypoints 291.3(8.3) 391.2(15.8) 0.74

9 waypoints 372.3(14.6) 585.9(20.2) 0.63

10 waypoints 393.2(21.5) 670.2(29.6) 0.59

Table 5. Particle Filter results (K=30)

scenario µR(σR) µn(σn) µR/µn
7 waypoints 234.0(1.1) 440.7(11.5) 0.53

8 waypoints 293.8(5.7) 603.8(21.6) 0.49

9 waypoints 375.2(10.2) 855.4(35.8) 0.44

10 waypoints 399.3(15.6) 1012.6(60.1) 0.39

8.3. Analysis

A comparison of algorithm performance with respect to re-
ward values is provided in Figure 4. The dashed lines rep-
resent the reward benchmark set by BT, the dots depict the
average PF rewards, and the error bars show the correspond-
ing standard deviations. The algorithm, in general, performed
well in approximating the results of the exact BT algorithm,
but at a fraction of its number of simulation calls during the
more complex scenarios. Even with K = 10 PF on average
achieved over 92% of the maximum possible rewards.

Figure 5 shows a comparison with respect to the number of
simulation calls. The dashed lines, again, correspond to the

BT performance benchmark, the dots are the average num-
bers of calls for the PF algorithm, and the error bars show the
standard deviations of the latter.
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Figure 5. Number of simulation calls comparison

Even when using a fairly coarse 5-second time step in the
simulator, executing BT on scenarios larger than ten way-
points became impractical. PF, on the other hand, showed
the potential to be suitable for far more complex scenarios
(informal tests performed on 25-waypoint scenarios still re-
sulted in acceptable execution times, although the quality of
the solutions could not be independently verified at this time).
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9. CONCLUDING REMARKS

The main goal of this work is to describe a modeling frame-
work suitable for a class of aerospace prognostic decision
making (PDM) problems with complex dynamics, non-linear
degradation processes, and uncertainties present in state es-
timation, action outcomes, and future operating conditions.
Continuous Partially Observable Markov Decision Processes
(POMDPs) are chosen as the foundation for the framework,
with the paper providing the details on how the concepts
needed for implementation of PDM are represented within
it. The framework can be recast (simplified) depending on
which sources of uncertainty are desired to be included. A
case study serving as an illustration of the approach involves
replanning a UAV mission after an in-flight fault is detected.
A prototype PDM system takes into account the dependency
of energy consumption and component degradation rates on
the route chosen and attempts to maximize the value of the
mission, while prioritizing the safe return of the aircraft. The
system is demonstrated with a deterministic decision-making
algorithm based on backtracking search (BT) and a stochas-
tic algorithm based on particle filtering (PF). While likely too
computationally expensive for practical applications, the BT
algorithm is used to establish a performance baseline. The
PF algorithm serves as an example of how a stochastic algo-
rithm can be structured to utilize a continuous POMDP PDM
model and that, potentially, such an algorithm can achieve a
level of performance approaching that of an exact method,
but at a fraction of its computational cost. On a set of test
scenarios, the PF algorithm on average achieved over 92% of
BT reward values. As the scenario complexity increased, the
efficiency advantage of a stochastic algorithm became more
pronounced. On the 10-waypoint scenario the PF algorithm
achieved the above results while making an order of magni-
tude fewer calls to the vehicle simulator compared to BT.

In the near future we plan to incorporate measures of prog-
nostic uncertainty associated with a particular policy into the
policy selection process. This could be useful in situations
where reduction of prognostics uncertainty over a period of
time is desired or where limits on it are defined. Methods for
performance evaluation of algorithms using such measures
will need to be identified, as comparison against determinis-
tic algorithms may not be meaningful. Other directions of fu-
ture research include development of multi-fidelity reasoning
(where system model complexity is adjusted depending upon
the requirements and the circumstances) and further work on
methods for PDM problem decomposition.
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NOMENCLATURE

α angle of attack
ηm motor efficiency coefficient
ηp propeller efficiency coefficient
ηt power transmission efficiency coefficient
φ bank angle
ρ∞ freestream density
AR planform aspect ratio
CD coefficient of drag (total)
Ct thermal inertia coefficient
CD,i coefficient of induced drag
CD,p profile (airfoil) drag coefficient
D drag
E battery voltage
e span efficiency factor
h thermal transfer coefficient
I current
L lift
m mass
P power produced by the motor
q battery charge required
R component electrical resistance
r radius of turn
Re Reynolds number
S planform area
T thrust
Ta ambient temperature
T[c] component temperature
v airspeed
vc cruise airspeed
v∞ freestream velocity
DM Decision Maker
DX Diagnostics (or Diagnoser)
EoL End of Life
MDP Markov Decision Process
PDM Prognostic Decision Making
POMDP Partially Observable Markov Decision Process
RUL Remaining Useful Life
SoC State of Charge (battery)
VS Vehicle Simulation
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