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ABSTRACT

For modern systems, wear estimation plays an important role
in preventing failure, scheduling maintenance, and improving
utility. Wear estimation relies on a series of sensors, measur-
ing the state of the system. In some components, the sensors
used to estimate wear may not be fast enough to capture brief
transient states that are indicative of wear. For this reason
it is beneficial to be capable of detecting and estimating the
extent of component wear using steady-state measurements.
This paper details a method for estimating component wear
using steady-state measurements, and describes a case study
of a current/pressure (I/P) transducer. I/P Transducer nominal
and off-nominal behavior are characterized using a physics-
based model, and validated against expected component be-
havior. This model is used to determine steady state responses
to many common I/P Transducer wear modes, isolate the ac-
tive wear mode, and estimate its magnitude.

1. INTRODUCTION

As systems are becoming more complex, more expensive,
and are being sent to increasingly unreachable places, such
as space or the bottom of the ocean, wear detection and es-
timation become increasingly important. Wear detection and
estimation play a critical role in preventing failure, schedul-
ing maintenance, and improving system utility.

Many modern wear estimation techniques rely on measure-
ment of the system’s transient states (Daigle & Goebel, 2013;
Orchard & Vachtsevanos, 2009; Saha & Goebel, 2009; Luo,
Pattipati, Qiao, & Chigusa, 2008). However, in some compo-
nents, the available sensors may not be fast enough to capture
brief transient states that are indicative of wear. This can ei-
ther be a result of sensor technological limits, or budgetary
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constraints on sensor selection (as sensors with higher res-
olution and higher sampling frequencies are generally more
expensive). For this reason, it is beneficial to be capable of
detecting and estimating the extent of component wear using
only steady-state measurements. Previous work in prognos-
tics does not address this need, and a new methodology is
required.

This paper describes a method for estimating component
wear from steady-state conditions. This is accomplished uti-
lizing a physics-based model that accounts for system be-
havior in both nominal and degraded conditions, and that is
tuned utilizing physical specifications and knowledge of sys-
tem behavior. This model is then used to map the effect of
various modes of wear on steady-state behavior. Combined
with a particle filter-based estimation scheme, this model
can be used for prognostics, as described in previous work
by (Daigle & Goebel, 2011; Orchard & Vachtsevanos, 2009;
Saha & Goebel, 2009; Zio & Peloni, 2011).

As a case study, this method is applied to a current/pressure
transducer, henceforth referred to as an I/P Transducer or IPT.
I/P Transducers are effectively pressure regulators that vary
the output pressure depending on the supplied electrical cur-
rent signal. They operate by throttling a nozzle to create a
pressure difference across a diaphragm, which controls the
throttling of a valve. These are often used for supplying pre-
cise pressures to control pneumatic actuators and valves.

The paper is organized as follows. The development of the
IPT model is described in Section 2. Section 3 details the
process of mapping IPT wear from steady state conditions,
and using that mapping to detect and estimate wear in phys-
ical systems. The paper concludes with a discussion of the
implications of this research and a description of future work
in Section 4.
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Figure 1. Current/Pressure Transducer Schematic

Table 1. IPT Specifications

Name Type 1000 IPT
Manufacturer Marsh Bellofram
Supply Pressure Range 18-100 psig
Input Signal Range 4-20 mA
Output Pressure Range 3-15 psig

2. I/P TRANSDUCER MODELING

In this section, we develop a physics-based model of both
healthy and faulty IPT behavior. This is used to identify how
faulty behavior affects performance for development of the
wear detection and estimation methodology, and for possible
future prognostic applications. This model was created us-
ing domain knowledge of the system’s behavior and physical
make-up.

As a case study, we use a Marsh Bellofram Type 1000 IPT,
illustrated in Figures 1 and 2. This model was chosen be-
cause of its use in the pneumatic valve testbed at NASA Ames
Research Center (Kulkarni, Daigle, & Goebel, 2013). The
IPT is divided into three distinct control volumes (CVs), each
marked in a different color in the image. The IPT output pres-
sure varies with the current supplied to the magnet assembly.
When the current is high, the magnet assembly throttles the
flow out of the pilot nozzle, allowing less air to escape. With
a low input current more gas escapes from the nozzle, low-
ering the pilot pressure. The pressure difference across the
diaphragm moves the valve, which adjusts the gas flow be-
tween CV1 and CV2. Adjusting this flow changes the pres-
sure in CV2 and in the outlet. Some specifications for this
IPT are included in Table 1 (Marsh Bellofram, n.d.).

In this section we will describe development, configuration,
validation, and use of the IPT model for both the nominal and

Figure 2. Current/Pressure Transducer

wear conditions.

2.1. Problem Formulation

We assume the system may be described by

ẋ(t) = f(t,x(t),θ(t),u(t),v(t)) (1)
y(t) = h(t,x(t),θ(t),u(t),n(t)) (2)

where t ∈ R is the continuous time variable, x(t) ∈ Rnx

is the state vector, θ(t) ∈ Rnθ is the parameter vector,
u(t) ∈ Rnu is the input vector, v(t) ∈ Rnv is the process
noise vector, f is the state equation, y(t) ∈ Rny is the output
vector, n(t) ∈ Rnn is the measurement noise vector, and h is
the output equation.

Given a system defined in this way, the objective is to esti-
mate the wear parameter, θw ∈ θ, given a measured steady
state output, ySS , and a known input, u. For this architecture
it is assumed that only one mode of wear is occurring at a time
(single fault assumption). It may be possible to estimate wear
in the case of multiple simultaneous modes of wear, given ad-
ditional steady state output measurements at other input cur-
rents. This is not under the scope of the current research, but
will be explored in future research.

2.2. Nominal Model

The IPT model was developed using mass and energy bal-
ances. Each CV contains gas at a specific pressure, changing
depending on the gas in-flow and out-flow. The system’s state
is signified by the vector x(t), consisting of the pressures at
each control volume (p1(t), p2(t), ppilot(t)), the position and
velocity of the valve (xV (t) and vV (t), respectively), and the
flexure position and velocity (xF (t) and vF (t), respectively).
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The IPT performance is dependent on the supply pressure
provided at the inlet, pi(t), and the signal current sent to the
magnet assembly, i(t). These two values make up the input
vector, u(t). For the IPT being modeled, the signal current
is between 4 and 20 mA, which varies the outlet pressure,
pout(t), between 3–15 PSIG. Outlet pressure is considered to
be the only value in the output vector, y(t).

The input (u(t)), state (x(t)), state derivative (ẋ(t)) and out-
put (y(t)) vectors are summarized below:

u(t) =

[
pi(t)
i(t)

]
(3)

x(t) =



p1(t)
p2(t)
ppilot(t)
pout(t)
xV (t)
vV (t)
xF (t)
vF (t)


(4)

ẋ(t) =



ṗ1(t)
ṗ2(t)
ṗpilot(t)
ṗout(t)
vV (t)
aV (t)
vF (t)
aF (t)


(5)

y(t) = pout(t) (6)

Here velocity, v, and acceleration, a, are defined as the deriva-
tive of position, x, and velocity, respectively. Additionally
gas flow into a control volume from a bordering control vol-
ume is represented by q̇ij , where the subscript i represents
the first control volume and j the bordering one and q̇ij is the
fluid flow into i from j. The flow, q̇ij , is a function of the pres-
sure in the control volume, pi, pressure in the second control
volume, pj , and the area of the opening between them, Aij .
These equations are summarized below:

ẋ =v (7)
v̇ =a (8)

q̇ij =Aij

√
|pi − pj | ∗ sgn(pi − pj) (9)

Each of the ṗ terms are dependent on the bordering control
volumes. The sum over all the interactions with a given con-
trol volume gives the total pressure flux. Accounting for all

the bordering CVs the ṗ equations become

ṗ1 =(q̇12 + q̇10)
R ∗ T1
V1

(10)

ṗ2 =(q̇21 + q̇2p + q̇2Out)
R ∗ T2
V2

(11)

ṗp =(q̇p2 + q̇pNozzle)
R ∗ Tp
Vp

(12)

ṗout =q̇out2
R ∗ Tout
Vout

(13)

where R represents the gas constant, and T the temperature
in that control volume.

The signal current is supplied to the magnet assembly, which
reacts, applying pressure on the flexure. This pressure is
greater for greater signal currents. As the flexure stretches,
it throttles the airflow out of the nozzle. For low input sig-
nals, the flexure flexes less, allowing more air to escape from
the pilot volume, decreasing its pressure. The pilot volume
is supplied from CV2 by a small entry to the right of the di-
aphragm as seen in Figure 1. The net force on the flexure is
the sum of the magnet assembly force (FMag), the resistive
force of the Flexure (FFlex), and friction (FFriction):

FF = FMag + FFlex + FFriction. (14)

where the individual forces are

FMag =
i2

2
(Cmag − Cmag2 ∗ rmag) (15)

FFlex =− kFlex(xF − xF0) (16)
FFriction =CfvF (17)

Here the lumped parameters Cmag and Cmag2 include the
gap between the coils and the metal, the area of the metal, the
number of turns of the coil, and the magnetic constant. The
coil resistance is represented by rmag . Here the value Cf is
the coefficient of friction.

The pressure difference between CV2 and CVpilot produces
a closing force on the valve. The lower the input signal
the greater the closing force. The net force on the valve
(FV ) is the sum of the forces of the Valve Spring (FV S), the
force from the pressure difference across the valve (FPD),
the force created by the pressure difference across the Di-
aphragm (FDiaphragm), and the force of friction (FFriction).
The throttling of this valve changes the flow rate between
CV1 and CV2, affecting the output pressure Pout.

FV = FV S + FPD + FDiaphragm + FFriction (18)
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Figure 3. Outlet pressure for different currents

where the individual forces are

FV S =− kV ∗ (xV − xV 0) (19)
FFD =(p2 − p1) ∗AV (20)

FDiaphragm =(pPilot − p2) ∗AD (21)
FFriction =CfvV (22)

where AV and AD are the areas of the valve and the di-
aphragm, respectively, and kV is the valve spring coefficient.

Each of these relationships were then converted to be in terms
of acceleration using the following relationship

aV =
1

mV
FV (23)

aF =
1

mF
FF (24)

where mV and mF are the mass of the valve and flexure,
respectively.

The movement of both the flexure and the valve are derived
by integrating their respective acceleration equations. The
nominal output pressure response is illustrated in Figure 3a,
with its respective signal current in Figure 3b.

This IPT model was qualitatively validated by comparing
the simulated behavior with known behavior. This domain
knowledge was gathered from system documentation, con-

versations with the manufacturing company, and observations
of actual behavior.

2.3. Wear Model

Through discussions with the manufacturers and with users
of I/P transducers and similar components, five possible wear
modes were indicated. These wear modes are described be-
low:

1. Inlet Leak A leak where the supply pressure is provided
to CV1. Modeled by adding a leak of area Ain for fluid
flow between CV1 and the surrounding environment (at
1 atm). The resulting fluid flow is represented by

q̇in =Ain

√
|p1 − patm| ∗ sgn(p1 − patm) (25)

2. Valve Seat Leak A leak between CV1 and CV2. Mod-
eled by adding a leak of area AV S for fluid flow between
CV1 and CV2. A negative AV S models clogging of the
valve.

q̇V S =AV S

√
|p1 − p2| ∗ sgn(p1 − p2) (26)

3. Outlet Leak A leak at the outlet. Modeled by adding
a leak of area Aout for fluid flow between CV2 and the
surrounding environment (at 1 atm).

q̇out =Aout

√
|p2 − patm| ∗ sgn(p2 − patm) (27)

4. Valve Spring Weakening A weakening of the valve
spring. Modeled by decreasing the spring coefficient,
kV .

5. Magnet Assembly Weakening A weakening of the
magnet assembly. Modeled by increasing the resistance
in the magnet coils, rmag .

The wear parameters vector, θw, consisting of values repre-
senting the state of wear for each of the five wear modes, is
shown in the below equation

θw =


Ain

AV S

Aout

kV
rmag

 (28)

3. WEAR ESTIMATION

Wear estimation is the process of estimating the current ex-
tent of wear on a system. This is important for prognostics
(predicting failure), scheduling maintenance, and triggering
automated mitigation actions. This is often done using meth-
ods such as a Kalman Filter or Particle Filter (Arulampalam,
Maskell, Gordon, & Clapp, 2002; Daigle, Saha, & Goebel,
2013).
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A lookup table method was used for fault estimation. This
method was chosen because of its fast, efficient nature and its
ability to be applied to both linear and non-linear systems. To
define this lookup table the I/P transducer was simulated at
various states of each wear mode and various input currents.
The steady state output pressure was recorded for each case.
The result was used as a reverse lookup table to estimate the
wear given a specific observed steady state output pressure
for a given input current. Values between data points were
linearly interpolated. This was found to be sufficiently accu-
rate given a high granularity lookup table. The granularity
of the lookup table can be adjusted to increase accuracy as
needed.

The resulting outlet pressure for each fault mode given a high
and low input current can be seen in Figure 4. Here the outlet
pressure given a high input current is indicated by the green
dashed line, while that based on a low current is indicated by
the blue solid line. All possible values for the IPT at a given
fault level fall between these two points. In this case it was
found that monitoring the steady state output pressure does
not allow for the estimation of the damage state in the case of
an inlet leak. This leak results in a decrease in the pressure in
CV1, which does not result in a change in the output pressure
until a much larger leak (around 0.2 m2). For this reason the
Inlet Leak case has not been included in the figures.

By contrast, the valve seat leak has a definite increasing effect
on the outlet pressure (Figure 4a). This change in output pres-
sure is a result of additional gas coming into CV2 from CV1
through the leak opening. For a leak of 0.005 m2 the outlet
pressure increased by 0.11 psig for a high signal current and
0.022 psig for a low current.

The outlet leak also has a definite and measurable effect on
the outlet pressure. As the leak grows in size, more gas es-
capes from CV2, resulting in a lower outlet pressure as seen
in Figure 4b. For a leak of 0.01 m2 the outlet pressure de-
creases by 0.05 psig for a high signal current and 0.0045 psig
for a low current.

The valve spring exerts a force on the valve system counter-
ing that of the diaphragm. As the spring wears, the spring
coefficient, k, decreases. This results in a lower counter force
against the diaphragm, causing an increased output pressure
as the spring coefficient decreases, as seen in Figure 4c. The
effect of this is much more prominent for high input current,
where the force of the diaphragm is higher. For a weakening
of 0.005 to a k of 3.212 N/m the outlet pressure increased by
0.29 psig for a high signal current and remained the same for
a low current.

Finally, wear in the magnet-coil assembly is simulated here
by increasing the coil resistance. This, in turn, reduces the
force of the magnet on the flexure proportionally with input
current. The decreased force results in a greater pressure dif-

ference across the diaphragm. This closes the valve, and re-
sults in a decreased output pressure as seen in Figure 4d. This
effect is much almost unseen for the low input current as a re-
sult of how the effect scales with current. For an increase of
0.1 Ω to a rMag of 180.1 Ω the outlet pressure decreased by
0.045 psig for a high signal current and remained the same
for a low current.

Each of these four wear modes resulted in a change in outlet
pressure. The results for single point wear have been summa-
rized in Table 2.

Table 2. Affect of Wear Modes on Outlet Pressure

Wear Mode Effect
Inlet Leak None

Valve Seat Leak Increased Outlet Pressure
Outlet Leak Decreased Outlet Pressure
Worn Spring Increased Outlet Pressure
Work Coil Decreased Outlet Pressure

Once the relationship between the fault parameter (θ), input
current (i), and the measured steady state output (ySS) has
been determined the resulting knowledge base can be used
for wear isolation and estimation.

Two measurements with two different input current levels are
required to completely isolate the fault cause. This is to dif-
ferentiate between two faults that result in the same effect
on output pressure. For example, if the outlet pressure is
measured to be higher than it should be, that could either
be indicative of a worn spring or a valve seat leak. Each
of these leaks has a different relationship with input current.
The second measurement allows for isolation between simi-
lar such faults. For systems with additional fault modes addi-
tional measurements may be needed to isolate between simi-
lar faults.

The following section details an example of this method.

3.1. Example

For this example let us assume we have a leak in the valve
seat of 0.001 m2.

The first measurement of steady state outlet pressure is
15.0215 psig at the maximum signal current of 20 mA. Using
the reverse lookup table there are two possible options: a leak
in the valve seat of 0.0098 m2, or worn spring with a spring
constant of 3.2167 N/m (down 0.0003).

To definitely isolate the wear mode a second measurement is
taken, this time with the minimum signal current of 4 mA.
The outlet pressure is measured to be 3.0044 psig. This can
either correspond to a leak in the valve seat of 0.0105 m2,
or worn spring with a spring constant of 3.173 N/m (down
0.044).
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(b) Outlet Pressure for Outlet Leak
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(d) Outlet Pressure for Worn Coil

Figure 4. Damaged Outlet Pressure

Both measurements result in a valve seat leak estimation that
is fairly similar, allowing the user to estimate that there is a
leak in the valve seat of around 0.01015 m2. This is calcu-
lated by taking the average of the two estimates. The differ-
ence in these measurements is due to measurement noise (n).
Additional measurements at different input currents could be
used to further refine the damage estimate, and filter out sys-
tem noise.

4. CONCLUSION

This paper details the development of a model-based wear
estimation approach using steady state measurements of the
outlet pressure of a current/pressure transducer. This ap-
proach was then applied for the wear modes of Inlet leaks,
Valve Seat Leaks, Outlet Leaks, Spring Wear, and Coil Wear,
which were determined to be the most likely modes of failure.

This method was shown to be effective in identifying wear in
simulations for a worn coil, worn spring, outlet leak, and leak
in the valve seat. With each of these wear modes the resulting
effect on the outlet pressure was different when considering
two different input currents. Measuring the outlet pressure at
two different input currents allows for the identification of the
failure mode. The lookup table created in this study can then
be used to estimate the severity of the wear. The results here
demonstrate the effectiveness of steady state wear estimation

for an I/P transducer.

This approach to wear estimation allows for wear estimation
for components where sensors may not be fast enough to cap-
ture brief transient states that are indicative of wear. The re-
sults from wear estimation routines such as this one can then
be used to create a prognostic model, schedule maintenance,
or trigger automated mitigation action.

This study relied on physics-based simulations of IPT behav-
ior validated against observations of actual system behavior.
We are currently in the process of constructing a testbed that
will include the IPT modeled for this study (Kulkarni et al.,
2013). Future work includes testing this method of wear esti-
mation in this testbed. Additionally, future work includes the
application of prognostics utilizing wear estimation, estima-
tion of multiple simultaneous wear modes, and uncertainty in
wear estimation from steady state conditions.
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gram.

NOMENCLATURE

a Acceleration
A Area
Cf Coefficient of Friction
Cmag Magnetic Lumped Parameter
f State Equation
F Force
h Output Equation
i Current
k Spring Constant
m Mass
n Sensor Noise Vector
p Pressure
rmag Magnetic Coil Resistance
R Gas Constant
t Time, continuous
T Temperature
u Input Vector
w Wear Parameter
w Wear Parameter Vector
x Position
x State Vector
v velocity
v Process Noise Vector
y Output Vector
θ Parameter Vector
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