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ABSTRACT

The success of model-based approaches to systems health
management depends largely on the quality of the underly-
ing models. In model-based prognostics, it is especially the
quality of the damage progression models, i.e., the models
describing how damage evolves as the system operates, that
determines the accuracy and precision of remaining useful life
predictions. Several common forms of these models are gen-
erally assumed in the literature, but are often not supported
by physical evidence or physics-based analysis. In this paper,
using a centrifugal pump as a case study, we develop differ-
ent damage progression models. In simulation, we investigate
how model changes influence prognostics performance. Re-
sults demonstrate that, in some cases, simple damage progres-
sion models are sufficient. But, in general, the results show
a clear need for damage progression models that are accurate
over long time horizons under varied loading conditions.

1. INTRODUCTION

Model-based prognostics is rooted in the use of models that
describe the behavior of systems and components and how
that behavior changes as wear and damage processes oc-
cur (Luo, Pattipati, Qiao, & Chigusa, 2008; Saha & Goebel,
2009; Daigle & Goebel, 2011). The problem of model-based
prognostics fundamentally consists of two sequential prob-
lems, (i) a joint state-parameter estimation problem, in which,
using the model, the health of a system or component is de-
termined based on its observations; and (ii) a prediction prob-
lem, in which, using the model, the state-parameter distri-
bution is simulated forward in time to compute end of life
(EOL) and remaining useful life (RUL). The model must de-
scribe both how damage manifests in the system observations,
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and how damage progresses in time. Clearly, the prognostics
performance inherently depends on the quality of the models
used by the algorithms.
In modeling the complex engineering systems targeted by
prognostics algorithms, many modeling choices must be
made. In particular, one must decide on the appropriate
level of abstraction at which to model the system in order
to estimate system health and predict remaining life. The
choice is mainly one of model granularity, i.e., the extent
to which the model is broken down into parts, either struc-
tural or behavioral. The selected models must then provide
enough fidelity to meet the prognostics performance require-
ments. But, model development cost, available level of ex-
pertise, model validation effort, and computational complex-
ity all constrain the models that may be developed. For ex-
ample, finer-grained models may result in increased model
fidelity and thus increased prognostics performance, but may
take more effort to construct and increase computational com-
plexity. Therefore, a clear need exists to investigate the im-
pact of such modeling choices on prognostics performance.
In this paper, we use a centrifugal pump as a case study with
which to explore the impact of model quality on prognos-
tics performance. Typically, developing a reliable model of
nominal system operation is relatively straightforward, as the
dynamics are usually well-understood in terms of first prin-
ciples or physics equations, and, most importantly, there is
typically sufficient data available with which to validate this
model. The major difficulty lies in developing models of dam-
age progression, because these models are often component-
dependent, and so the understanding of these processes is gen-
erally lacking. Further, the data necessary to properly vali-
date these models are, in practice, rarely available. Using the
pump model, we develop several damage progression mod-
els and evaluate their effect on prognostics performance using
simulation-based experiments. To the best of our knowledge,
this, along with a companion paper exploring these issues
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with application to battery health management (Saha, Quach,
& Goebel, 2011), is the first time this type of analysis has
been performed within the context of prognostics.
The paper is organized as follows. Section 2 describes the
model-based prognostics framework. Section 3 presents the
modeling methodology and develops the centrifugal pump
model with several damage progression models. Section 4
generalizes the different models within the framework of
model abstraction. Section 5 describes the particle filter-
based damage estimation method, and Section 6 discusses
the prediction methodology. Section 7 provides results from
a number of simulation-based experiments and evaluates the
effect of the different damage progression models on prog-
nostics performance. Section 8 concludes the paper.

2. MODEL-BASED PROGNOSTICS

We assume the system model may be described using

ẋ(t) = f(t,x(t),θ(t),u(t),v(t))

y(t) = h(t,x(t),θ(t),u(t),n(t)),

where x(t) ∈ Rnx is the state vector, θ(t) ∈ Rnθ is the pa-
rameter vector, u(t) ∈ Rnu is the input vector, v(t) ∈ Rnv is
the process noise vector, f is the state equation, y(t) ∈ Rny is
the output vector, n(t) ∈ Rnn is the measurement noise vec-
tor, and h is the output equation. The model may be nonlinear
with no restrictions on the functional forms of f or h, and the
noise terms may be nonlinearly coupled with the states and
parameters. The parameters θ(t) evolve in an unknown way.
The goal of prognostics is to predict EOL (and/or RUL) at
a given time point tP using the discrete sequence of obser-
vations up to time tP , denoted as y0:tP . EOL is defined as
the time point at which the component no longer meets a
functional or performance requirement. In general, these re-
quirements do not need to be directly tied to permanent fail-
ure, rather, they refer to a state of the system that is undesir-
able. The system can leave this state through repair or other
actions, and sometimes no action is needed and the compo-
nent needs only to rest (e.g., with power electronics, or self-
recharge of batteries). These functional requirements may be
expressed through a threshold, beyond which the component
is considered to have failed. In general, we may express this
threshold as a function of the system state and parameters,
TEOL(x(t),θ(t)), where TEOL(x(t),θ(t)) = 1 if a require-
ment is violated, and 0 otherwise.
So, EOL may be defined as

EOL(tP ) , inf{t ∈ R : t ≥ tP ∧ TEOL(x(t),θ(t)) = 1},
i.e., EOL is the earliest time point at which the threshold is
reached. RUL may then be defined with

RUL(tP ) , EOL(tP )− tP .

Due to various sources of uncertainty, including uncertainty in
the model, the goal is to compute a probability distribution of

the EOL or RUL. We compute, at time tP , p(EOL(tp)|y0:tP )
or p(RUL(tP )|y0:tP ).
In model-based prognostics, there are two fundamental prob-
lems: (i) joint state-parameter estimation, and (ii) predic-
tion. In discrete time k, we estimate xk and θk, and use
these estimates to predict EOL and RUL at desired time
points. The model-based prognostics architecture is shown in
Fig. 1 (Daigle & Goebel, 2011). Given inputs uk, the system
provides measured outputs yk. If available, a fault detection,
isolation, and identification (FDII) module may be used to
determine which damage mechanisms are active, represented
as a fault set F. The damage estimation module may use
this result to limit the dimension of the estimation problem.
It determines estimates of the states and unknown parame-
ters, represented as a probability distribution p(xk,θk|y0:k).
The prediction module uses the joint state-parameter distribu-
tion, along with hypothesized future inputs, to compute EOL
and RUL as probability distributions p(EOLkP |y0:kP ) and
p(RULkP |y0:kP ) at given prediction times kP . In this paper,
we assume a solution to FDII that provides us with the single
active damage mechanism, initiating prognostics.
Prognostics performance is evaluated based on the accuracy
and precision of the predictions. We use the relative accuracy
(RA) metric (Saxena, Celaya, Saha, Saha, & Goebel, 2010) to
characterize prediction accuracy. For a given prediction time
kP , RA is defined as

RAkP = 100

(
1− |RUL

∗
kP
− R̂ULkP |

RUL∗kP

)
,

where RUL∗kP is the true RUL at time kP , and R̂ULkP is the
mean of the prediction. The prognostic horizon (PH) refers
to the time between EOL and the first prediction that meets
some accuracy requirement RA∗ (e.g., 90%):

PH = 100
EOL∗ −min{kP : RAkP ≥ RA∗}

EOL∗
,

where EOL∗ denotes the true EOL. A larger value means an
accurate prediction is available earlier. This is a version of the
PH metric given in (Saxena et al., 2010) normalized to EOL.
Prediction spread is computed using relative median absolute
deviation (RMAD):

RMAD(X) = 100
Mediani (|Xi −Medianj(Xj)|)

Medianj(Xj)
,

where X is a data set and Xi is an element of that set.

3. PUMP MODELING

In our modeling methodology, we first describe a nominal
model of system behavior. We then extend the model by in-
cluding damage progression functions within the state equa-
tion f that describe how damage variables d(t) ⊆ x(t) evolve
over time. The damage progression functions are parameter-
ized by unknown wear parameters w(t) ⊆ θ(t). We use
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Figure 1. Prognostics architecture.

Figure 2. Centrifugal pump.

a centrifugal pump as a case study. In this section, we first
describe the nominal model of the pump, and then describe
common damage progression models.

3.1 Nominal Model

A schematic of a typical centrifugal pump is shown in Fig. 2.
Fluid enters the inlet, and the rotation of the impeller, driven
by an electric motor, forces fluid through the outlet. The radial
and thrust bearings help to minimize friction along the pump
shaft. The bearing housing contains oil which lubricates the
bearings. A seal prevents fluid flow into the bearing housing.
Wear rings prevent internal pump leakage from the outlet to
the inlet side of the impeller, but a small clearance is typically
allowed to minimize friction. The nominal pump model has
been described previously in (Daigle & Goebel, 2011), and
we review it here for completeness.
The state of the pump is given by

x(t) =
[
ω(t) Tt(t) Tr(t) To(t)

]T
,

where ω(t) is the rotational velocity of the pump, Tt(t) is the
thrust bearing temperature, Tr(t) is the radial bearing temper-
ature, and To(t) is the oil temperature.
The rotational velocity of the pump is described using a
torque balance,

ω̇ =
1

J
(τe(t)− rω(t)− τL(t)) ,

where J is the lumped motor/pump inertia, τe is the electro-
magnetic torque provided by the motor, r is the lumped fric-

tion parameter, and τL is the load torque. In an induction
motor, a voltage is applied to the stator, which creates a cur-
rent through the stator coils. A polyphase voltage applied to
the stator creates a rotating magnetic field that induces a cur-
rent in the rotor, causing it to turn. The torque produced on
the rotor is nonzero only when there is a difference between
the synchronous speed of the supply voltage, ωs and the me-
chanical rotation, ω. This slip is defined as

s =
ωs − ω
ωs

.

The expression for the torque τe is derived from an equiva-
lent circuit representation for the three-phase induction motor
based on rotor and stator resistances and inductances, and the
slip s (Lyshevski, 1999):

τe =
npR2

sωs

V 2
rms

(R1 +R2/s)2 + (ωsL1 + ωsL2)2
,

where R1 is the stator resistance, L1 is the stator inductance,
R2 is the rotor resistance, L2 is the rotor inductance, n is
the number of phases (typically 3), and p is the number of
magnetic pole pairs. The dependence of torque on slip creates
a feedback loop that causes the rotor to follow the rotation
of the magnetic field. The rotor speed may be controlled by
changing the input frequency ωs.
The load torque τL is a polynomial function of the pump flow
rate and the impeller rotational velocity (Wolfram, Fussel,
Brune, & Isermann, 2001; Kallesøe, 2005):

τL = a0ω
2 + a1ωQ− a2Q2,

whereQ is the flow, and a0, a1, and a2 are coefficients derived
from the pump geometry (Kallesøe, 2005).
The rotation of the impeller creates a pressure difference from
the inlet to the outlet of the pump, which drives the pump flow,
Q. The pump pressure is computed as

pp = Aω2 + b1ωQ− b2Q2,

where A is the impeller area, and b1 and b2 are coefficients
derived from the pump geometry. The discharge flow, Q, is
comprised of the flow through the impeller, Qi, and a leakage
flow, Ql:

Q = Qi −Ql.
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The flow through the impeller is computed using the pressure
differences:

Qi = c
√
|ps + pp − pd|sign(ps + pp − pd),

where c is a flow coefficient, ps is the suction pressure, and
pd is the discharge pressure. The small (normal) leakage flow
from the discharge end to the suction end due to the clearance
between the wear rings and the impeller is described by

Ql = cl
√
|pd − ps|sign(pd − ps),

where cl is a flow coefficient.
Pump temperatures are often monitored as indicators of pump
condition. The oil heats up due to the radial and thrust bear-
ings and cools to the environment:

Ṫo =
1

Jo
(Ho,1(Tt − To) +Ho,2(Tr − To)

−Ho,3(To − Ta)),

where Jo is the thermal inertia of the oil, and the Ho,i terms
are heat transfer coefficients. The thrust bearings heat up due
to the friction between the pump shaft and the bearings, and
cool to the oil and the environment:

Ṫt =
1

Jt
(rtω

2 −Ht,1(Tt − To)−Ht,2(Tt − Ta)),

where Jt is the thermal inertia of the thrust bearings, rt is the
friction coefficient for the thrust bearings, and the Ht,i terms
are heat transfer coefficients. The radial bearings behave sim-
ilarly:

Ṫr =
1

Jr
(rrω

2 −Hr,1(Tr − To)−Hr,2(Tr − Ta))

where Jr is the thermal inertia of the radial bearings, rr is the
friction coefficient for the radial bearings, and the Hr,i terms
are heat transfer coefficients.
The overall input vector u is given by

u(t) =
[
ps(t) pd(t) Ta(t) V (t) ωs(t)

]T
.

The measurement vector y is given by

y(t) =
[
ω(t) Q(t) Tt(t) Tr(t) To(t)

]T
.

Fig. 3 shows nominal pump operation. Input voltage and line
frequency are varied to control the pump speed. Initially, slip
is 1, and this produces an electromagnetic torque that causes
the rotation of the motor to match the rotation of the magnetic
field, with a small amount of slip remaining (depending on
the load). Fluid flows through the pump due to the impeller
rotation. The bearings heat and cool as the pump rotation
increases and decreases.
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Figure 3. Nominal pump operation.

3.2 Damage Modeling

The most significant forms of damage for pumps are impeller
wear, caused by cavitation and erosion by the flow, and bear-
ing failure, caused by friction-induced wear of the bearings.
In each case, we map the damage to a particular parameter
in the nominal model, and this parameter becomes a damage
variable in d(t) that evolves by a damage progression func-
tion. Several types of damage progression models have been
explored in literature. In this paper, we focus on macro-level,
lumped-parameter models. Within this modeling style, dam-
age evolves as a function of dynamic energy-related variables.
Several common forms may be assumed here, including lin-
ear, polynomial, and exponential, as these forms have been
observed in practice. We derive these forms for the consid-
ered damage modes as well as wear-based models based on
physics analysis.
Impeller wear is represented as a decrease in impeller area
A (Biswas & Mahadevan, 2007; Tu et al., 2007; Daigle &
Goebel, 2011). Impeller wear can only progress when flow
through the impeller, Qi, is nonzero. So, the rate of change of
impeller area, Ȧ, must be a function of Qi. We consider the
following damage progression models based on the common
observed forms:

Ȧ = −wAQi (1)

Ȧ = −wAQ
2
i (2)

Ȧ = −wA1Qi − wA2Q
2 (3)

Ȧ = −wA1 exp(wA2Qi), (4)
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where wA, wA1, and wA2 are unknown wear parameters.
From a physics analysis, we see that the erosive wear equation
applies here (Hutchings, 1992). The erosive wear rate is pro-
portional to fluid velocity times friction force. Fluid velocity
is proportional to volumetric flow rate, and friction force is
proportional to fluid velocity, so, lumping the proportionality
constants into the wear coefficient wA, we obtain

Ȧ = −wAQ
2
i . (5)

Note that this agrees with one of the commonly assumed dam-
age forms, equation 2, above.
A decrease in the impeller area will decrease the pump pres-
sure, which, in turn, reduces the delivered flow, and, therefore,
pump efficiency. The pump must operate at a certain minimal
efficiency. This requirement defines an EOL criteria. We de-
fine A− as the minimum value of the impeller area at which
this requirement is met, hence, TEOL = 1 if A(t) < A−.
The damage progression up to EOL for impeller wear is
shown in Fig. 4a for equation 5, for the rotational velocity
alternating between 3600 RPM for the first half of every hour
of usage and 4300 RPM for the second half, causing the pump
flow to alternate as well. Within a given cycle, shown in the
inset of Fig. 4a, the damage progresses at two different rates,
but over a long time horizon, the damage progression appears
fairly linear. This suggests that a linear approximation may
suffice for accurate long-term predictions if the future inputs
cycle in the same way. The damage progression rate actu-
ally decreases slightly over time, because as impeller area de-
creases, flow will decrease, and therefore Ȧ will diminish.
Bearing wear is captured as an increase in the corresponding
friction coefficient (Daigle & Goebel, 2011). Bearing wear
can only occur when the pump is rotating, i.e., ω is nonzero.
So, the rate of change of the bearing friction coefficient, ṙt
for the thrust bearing, and ṙr for the radial bearing, must be
a function of ω. For the thrust bearing wear, we consider the
following damage progression models based on the common
observed forms:

ṙt(t) = wtω (6)

ṙt(t) = wtω
2 (7)

ṙt(t) = wt1ω + wt2ω
2 (8)

ṙt(t) = wt1 exp(wt2ω), (9)

where wt, wt1, and wt2 are unknown wear parameters. For
the radial bearing, the equations are the same, but with the t
subscript replaced by an r subscript:

ṙr(t) = wrω (10)

ṙr(t) = wrω
2 (11)

ṙr(t) = wr1ω + wr2ω
2 (12)

ṙr(t) = wr1 exp(wr2ω). (13)

From a physics analysis, we observe that sliding and rolling
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Figure 4. Damage progression for the pump.

friction generate wear of material which increases the coeffi-
cient of friction (Hutchings, 1992; Daigle & Goebel, 2010):

ṙt(t) = wtrtω
2 (14)

ṙr(t) = wrrrω
2, (15)

where wt and wr are the wear parameters. Note that equa-
tions 6–9 neglect the direct relationship between ṙt and rt.
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Changes in bearing friction can be observed by means of the
bearing temperatures. Limits on the maximum values of these
temperatures define EOL for bearing wear. We define r+t and
r+r as the maximum permissible values of the friction coeffi-
cients, before the temperature limits are exceeded over a typ-
ical usage cycle. So, TEOL = 1 if rt(t) > r+t or rr(t) > r+r .
Damage progression up to EOL for bearing wear is shown in
Figs. 4b and 4c, for equations 14 and 15, with the rotational
velocity again alternating between 3600 RPM and 4300 RPM.
In this case, the rate of damage progression increases over
time. Therefore, a simple linear approximation would not be
accurate. This behavior occurs because ṙt(t) increases with
rt(t), and ṙr(t) increases with rr(t).

4. MODEL ABSTRACTION

The previous section presented a number of different models.
In general, these differences may be captured by the idea of
model abstraction (Frantz, 1995; Lee & Fishwick, 1996; Zei-
gler, Praehofer, & Kim, 2000). Abstraction is driven by the
questions that the model must address. For prognostics, the
models must address the question of the EOL/RUL of a sys-
tem. In order to do this, the models must (i) describe how
damage manifests in the system outputs (i.e., measured vari-
ables or computed features), so that damage estimation can
be performed; and (ii) describe how damage evolves in time
as a function of the system loading, so that prediction can be
performed. The chosen level of model abstraction must be
such that these tasks can be accomplished at the desired level
of performance.
Abstraction is a process of simplification. Common ab-
stractions include aggregation, omission, linearization, de-
terministic/stochastic replacement, and formalism transfor-
mation (e.g., differential equations to discrete-event sys-
tems) (Zeigler et al., 2000). These abstractions may manifest
as structural abstraction, in which the model is abstracted by
its structure, or behavioral abstraction, in which the model
is abstracted by its behaviors (Lee & Fishwick, 1996). For
example, a structural abstraction might ignore the individual
circuit elements of an electric motor and aggregate them into
a lumped component. A behavioral abstraction might omit
the individual processes and effects comprising a damage pro-
gression process and instead consider their lumped effects.
Or, perhaps a given process might really take on an exponen-
tial form, but is abstracted to a linear form. The linear form
consists of a simpler relationship that is described by fewer
free parameters.
Model granularity is a particular measure of model abstrac-
tion. The granularity of a model is the extent to which it is
divided into smaller parts. The concept of granularity does
not address the degree of complexity of the specific func-
tional relationships within a part of the model. Granularity
can manifest both structurally and behaviorally. For exam-
ple, a lumped parameter model is coarser-grained than a fi-

nite element model. In the context of physics-based prognos-
tics models, a model with fine granularity may include more
lower-level physical processes (e.g., micro-level effects rather
than macro-level effects), or model processes at a greater level
of detail, than a model with coarse granularity.
In quantifiable terms, granularity may be expressed using
the number of state variables, the number of relationships
between them, and the number of free (unknown) parame-
ters. By definition, the state variables are the minimal set
of variables needed to describe the state of the system as it
progresses through time. So a finer-grained model may en-
tail an additional number of state variables because aspects
of the physical description that were not captured before are
now described. With the same state variables, a model may
also become more granular by adding functional relation-
ships between the state variables. In a linear system, with
ẋ(t) = Ax(t) + Bu(t), this would correspond to zeros in
the A matrix becoming nonzero. Note that this is only a fair
comparison between two models capturing the same process.
The different damage models developed in Section 3.2 can be
viewed within this framework. For a particular damage mode,
the different damage models each capture the same physical
process, i.e., the damage progression, but make different as-
sumptions about the complexity of the process. Thus, these
models capture damage progression at different levels of be-
havioral abstraction. For example, for the impeller wear, the
polynomial form (equation 3) may be viewed as less abstract
than both the linear (equation 1) and squared forms (equa-
tion 2), because it is a sum of these individual processes. For
the bearing wear, equations 6–9 are all coarser-grained mod-
els than 14, because they neglect the direct relationship be-
tween ṙt and rt.
One may describe the system behavior in very low-level phys-
ical relationships, but, of course, there are trade-offs to be
made among the modeling constraints. A finer-grained model
takes more effort to develop and validate, and may result in
an increased computational cost. It also may result in an
increase in the number of free parameters, which increases
the complexity of the joint state-parameter estimation prob-
lem. The increase in model development cost to create mod-
els with finer granularity is justified only when it results in
an appropriate increase in fidelity (i.e., the extent to which
a model reproduces the observable behaviors of the system
being modeled) and a corresponding increase in prognostics
performance. Also, higher levels of abstraction make sense
when the computation associated with lower levels of abstrac-
tion becomes too complicated for practical implementation.
Requirements on prognostics performance and constraints on
model size, development cost, level of modeling expertise,
and computational complexity all drive the model develop-
ment process.
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5. DAMAGE ESTIMATION

Damage estimation is fundamentally a joint state-parameter
estimation problem, i.e., computation of p(xk,θk|y0:k). The
damage states and wear parameters must be estimated along
with the other state variables and unknown parameters of the
system. We use the particle filter (Arulampalam, Maskell,
Gordon, & Clapp, 2002) as a general solution to this problem.
In a particle filter, the state distribution is approximated by a
set of discrete weighted samples, or particles:

{(xi
k,θ

i
k), w

i
k}Ni=1,

where N denotes the number of particles, and for particle i,
xi
k denotes the state vector estimate, θi

k denotes the parameter
vector estimate, and wi

k denotes the weight. The posterior
density is approximated by

p(xk,θk|y0:k) ≈
N∑

i=1

wi
kδ(xik,θik)(dxkdθk),

where δ(xik,θik)(dxkdθk) denotes the Dirac delta function lo-
cated at (xi

k,θ
i
k).

We use the sampling importance resampling (SIR) particle fil-
ter. Each particle is propagated forward to time k by first sam-
pling new parameter values, and then sampling new states us-
ing the model. The particle weight is assigned using yk. The
weights are then normalized, followed by the resampling step.
Pseudocode is given in (Arulampalam et al., 2002; Daigle &
Goebel, 2011).
Parameter values are sampled using a random walk, i.e., for
parameter θ, θk = θk−1 + ξk−1, where ξk−1 is sampled from
some distribution. Particles generated with parameter values
closest to the true values should be assigned higher weight
and allow the particle filter to converge to the true values.
The random walk variance is modified dynamically online
to maintain a user-specified relative spread of the unknown
wear parameters using the variance control algorithm pre-
sented in (Daigle & Goebel, 2011). The algorithm increases
or decreases the random walk variance proportional to the
difference between the desired spread and the actual spread,
computed with relative median absolute deviation (RMAD).
The algorithm behavior is specified using four parameters:
the desired spread during the initial convergence period, v∗0
(e.g., 50%), the threshold that specifies the end of the con-
vergence period, T (e.g., 60%), the final desired spread v∗∞
(e.g., 10%), and the proportional gain P (e.g. 1× 10−3). The
spread is first controlled to v∗0 until the spread reaches T , at
which point it is controlled to v∗∞.

6. PREDICTION

Given the current joint state-parameter estimate at a desired
prediction time kP , p(xkP ,θkP |y0:kP ), the prediction step

computes p(EOLkP |y0:kP ) and p(RULkP |y0:kP ). The par-
ticle filter provides

p(xkP ,θkP |y0:kP ) ≈
N∑

i=1

wi
kP δ(xikP ,θikP

)(dxkP dθkP ).

We approximate a prediction distribution n steps forward
as (Doucet, Godsill, & Andrieu, 2000)

p(xkP+n,θkP+n|y0:kP ) ≈
N∑

i=1

wi
kP δ(xikP+n,θ

i
kP+n)

(dxkP+ndθkP+n).

Similarly, we approximate the EOL as

p(EOLkP |y0:kP ) ≈
N∑

i=1

wi
kP δEOLikP

(dEOLkP ).

To compute EOL, then, we propagate each particle forward
to its own EOL and use that particle’s weight at kP for the
weight of its EOL prediction. The prediction is made using
hypothesized future inputs of the system. In this work, we
assume these inputs are known in advance. Pseudocode for
the prediction algorithm is given in (Daigle & Goebel, 2011).

7. RESULTS

We ran a number of simulation experiments for the different
pump models in order to evaluate the relative performance.
We took the damage models using the physics-based wear
equations as the reference models that generated the measure-
ment data. The model used by the prognostics algorithm was
either the reference model M (using equations 5, 14, and
15), the linear model MLinear (using equations 1, 6, and
10), the squared modelMSquared (using equations 2, 7, and
11), the second order polynomial modelMPoly (using equa-
tions 3, 8, and 12), or the exponential model MExp (using
equations 4, 9, and 13). In each experiment, the pump speed
cycled from 3600 RPM for the first half of every hour of usage
to 4300 RPM for the second half hour.
In order to analyze results on a per-damage mode basis, in
each experiment we assumed only a single damage mode was
active. We selected the reference model’s wear parameter val-
ues randomly in each experiment, within [0.5 × 10−3, 4 ×
10−3] for wA, in [0.5 × 10−11, 7 × 10−11] for wt and wr,
such that the maximum wear rates corresponded to a mini-
mum EOL of 20 hours. The particle filters had to estimate
the states and the wear parameters associated with their as-
sumed damage progression models. We considered the case
where the future input was known in order to focus on the dif-
ferences in performance based on the different assumed dam-
age models. We also varied the process noise variance from
0, to nominal, and 10 times nominal, in order to artificially
represent the nominal model at various levels of granularity.
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Model v RA RMADRUL

M 0 97.87 10.33
1 97.42 10.30
10 97.63 10.41

MLinear 0 94.12 10.42
1 92.28 10.91
10 83.68 12.42

MPoly 0 97.55 3.35
1 96.97 6.62
10 89.98 10.55

MExp 0 87.27 12.87
1 88.83 13.01
10 81.78 12.90

Table 1. Prognostics Performance for Impeller Wear

The assumption here is that the process noise represents finer-
grained unmodeled processes that are not incorporated into
the model and therefore look like noise.
Prognostics performance is dependent on both the underlying
models used and on the prognostics algorithm. In order to
focus on the dependence on modeling, we fix the algorithm
and its parameters. The particle filter used N = 500 in all
cases. The variance control algorithm used v∗0 = 50%, T =
60%, v∗∞ = 10% in all cases, and used P = 1 × 10−3 for
the damage models with one unknown wear parameter and
P = 1× 10−4 for those with two unknown wear parameters.
The prognostics performance results for impeller wear us-
ing different damage models and different levels of process
noise variance are shown in Table 1. The process noise vari-
ance multiplier is shown in the second column of the table.
We average RA over all prediction points to summarize the
accuracy, denoted using RA, and we average RMAD over
all prediction points to summarize the spread, denoted using
RMADRUL. Multiple experiments were run for each case,
and the table presents the averaged results. We can see that
the linear damage model actually does fairly well. Its per-
formance decreases as process noise increases, but for small
amounts of process noise the accuracy is over 90%. The poly-
nomial model also does well, which is expected since the sec-
ond term by itself is the reference damage model. The particle
filter still estimates a linear component which tracks damage
progression over a short term fairly well, and it is the pres-
ence of this linear term that causes the accuracy to decrease.
The exponential model does not do as well, partly because the
behavior is very sensitive to the wear parameter inside the ex-
ponential function, wA2, and so estimating both wear param-
eters simultaneously is more difficult for the particle filter.
The estimation performance using the reference model and
the linear model is compared in Fig. 5. In both cases, the
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(a) wA estimation performance for M.
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(b) wA estimation performance for MLinear .

Figure 5. Impeller wear parameter estimation.
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Figure 6. Impeller wear RUL prediction performance.

damage variable, A, was tracked well. When using the same
damage model as in the reference model, the wear parameter
is tracked easily and after convergence remains fairly con-
stant. As a result, the predictions, shown in Fig. 6, using the
mean, denoted by R̂UL, are very accurate and appear within
10% of the true value at all prediction points (shown using the
gray cone in the figure). Because the rate of damage progres-
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Figure 7. Impeller wear damage progression prediction,
where at tP , Qi increases by 30%.

sion in the reference model decreases slowly over time, and
the linear model does not accurately capture that behavior, its
wear parameter estimate decreases over time in order to keep
tracking the short-term damage progression. This is reflected
also in the RUL predictions. Although the RUL accuracy is
also very good, it is clear that it consistently underestimates
the true RUL, because at any point in time it is overestimating
the rate of damage progression that would occur in the future.
However, the prognostic horizon is still very high. As shown
in Fig. 6, by the second or third prediction, the predictions
are all within the desired accuracy cone, except for the expo-
nential model, which has PH of around 60%, meaning that at
60% life remaining, the exponential model is making accurate
predictions. In many practical situations that may, in fact, be
enough time for decision-making.
For impeller wear, the linear model does well in this case
because the future loading is the same as the current load-
ing. If Qi is held constant, then the reference damage model
Ȧ = wAQ

2
i , which equals (wAQi)Qi, looks exactly like the

linear form because the product wAQi is constant. So the
particle filter would estimate a wear parameter for the linear
model that is the product of the wear parameter for the ref-
erence model multiplied by Qi. So under constant loading,
the linear model, or any other damage model that predicts a
constant Ȧ under uniform loading, will produce accurate pre-
dictions. But, if the future loading is different than the current
loading, then the product wAQi will change and the wear pa-
rameter estimated for the linear model will no longer be valid.
This is illustrated in Fig. 7. At tP , Qi increases by 30%. The
algorithm using the reference damage model captures the re-
lationship between Ȧ andQi consistently with the simulation,
and predicts EOL to be a little over 25 hours. In contrast, the
linear model overestimates the RUL, because its wear param-
eter was tuned to the previous value of Qi, and results in a
RA of only around 80%. So for complex loading situations,
it is important to correctly capture the relationship between
loading and damage progression.

Model v RA RMADRUL

M 0 97.80 11.61
1 97.57 11.43
10 97.50 11.18

MLinear 0 79.93 10.72
1 83.93 10.79
10 82.45 9.41

MSquared 0 78.05 11.59
1 79.68 12.15
10 74.59 11.17

MPoly 0 78.43 6.07
1 78.94 9.09
10 76.48 11.76

MExp 0 82.34 9.23
1 79.87 12.43
10 69.37 21.32

Table 2. Prognostics Performance for Thrust Bearing Wear

The prognostics performance results for thrust bearing wear
using different damage models and different levels of process
noise variance are shown in Table 2. Results for radial bearing
wear are similar, since the same damage models were used,
and are omitted here. For the thrust bearing wear, only the
case using the correct damage model obtains reasonable ac-
curacy. The estimation results for some of the damage models
are shown in Fig. 8. In all cases, the damage variable, rt, was
tracked well. With the algorithm using the reference damage
model, the wear parameter is tracked well and after conver-
gence remains approximately constant. In contrast, the lin-
ear model does not capture the relationship with ω correctly
(i.e., in the reference model it is really a function of ω2), so
as ω changes between the two RPM levels, the estimate of
the wear parameter must constantly increase and decrease to
correctly track the damage progression. Further, because the
rate of damage progression in the reference model increases
over time (since it is a function of rt), and the linear model
does not capture that behavior, its wear parameter estimate
must increase over time. With the polynomial model also,
the parameter estimates do not take on constant values. This
is also due partly to the fact that a wide number of pairs of
wt1 and wt2, i.e., multiple solutions to the damage progres-
sion equation, can track the short-term damage progression
well. Hence, the wear parameter estimates can change over
the long-term while still tracking short-term, leading also to
an increased variability in the prediction accuracy.
The prediction performance is compared in Fig. 9. The algo-
rithm using the reference model obtains accurate predictions.
On the other hand, the other models consistently overestimate
the RUL, because at any point in time they are underesti-
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Figure 8. Thrust bearing wear parameter estimation.

mating the rate of damage progression that would occur in
the future. So, early on, the predictions are overly optimistic
and could result in poor decisions based on that information.
These models also produce very similar predictions. For the
reference modelM, PH is around 95%, but for the remaining
models, PH is around 30% or worse, so, for these models, ac-
curate predictions are only being obtained with less than 30%
life remaining, as observed in Fig. 9.
Note also that as the process noise increased, the algorithm
using the reference model had only small decreases in perfor-
mance, whereas for the other models, performance decreased
quite significantly. In this case it was more difficult for the
particle filters using these models to track damage over the
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Figure 9. Thrust bearing RUL prediction performance.

short term, which resulted in a greater variation in the wear
parameter estimates, leading to large decreases in accuracy.
Overall, this analysis illustrates the trade-off in the develop-
ment of models of damage progression. In some cases, sim-
ple, more abstract or less granular models may suffice, es-
pecially if the system load remains constant. But with more
complex operational scenarios, the need for a damage model
that accurately captures the relationship with the load is nec-
essary. In the case of the thrust bearing wear, even though the
current and future inputs were the same, the fact that all of the
less granular models did not account for the relationship be-
tween ṙt and rt, which caused the damage progression rate to
increase over time, resulted in poor prognostics performance,
even for the more complex models. The more complex mod-
els, i.e., those with more unknown wear parameters, allowed
more flexibility to correctly approximate the correct damage
progression function, but this also increased the dimension
of the joint state-parameter space and made estimation more
difficult.

8. CONCLUSIONS

We presented a model-based prognostics methodology, and
investigated the effect of the choice of damage progression
models on prognostics performance. In prognostics mod-
eling, accurate damage progression models are crucial to
achieving useful predictions. Using a centrifugal pump as a
simulation-based case study, we developed several different
damage progression models, and, assuming some physics-
based wear equations as the reference form, compared the
performance of the prognostics algorithm using the different
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models. In some cases, such as under cyclic or constant load-
ing, it was shown that simple linear models may suffice. Some
models also performed poorly early on but achieved accurate
predictions before 50% life remaining. But, omitting addi-
tional interactions within the damage progression models may
cause inaccurate results, even under simple loading scenar-
ios. Further, even though the prognostics algorithm was ro-
bust enough to track the damage with all the different models,
this did not translate to accurate predictions when a different
damage progression model was used relative to the reference
model.
In future work, we will extend this analysis to other domains
such as electrochemical systems and electrical devices, in
order to establish general design guidelines for prognostics
models. For a desired level of prognostics performance, we
want to be able to determine what level of model granularity
is necessary. These ideas also apply to data-driven models,
and models for diagnosis, which will be addressed in future
work as well.
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