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ABSTRACT

This article discusses several aspects of uncertainty represen-
tation and management for model-based prognostics method-
ologies based on our experience with Kalman Filters when
applied to prognostics for electronics components. In par-
ticular, it explores the implications of modeling remaining
useful life prediction as a stochastic process and how it re-
lates to uncertainty representation, management, and the role
of prognostics in decision-making. A distinction between the
interpretations of estimated remaining useful life probability
density function and the true remaining useful life probabil-
ity density function is explained and a cautionary argument
is provided against mixing interpretations for the two while
considering prognostics in making critical decisions.

1. INTRODUCTION

Model-based prognostics methodologies in electronics prog-
nostics have been developed based on Bayesian tracking
methods such as Kalman Filter, Extended Kalman Filter, and
Particle Filter. The models used in these methodologies are
mathematical abstractions of the time evolution of the degra-
dation process and the cornerstone for the estimation of re-
maining useful life. The Bayesian tracking framework allows
for estimation of state of health parameters in prognostics
making use of available measurements from the system under
consideration. In this framework, health parameters are re-
garded as random variables for which, in the case of Kalman
and Extended Kalman filters, their distribution are regarded
as Normal and the estimation process focuses on computing
estimates of the expected value and variance as they relate to
the mean and variance that fully parametrize the Normal dis-
tribution. In addition to the health estimation process, fore-
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casting of the health parameters is required up to a future time
that results in crossing of the pre-established failure condition
threshold. This is ultimately required in order to compute re-
maining useful life.

Previous work applied to electrolytic capacitor and power
MOSFETs (Metal-Oxide Semiconductor Field-Effect Tran-
sistor) has focused on implementation of the previously
described process and has presented remaining useful
life results without any uncertainty measure associated to
them (J. R. Celaya et al., 2011; J. Celaya, Saxena, Kulka-
rni, et al., 2012; J. Celaya et al., 2011; J. Celaya, Kulkarni,
et al., 2012). Other work on prognostics based on particle fil-
tering has been presented regarding remaining useful life as
a random variable and presenting corresponding uncertainty
estimates (Saha et al., 2009; Daigle & Goebel, 2011). This
work focuses on reviewing uncertainty representation tech-
niques used in model-based prognostics and on providing an
interpretation of uncertainty for the electronics prognostics
applications previously presented, and based on Kalman fil-
ter approaches for health state estimation.

The Bayesian tracking framework allows for modeling of
sources of uncertainty in the measurement process and also
on the degradation evolution dynamic model as applied on
the application under consideration. This is done in terms
of an additive noise in the model, which is regarded as zero
mean and normally distributed random variable. This allows
for the aggregation of different sources of uncertainty for the
health state tracking step. Its implications on the uncertainty
estimation for remaining useful life (RUL) including future
state forecasting are discussed in this paper.

1.1. Model-based prognostics background

As mentioned earlier, a model-based prognostics methodol-
ogy based on Bayesian tracking consists of two steps, health
state estimation and RUL prediction. The following is a high
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level description of the process that will help to provide the
appropriate context for the upcoming discussion.

State of health estimation: To initiate the prediction, it is
necessary to first establish a starting point, the current state
of health. A model-based algorithm employs dynamic mod-
els of the physical behavior of the system or component under
consideration, along with dynamic degradation models of key
parameters that represent the degradation over time. Bayesian
tracking algorithms like Kalman filter, extended Kalman fil-
ter, and particle filter are among the algorithms typically em-
ployed in a model-based prognostics methodology (Daigle &
Goebel, 2011; Saha & Goebel, 2009; J. Celaya et al., 2011;
J. Celaya, Saxena, Kulkarni, et al., 2012). In such methodolo-
gies, dynamic models of the nominal system and degradation
models are posed as a discrete state-space system in which
the state variable x(t) consists of physical variables, and in
some cases, it includes degradation model parameters to be
estimated online.

The models consist of a state equation representing the time
evolution of the state as shown in Eq. (1a); where u(t) is
the system input and w(t) is a zero-mean and normally dis-
tributed additive noise representing random model error. In
addition, the measurement equation (Eq. (1b)) relates the
state variable to measurements of the systems y(t). The term
v(t) is a zero-mean and normally distributed additive noise
representing the random measurement error. The measure-
ment and model noise normality assumption could be relaxed
when using computational Bayesian methods like particle fil-
tering.

ẋ(t) = f(x(t), u(t)) + w(t) (1a)
y(t) = h(x(t)), u(t)) + v(t) (1b)

The state of the system, as it evolves through time, is periodi-
cally estimated by the filter as measurements y(t) of key vari-
ables become available through the life of the system. This
is the health state estimation step of the model-based prog-
nostics algorithm. Typically, in a model-based prognostics
method, a Bayesian tracking algorithm attempts to estimate
the expected value of the joint probability density function of
the state x(tp). Where tp is the time at which a remaining
useful life prediction is computed using only system observa-
tions up to this point in time. Different assumptions about the
probability density function are used depending on the filter
used.

Remaining useful life estimation (prediction): In order to
compute remaining useful life, the state-equation (Eq. (1a))
of the model is used to compute the state evolution in a fore-
casting mode until an end-of-life threshold is reached at time
denoted by tEOL. The last state estimate at time tp in the

health state estimation step is typically used as initial state
value for forecasting x(t) up to tEOL. Remaining useful life
R(tp) at time of prediction tp is defined as

R(tp) = tEOL − tp, (2)

where tp is deterministic and known, and tEOL is a random
variable function of the failure threshold and the state esti-
mate x(tp). This function includes the state forecasting step
and the identification of when the failure threshold is crossed.

1.2. Ideas explored in this paper

In this paper we explore how the state vector variable should
be interpreted during the tracking phase and how it is related
to the process of final RUL prediction. This probability inter-
pretation is often overlooked in the literature by interpreting
the state vector as the health indicator and a threshold is used
on this variable in order to compute EOL (end-of-life) and
RUL.

Here, we discuss how the state estimation process is defined
in the Bayesian framework. We will, in particular, focus
on the output of the estimation process in the Kalman filter
framework. Furthermore, we try to interpret the objective
of the Kalman filter, whether to estimate x(t) as a random
variable or to estimate a parameter of the probability density
function of x(t) –such as expected value or variance– or both.

In addition, we will challenge how we usually think about
RUL and how it has been interpreted using other, similar,
methods. The main objective here is to characterize its impact
on uncertainty representation and management. For instance,
if RUL is considered as a random variable and we assume that
a model-based prognostics framework based on the Kalman
filter generates RUL with a particular variance, then it is in-
correct to arbitrarily expect, assume, or force the variance to
be small. The variance of random variables such as RUL is
not under our control as explained in the next section.

These concepts are discussed in the context of prognostics of
electronics, particularly, the uncertainty propagation in power
MOSFET and capacitor prognostics applications as presented
in J. R. Celaya et al. (2011); J. Celaya, Saxena, Kulkarni, et
al. (2012) and J. Celaya et al. (2011); J. Celaya, Kulkarni, et
al. (2012) respectively. In these applications, uncertainty has
not been explicitly considered in the prediction results and
this paper is an effort towards augmenting the methods used
there with an uncertainty management methodology.

1.3. Background on Uncertainty Management

There are several different types of sources of uncertainty that
must be accounted for in a prognostic system formulation.
These sources may be categorized into following four cat-
egories and accordingly require separate representation and
management methods.
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1. Aleatoric or Statistical Uncertainties: these uncertain-
ties arise from inherent variability in any process and
cannot be eliminated. They can be characterized by mul-
tiple experimental runs but cannot be reduced by im-
proved methods or measurements. Sampling fluctuations
from the characterized probability density function of a
source of aleatoric uncertainty can result in different pre-
dictions every time. Examples of such uncertainties in-
clude manufacturing variations, material properties, etc.

2. Epistemic or Systematic Uncertainties: these uncer-
tainties arise due to unknown details that cannot be iden-
tified and hence are not incorporated into a process. With
improved methods and deeper investigations these uncer-
tainties may be reduced but are rarely eliminated. Mod-
eling uncertainties fall under this category and include
modeling errors due to unmodeled phenomena in both
system model and the fault propagation model.

3. Prejudicial Uncertainties: these uncertainties arise due
to the way a process is set up and is expected to change
if the process is redesigned. Conceptually these can be
considered a type of epistemic uncertainty, except it is
possible to control these to a better extent. Examples for
these uncertainties include sensor noise, sensor coverage,
information loss due to data processing, various approx-
imations and simplifications, numerical errors, etc.

While it is possible to reduce some of these uncertainties, it is
not possible or practically beneficial to eliminate them alto-
gether. However, representing them and accounting for them
in prognostic outputs is extremely important. Uncertainties
in a prognostic estimate directly affect the associated deci-
sion making process, which is typically expressed through the
concept of risk due to unwanted outcomes. Several PHM ap-
proaches quantify risk based on uncertainty quantification in
an algorithm’s output and incorporate it into a corresponding
cost-benefit equation through monetary concepts (Bedford &
Cooke, 2001).

1.3.1. Uncertainty management in prognostics

In the context of prognostics and health management uncer-
tainties are talked about from quantification, representation,
and management points of view (deNeufville, R., 2004; Hast-
ings & McManus, 2004; Ng & Abramson, 1990; Orchard et
al., 2008; Tang et al., 2009). While all three are different
processes they are often confused with each other and inter-
changeably used.

Uncertainty quantification: Deals with characterizing a
source of uncertainty so it can be incorporated into mod-
els and simulations as correctly as possible. A characteri-
zation or quantification step may involve carefully designed
experimentation with actual systems observed in realistic and
relevant environments. An accurate quantification of uncer-
tainties is considered very challenging as also acknowledged

in Engel (2009). Quantification of uncertainty from various
sources in a process has been investigated and a sensitivity
analysis conducted to identify which input uncertainty con-
tributes most to the output uncertainty in prognostics for fa-
tigue crack damage (Sankararaman et al., 2011). This allows
prioritizing and subsequently focusing on more critical uncer-
tainties instead of all.

Uncertainty representation: Next step is the representation
of uncertainty, which is, often times, guided by the choice
of modeling and simulation frameworks. There are several
methods for uncertainty representation that vary in the level
of granularity and detail. Some common theories include
classical set theory, probability theory, fuzzy set theory, fuzzy
measure (plausibility and belief) theory, and rough set (up-
per and lower approximations) theory. However, in the PHM
domain the representation of uncertainties is dominated by
probabilistic measures (DeCastro, 2009; Orchard et al., 2008;
Saha et al., 2009), which offer a mathematically rigorous
approach but assume availability of a statistically sufficient
database. Other approaches, such as possibility theory (Fuzzy
logic) and Dempster-Shafer theory, can be employed when
only scarce or incomplete data are available (Wang, 2011).
Furthermore, the choice of type of probability density func-
tion affects the quality of prognostic outputs. Several ap-
proaches in the literature resorted to assuming Normal proba-
bility density functions, however this choice should be guided
by the results of the uncertainty characterization and quantifi-
cation step.

Uncertainty management: The most loosely used term in
the PHM literature in the context of uncertainty is that of
uncertainty management. Uncertainty management includes
two main functions, to incorporate all relevant and/or sig-
nificant sources of uncertainty into prognostic models and
simulations. Therefore, the problem formulation stage it-
self lays a foundation for an effective uncertainty manage-
ment. Once all relevant sources of uncertainty are identified
and included, the uncertainty propagation is the next com-
ponent towards effective management. Various measures of
uncertainty must be combined in an appropriate manner in
the prognostic model as the input variability filters through a
complex (possibly non-linear) system model.

If, in a perfect situation, all sources of uncertainties are iden-
tified, modeled, and managed correctly, the output probability
density function for random variables like RUL or End-of-life
(EOL) would match the true spread and would not change
from one experiment to another. This is, however, in practice
impossible to achieve because no model is perfect and not all
sources of uncertainties can be characterized. Furthermore,
an exhaustive sampling-based method such as a Monte Carlo
simulation would be computationally, prohibitively expen-
sive. This has inspired the development of intelligent sam-
pling based algorithms (DeCastro, 2009; Orchard et al., 2008;
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Saha et al., 2009) and mathematical transformations, such as
Support vectors (Saha & Goebel, 2008) and Principle Com-
ponent analysis (Usynin & Hines, 2007), that result in minor
approximations but capture most details of the true variability.
It may not be possible to identify and accurately characterize
all sources of uncertainty and hence use of a sensitivity analy-
sis is recommended to isolate the most important factors (Gu
et al., 2007; Sankararaman et al., 2011; Tang et al., 2009).
Through effective uncertainty management practices one can
at most strive towards bringing the predicted estimate close
to the true spread and not arbitrarily reducing the spread of
RUL itself. What can be minimized, is the variability in the
estimate of a given parameter of interest, not the variability in
the parameter of interest itself.

2. REMAINING USEFUL LIFE STOCHASTIC MODELING

Remaining useful life in a prognostics context is defined dif-
ferently than in a reliability context. In prognostics, it is im-
plied that remaining useful life at time tp is a condition-based
estimation of the usage time left until failure, using measure-
ments of key variables and past usage information up to time
tp. This process typically consists of forecasting the future
state of health beyond tp and identifying when the state of
health will cross a failure threshold representative of a func-
tional failure. In addition, RUL in prognostics considers –
implicitly or explicitly– future usage conditions. This is not
the case in the reliability context. Given the many sources
of uncertainty evident from a quick assessment of all that is
involved in computing RUL for a system, it is common to
consider RUL as a non-deterministic quantity. Furthermore,
RUL is also a time evolving process, meaning that RUL at
time tp will be different than RUL for t 6= tp. This can be
well illustrated with the use of the alpha-lambda prognostics
metric (Saxena et al., 2010) as seen in various publications on
prognostics (J. R. Celaya et al., 2011; J. Celaya et al., 2011).

2.1. Remaining useful life as a stochastic process

A random process or stochastic process is defined as a collec-
tion of random variables. Following the definition presented
in Gross and Harris (1998), a stochastic process is a “mathe-
matic abstraction of an empirical process whose development
is governed by probabilistic laws”. Furthermore, it is defined
as a family of random variables {X(t), t ∈ T} where T is the
time range and X(t) is the state of the process at time t. The
time range could be discrete or continuous.

A stochastic process is also used in the signal-processing
context to represent non-deterministic (stochastic) sig-
nals (Oppenheim & Schafer, 1989). From Kalman (1960) we
get the following explanation as it relates to filtering: “Intu-
itively, a random process is simply a set of random variables
which are indexed in such a way as to bring the notion of time
into the picture”.

In several applications, RUL prediction is a process in which
periodic computations of RUL are generated through the life
of the system under consideration. In our previous work on
power MOSFET prognostics (J. R. Celaya et al., 2011), peri-
odic measurements (up to every minute) are available. RUL
is computed periodically and can be considered as a random
processR(t). In contrast, in our previous work on electrolytic
capacitor prognostics (J. Celaya et al., 2011), measurements
are not available at regular time intervals. RUL computations
are made multiple times whenever a measurement is avail-
able. In this case, R(t) can also be considered as a random
process but the set T will contain only the times at which
RUL was computed.

2.2. Implications on uncertainty management

The definition of RUL as a random variable or random pro-
cess has many implications on uncertainty management and
in the representation of uncertainty in a particular model-
based prognostics methodology. If RUL is not modeled
within a probability framework, like a fuzzy variable or just a
deterministic variable, uncertainty management activities will
differ. To illustrate, let us consider a simple point estimate ex-
ample from basic mathematical statistics (Bain & Engelhardt,
1992).

A parameter estimation example: Let us assume that we
can perform a set of run to failure experiments with high level
of control, ensuring same usage and operating conditions. In
addition, remaining useful life at time tp is computed by mea-
suring the elapsed time from tp until failure for all the n sam-
ples (R1, . . . , Rn) on the set of run to failure experiments.
Assuming that these random samples come from a probabil-
ity density function fR(r), with expected value E(R) = µ
and variance V ar(R) = σ2.

Let θ1 be a parameter estimator of the mean µ of fR, with
expected value E(θ1) = µθ1 and variance V (θ1) = σθ1

2.
This estimator will be a function of all the sample values and
will have a probability density function fθ1 . θ1 is a point esti-
mate of the random variable R such as the sample mean, the
median or some other location statistic. Now, from the uncer-
tainty management perspective in prognostics, it is necessary
to judge the ability of the algorithm to properly compute the
point estimate of the process, in this case, to properly esti-
mate µ. So it is expected that this estimate θ1 has the least
variability, the least variance possible, therefore making θ1
less uncertain. As a result, σθ1

2 should be as small as possi-
ble. It is, on the other hand, incorrect to expect the estimation
process to reduce σ2 itself.

This is often misinterpreted for prognostics methodologies
base on computational statistics that do not directly focus on
a point estimate but on generating an approximation of the
distribution of R. Since the variability can be assessed by a
measure of spread like the sample standard deviation com-
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puted directly from the sample distribution of R, again, this
variation should not be arbitrarily decreased by tuning of the
algorithm since it is intended to represent the real statistical
uncertainty of the process.

The previous discussion applies to RUL predictions without
loss of generality as long as they are modeled as random vari-
ables, which is typically the case. The concept can be further
described considering the sample average R̄ as the estimator
(θ1 = R̄). From basic probability theory (Bain & Engelhardt,
1992), one can observe that µθ1 = µ and the σθ1

2 = σ2/n.
This estimator is unbiased, and its variance σθ1

2 can be re-
duced by increasing sample size. But σ2 cannot be reduced
because it is the inherent variability in the random variableR.

2.3. Implications on how RUL is computed by statistical
models

Let us now consider the complete RUL computation algo-
rithm including state estimation and prediction steps, i.e., the
prognostics algorithm is a black box estimation of RUL. This
statistical model can have different focus in providing estima-
tions of R(t). The following situations (although not exhaus-
tive) are considered here:

1. R(t) could be assumed to be a known random variable
with a known probability density or mass function (para-
metric case). Therefore, the statistical model will focus
on providing the best possible estimator of the parame-
ters or key quantities function of the random variable as
the expected value and the variance. For instance, ifR(t)
is presumed Normal, then the statistical model will pro-
vide an estimate of the mean and the standard deviation
since they fully parametrize the Normal random variable.

2. A computational statistics model could be used to avoid
making assumptions about the distribution ofR(t) there-
fore focusing on computing an approximation of the
probability density/mass function of R(t). This will be a
choice for the cases in which there is no knowledge about
the distribution or the non-parametric case is preferred. It
will also be the case for when there is no analytical solu-
tion tractable for the statistical model structure therefore
the use of a computational model, based on Monte Carlo
simulation approaches, is needed.

The uncertainty management focus will differ under the two
situations described above. In case one, where distribution
parameters are estimated, the uncertainty management should
focus on properly estimating the spread parameter θs ofR(t).
A spread parameter θs could be variance or some other esti-
mator focused on representing the variability of the distribu-
tion. This estimator should properly aggregate all the pre-
viously identified sources of uncertainty, like measurement,
model, future input and environment uncertainty. From the
uncertainty management perspective, one should not expect
θs to be small. Instead, one should expect it to be an accu-

rate representation of the real uncertainty in the real RUL of
the system. A similar situation arises in the second case. In
this case an approximation of the distribution of R(t) is com-
puted. Its shape and therefore the spread or variability repre-
sented by this approximation, should be the real uncertainty
of the RUL in the system and should not be made arbitrar-
ily small either by tuning the statistical method to do so or by
any other arbitrary transformation to make this approximation
more crisp around the location parameter.

2.4. Implications on decision-making

Being able to capture the uncertainty correctly is of
paramount importance in prognostics. This might not always
be the case for other applications involving parameter estima-
tion. For instance, in a control application, the frequency of
the compensation loop is generally high enough to be able to
dampen the effects of uncertainty in the parameter estimation
process. For prognostics, this will typically not be the case.
If the prognostics situation under consideration is used for
contingency management, in which safety of operation is at
stake; properly estimating the uncertainty of the true RUL is
necessary. If the uncertainty estimation is incorrect, then this
can lead to risky decision-making, leading to reduced safety
and possibly increasing the change of catastrophic failure. A
similar argument can be made if prognostics is used in a lo-
gistics settings such as condition-based maintenance in man-
ufacturing systems or in military operations.

The previous argument can also be made from the opposite
end by considering the implications of the decision-making
method on how RUL is computed and how uncertainty man-
agement is performed. For the last few years, research in
prognostics and health management (PHM) has mainly fo-
cussed on the prognostics element, which deals with meth-
ods to predict RUL. There have been several methodologies
published and many more under development for a variety
of man-made systems. As a result of the previous effort,
prognostics methodologies have been developed in a sort of
unbounded or unguided way with respect to how the actual
method is going to be used in the decision-making process.
This meas that input from the types of decisions that will use
the prognostics information and from the overall optimization
of system performance have so far not been considered.

The type of decision-making application may dictate the
prognostics methodology as well as the types of estimates to
be generated (recall cases in Section 2.2.3). Consequently,
this will also have an impact on requirements generation.
For instance a fleet based optimization of aircraft mainte-
nance operations considers very different decisions as com-
pared to an unmanned aerial vehicle (UAV) mission reconfig-
uration based on prognostics indication on power train fail-
ures. Following the same argument, it is clear that different
decision-making methodologies will have different capabili-
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ties in terms of handling the prognostics information. For in-
stance, an optimization of a particular decision process might
not be able to work with random variables, therefore a point
estimate would be provided. This will be different if the opti-
mization itself is able to deal with RUL as a random variable,
in this case, the computation distribution function of R(t)
or the estimators of the parameters that fully parametrize it
would be provided. If the decision-making process, can fur-
ther use information about how reliable the prognostics infor-
mation is, then information about a measure of quality of the
estimators, which is different than just bias, would be pro-
vided.

3. UNCERTAINTY INTERPRETATION AND COMPU-
TATION IN MODEL-BASED PROGNOSTICS WITH
KALMAN FILTER ESTIMATION

Model-based prognostics methodologies for electronics com-
ponents like electrolytic capacitors (J. Celaya et al., 2011;
J. Celaya, Kulkarni, et al., 2012) and power MOS-
FETs (J. R. Celaya et al., 2011; J. Celaya, Saxena, Kulkarni,
et al., 2012) have been previously introduced. The method-
ologies make use of empirical degradation models and a sin-
gle precursor to failure parameter to compute RUL. These
methodologies rely on accelerated aging experiments to iden-
tify degradation behavior and to create time dependent degra-
dation models. The process followed in these methodologies
is presented in the block diagram in Figure 1.

Accelerated 
Aging

Degradation 
Modeling

Training 
Trajectories

Test 
Trajectory

Parameter 
Estimation

State-space 
Representation

Prognostics

Dynamic
System

Realization

Health State 
Estimation

RUL 
Estimation

{α̃i, β̃i}

D

D

Figure 1. Methodology for electronics component prognos-
tics development.

Accelerated aging tests provided measurements throughout
the aging process, including measurements at pristine con-

dition and measurements after failure condition. Empirical
degradation models that are based on the observed degrada-
tion process during the accelerated aging tests are developed.
The objective of the models is to generate a parametrized
model of the time-dependent degradation process for these
components. The time dependent degradation model is trans-
formed into a discrete-time linear dynamic system in order
to be used in a Bayesian tracking setting. The Kalman filter
algorithm is used to track the state of health and the degra-
dation model is used to make predictions of remaining useful
life once no further measurements are available.

3.1. Prognostics methodology

The methodology consists of the three main steps described
below and it is depicted in Figure 2. This is the explanation of
what it is considered inside the prognostics block in Figure 1.

This methodology follows from the general concepts of
model-based prognostics described in Section 1.1.1. In the
electronics component case, the system dynamics consists
only of the degradation process dynamics since the prognos-
tics focuses at the component level only.

1. State tracking (Kalman Filter): The state variable in the
degradation model D is a precursor of failure parameter
represented by Eq. (3a). When the degradation model
uses static parameters (parameters not estimated online
by the filter), then the state variable is a scalar quantity
and the state evolution equation is scalar. The degrada-
tion model is expressed as a discrete time dynamic model
in order to estimate the state as new measurements be-
come available. The simplified Kalman filter model set
up is given as

xk = Axk−1 +Buk−1 + wk−1, (3a)
yk = Hxk + vk. (3b)

The output of this step is the optimal state estimate x̂p.
2. Health state forecasting: It is necessary to forecast the

state variable once there are no more measurements
available at the time of RUL prediction tp. This is done
by evaluating the degradation model (Eq. (3a)) through
time using the state estimate x̂p from the previous step
as the initial state value for forecasting.

3. Remaining life computation: RUL is computed as the
time between time of prediction tp and the time at which
the forecasted state crosses the failure threshold value F .

This process is repeated for different values of tp through the
life of the component under consideration.

3.2. Kalman Filter Background

The Kalman filter framework is based on Bayesian parameter
estimation. A Bayes estimator allows to estimate parameters
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Kalman
Filter

Health State 
Forecasting

RUL
Computation

RUL(tp)

{α̃, β̃}D2

x̂(tp)

{y(t0), . . . , y(tp)}

{x̂(tp+1), . . . , x̂(tp+N )}

Failure
Threshold

Figure 2. Model-based prognostics methodology

based on prior knowledge about the parameter distribution. In
the tracking problem, system measurements serve as a form
of prior knowledge, therefore the objective is to estimate the
state x(t) conditional to all the previous measurements of the
system. The Bayes estimation framework is based on the con-
cepts of risk and loss functions in which the risk is defined
as the expected loss (Bain & Engelhardt, 1992). This back-
ground information is relevant since it helps to understand the
statistical origins of the Kalman filter framework which is the
focal point of the discussions in this paper. Based on the sem-
inal paper for the Kalman filter (Kalman, 1960), the optimal
state estimate is given as x∗(t) = E[x(t)|y(to), · · · , y(t)].
This is the solution that minimizes the risk (expected loss),
for a loss function based on the estimation error. Furthermore,
the random process for the state and for the process noise are
Normal. Additional details on the problem formulation and
assumptions are presented in Kalman (1960).

Implications on Kalman filter for prognostics: Consider-
ing a scalar implementation of the Kalman filter over discrete-
time model as in Eqs. (3). The output of the filter referred
to as the optimal state estimate x∗k is basically given by the
conditional state estimate x̂k = E[xk|yk] and the state condi-
tional probability density function is given by,

p(xk|yk) ∼ N(x̂k, Pk), (4)

where Pk is the filter’s estimate of the error variance.

The output of the filter is the estimate of the expected value
x̂k, and the estimation error covariance Pk. The state random
variable xp is normally distributed with mean x̂k and variance
Pk.

3.3. Uncertainty propagation in prognostics

Based on the previous discussion regarding the interpreta-
tion of the Kalman filter output in terms of probabilities, it
can be observed that the health state estimation output is a
Normal random variable with known parameters considering
the sources of uncertainties derived from modeling error and
measurement error.

Uncertainty in the health state estimation step: We assume

here a scalar case for state estimation, like in the case of the
capacitor prognostics method where the health indicator is a
scalar state variable (J. Celaya et al., 2011). Time index p is
defined as the time of RUL prediction tp, which is also the
time of the last available measurement in the state estimation
step. The state estimate xp is a normally distributed random
variable with mean x̂p and variance Pk.

xp ∼ N(x̂p, Pk) (5)

This variable includes the propagation of measurement un-
certainty and also model error uncertainty as included in the
Kalman filter implementation.

Uncertainty in the health state forecasting step: Forecast-
ing is needed for the state variable to be able to estimate its
value at a future time until it crosses a pre-established failure
threshold F . The forecasting process is carried out using the
state equation (Eq. (3a)) recursively, using the last health state
estimate x̂p as initial value. Let x̃p(l) be the lth step ahead
forecast starting from xp. From the uncertainty propagation
point of view and focusing on a one step ahead forecasting
using Eq. (3a), the forecast value is given by

x̃p(1) = Axp +Bup + wp. (6)

Variables xp andwp are Normal and independent with known
mean and variance. Following from basic probability theory,
the forecast x̃p(1) is also Normal. In general, the lth step
ahead forecast x̃p(l) will have a Normal distribution as well.
It should also be noted that x̃p(l) is a function of the last state
estimate (x̃p(l) = f(xp)). Considering the forecast variables
as random variables and given the analytical properties of the
Normal distribution, the probability density function fx̃p(l)

can be derived analytically and is given by,

x̃p(l) ∼ N(µl, σl
2); (7)

where the mean is given by

µl = Alx̂p +Bup +

l−1∑
i=0

Ai, (8)

and the variance is given by

σl
2 = (A2)lPk +

l−1∑
i=1

(A2)iσw
2 + σw

2. (9)

Uncertainty in RUL: Computing the uncertainty in the RUL
is more complicated from an analytical point of view. Defin-
ing R(tp) as the remaining useful life,

R(tp) = tEOL − tp. (10)

The time at end-of-life (tEOL) is a continuous variable which

7
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is computed from the forecast x̃p(l).

Let x̃p(j) be the first forecast value to cross the failure thresh-
old F . An interpolation between x̃p(j) and x̃p(j − 1) is used
to compute tEOL. Considering that the forecasts are func-
tions of xp, RUL is also a function of xp.

R(tp) = g(xp). (11)

From the random variable uncertainty propagation point of
view, R(tp) is a function g of a normally distributed ran-
dom variable, therefore, it is also a random variable. It is
nevertheless difficult to derive its probability density func-
tion analytically. There is also no information that suggests
that R(tp) will be Normal. The probability density function
of R(tp) can be approximated using computational statistics
methods. This can be done by taking N samples from xp and
computing R(tp) for each sample. An histogram can be built
from the N computed R(tp) values and a density estimation
method could be used to generate the approximation of the
probability density function.

3.4. Discussion

From the analytical results presented for the first two steps
of the prognostics process (Section 3.3.3), it can be observed
that the variance will be larger after the forecasting process.
In addition, there is no evidence to suggest that R(tp) will
be Normal and further investigation is needed to explore its
dependance on the forecasting process, like number of steps
ahead forecasts and step length. It is also clear, that simply
defining the variance of R(tp) as Pk or σl2 is not an accurate
representation of the uncertainty in the process.

The model-based methodology for electronics prognostics
based on the Kalman filter is able to capture additive degra-
dation model error uncertainty and additive measurement un-
certainty. In order for the approximation of the probability
density function of R(tp) to be a true representation of the
system uncertainty, the variances of the measurement noise
and modeling noise should be properly estimated. If consid-
ered as tuning parameters, then the generated uncertainty in
R(tp) will not be representative of the real process.

4. CONCLUSION

This article presented a discussion on uncertainty represen-
tation and management for model-based prognostics method-
ologies based on the Bayesian tracking framework and specif-
ically for a Kalman filter application to electronics compo-
nents. In particular, it explores the implication of modeling
remaining useful life prediction as a stochastic process and
how it relates to remaining useful life computation by statis-
tical models, to uncertainty representation and management,
and to the role of prognostics in decision-making. A dis-
cussion on how uncertainty propagates from the health state

estimation process through the health state forecasting pro-
cess is provided. Remaining useful life computation steps
under uncertainty are presented and analytical results on un-
certainty quantification are provided under a simplified sce-
nario. A proper propagation of uncertainty through the RUL
prediction step as well as its correct interpretation are key to
developing decision-making methodologies that make use of
the remaining useful life prediction estimates and their cor-
responding uncertainties in order to make actionable choices
that will optimize reliability, operations or safety in view of
the prognostics information.

This work was originally presented in the 2012 AIAA In-
fotech@Aerospace Conference (J. Celaya, Saxena, & Goebel,
2012). It is reproduced here with minor updates and correc-
tions based on suggestions by reviewers.
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NOMENCLATURE

R Remaining useful life random variable
tp Time of remaining useful life prediction
R(tp) Remaining useful life prediction at time tp
x̂k Optimal state estimator from Kalman filter
x̃k(l) lth step ahead forecast from xk
tEOL Time at end-of-life
x(t) Scalar continuous state variable for filter model
x(t) Vector continuous state variable for filter model
xk Scalar discrete-time state variable for filter model
F Failure threshold
N(µ, σ2) Normal distribution with mean µ and variance σ2
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