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ABSTRACT

It is an inescapable truth that no matter how well a system
is designed it will degrade, and if degrading parts are not re-
paired or replaced the system will fail. Avoiding the expense
and safety risks associated with system failures is certainly a
top priority in many systems; however, there is also a strong
motivation not to be overly cautious in the design and mainte-
nance of systems, due to the expense of maintenance and the
undesirable sacrifices in performance and cost effectiveness
incurred when systems are over designed for safety. This pa-
per describes an analytical process that starts with the deriva-
tion of an expression to evaluate the desirability of future con-
trol outcomes, and eventually produces control routines that
use uncertain prognostic information to optimize derived risk
metrics. A case study on the design of fault-adaptive control
for a skid-steered robot will illustrate some of the fundamen-
tal challenges of prognostics-based control design.

1. INTRODUCTION

Some form of risk management can be seen in virtually every
decision that human beings make. Typically, the desirabil-
ity of future outcomes can be objectively evaluated; however,
evaluating the best present control decision is complicated by
uncertainty in estimating the future effects of control actions.
In the case of controlling a system with incipient faults, the
design objective is to obtain a system with high performance,
low maintenance cost, and low failure rates. The effects of
decisions regarding the design, maintenance, and operation
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of a system on its future performance, maintenance cost, and
failure rates are commonly estimated by using empirical data
or expert knowledge to assess probable outcomes.
The fault analysis process typically starts with the iden-
tification of potential failure modes and the quantification
of the severity and likelihood of each, based on expert
knowledge and historical data. The Failure Modes, Ef-
fects, and Critically Analysis (FMECA) is one of the most
widely applied a priori fault analysis methods; it is currently
nearly universally applied in industrial automation (Gergely,
Spoiala, Spoiala, Silaghi, & Nagy, 2008), automotive (SAE,
1994), and aerospace (Saglimbene, 2009) industries. Fault
Tree Analysis (FTA), Event Tree Analysis (ETA), Reliability
Block Diagrams (RBD), and other fault analysis techniques
that utilize historical failure rates will continue to play an ever
more prominent role in the design of hardware specifications
and contingency management policies.
In addition to the established practice of utilizing historical
fault data to manage failure risks, there is also a growing
push to develop technologies for online fault identification
and fault growth prediction to improve system operation and
maintenance. Online anomaly detection and diagnostic rou-
tines are enabling an increased use of condition based main-
tenance and control (CBMC) policies (Rao, 1998). Pseudo-
inverse (Caglayan, Allen, & Wehmuller, 1988), model pre-
dictive control (MPC) (Monaco, Ward, & Bateman, 2004),
and H2 and H∞ robust control theory (Doyle, Glover, Khar-
gonekar, & Francis, 1987) are commonly used methods to re-
cover controllability of a system after a known fault mode is
detected. Further improvements in performance and safety
are expected if the diagnostic information used by CBMC
routines is supplemented with prognostic routines that predict
the growth fault modes as a function of future use; however,
the development and use of prognostic information is typi-
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cally an extremely challenging proposition due to significant
uncertainty in predicting future fault growth. Prudent meth-
ods for modeling fault diagnostic and prognostic uncertainty
should be selected on a case-by-case basis; particle Filtering
and Bayesian Reasoning are commonly used for estimating
fault magnitudes and predicting future growth based on un-
certain measurements and physical modeling (Arulampalam,
Maskell, Gordon, & Clapp, 2002; Orchard, Kacprzynski,
Goebel, Saha, & Vachtsevanos, 2008; Saha & Goebel, 2008;
Sheppard, Butcher, Kaufman, & MacDougall, 2006).
The analytical approach to fault-adaptive control design that
is introduced in this paper will assume that a non-empty
space of current control actions to maintain system stability
is known, and the controller must attempt to select control
actions from that space to best manage the risk posed by de-
grading components. The future effects of control actions will
be represented by generic probability distributions and con-
trol actions for best risk management will be derived by at-
tempting to optimize an objective function that quantifies the
relative aversion to the risk posed by further degrading com-
ponents and the risk of degrading future system performance.
Candidate metrics for evaluating risk from uncertain prognos-
tic estimates may be drawn from the growing body of publi-
cations on vehicle health management (IVHM) (Srivastava,
Mah, & Meyer, 2008); although, nearly all current studies in
this area consider only end of life predictions in risk calcula-
tions and ignore data regarding short term fault growth, which
will not be ideal in many cases. Literature on risk manage-
ment in finance and actuarial science contain a rich array of
tools that facilitate flexible risk-reward analysis on a contin-
uous scale over a finite horizon. For example, Black-Scholes
models (Lauterbach & Schulz, 1990) and value at risk (VaR)
(Venkataraman, 1997) are prolific financial risk management
tools that are also promising candidates for analyzing prog-
nostic predictions (Schreiner, Balzer, & Precht, 2010).
This paper will explore the fundamental principles behind the
derivation, verification, and validation of controls for optimal
risk management on systems with incipient faults that grow in
severity with increased component loading. The utility of var-
ious VaR based risk metrics for evaluating risk over a prog-
nostic horizon, will be explored in a case-study on the use
of prognostics-based load-allocation control for an unmanned
ground vehicle (UGV).

2. PROGNOSTICS FOR RISK MANAGEMENT

The risk analysis process should begin with the definition of
an analytical expression to evaluate the desirability of future
control outcomes. In practice some form of scenario analy-
sis should be used to derive and validate evaluation metrics
though empirical studies (Abhken, 2000). Evaluation func-
tions for future control outcomes represent the relative value
of preserving nominal system performance and minimizing
component degradations or failures for given scenarios.

A general form of an outcome evaluation function is

JM (x (t)) + Jd
(
dTi
)
, {t = t0..T}, {i = 1, 2, ..N} (1)

where x (t) represents the system state at time t, dTi represents
the amount that component i has been degraded at the end of
the mission, JM (x (t)) evaluates how well the system con-
formed to mission specifications and mission priorities over a
mission that starts at t = t0 and ends at t = T , and Jd

(
dTi
)

evaluates the cost associated with the final state of degrada-
tion for each of the N components. The problem of specify-
ing control actions to maximize this evaluation function will
be referred to as the intrinsic optimization problem.
Due to uncertainty in the way faults grow with component
loading and uncertainty regarding external operating condi-
tions, it is generally impossible to design a controller that
solves the intrinsic optimization problem directly; however,
any control technique that claims to manage or mitigate the
risk posed by load dependent fault modes can be viewed as
being implicitly derived based on the optimization of an in-
trinsic cost function. The development of analytical tools that
utilize knowledge of the intrinsic cost function in the design
of prognostics-based fault-adaptive controllers will facilitate
an understanding of the benefits of proposed approaches, as
well as their fundamental limitations.

3. COMPONENT LOAD-ALLOCATION

In a broad variety of systems the performance of the system
and the growth of potential faults can be viewed as being di-
rect functions of component loads. In general, the fault adap-
tive control problem can be fully understood in terms of a
search for optimal performance and risk metrics that are eval-
uated on the space of allowable component loads over a given
prognostic horizon. The space of allowable component load-
allocations over a given prognostic horizon and the methods
used to derive that space, will vary from one application to
the next; however, many aspects of the fundamental search-
ing problem will be invariant across a range of applications,
facilitating the development of widely applicable analysis and
control techniques.
The domain of allowable component load allocations over a
given prognostic horizon will be defined at each control time-
step using available system modeling and prognostic informa-
tion to translate tolerances on performance degradations and
fault growth risks into the component control domain. If the
system is overactuated then the search for optimal compo-
nent load allocations can be decomposed into two reduced-
order sub-problems. An output control effort optimization
will search for the optimal net system output control effort,
and a restricted component load optimization will utilize any
inherent overactuation in the system to find load allocations
that minimize component degradations while providing the
system output force requested by the output control effort op-
timization routine.
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The separation of the component loading and system output
regulation tasks will be shown for a generic nonlinear system,

ẋ = A (x) +B (x)u (2)

where A (x) ∈ Rn, B (x) ∈ Rn×m, x (t) ∈ Rn, is the state,
and u (t) ∈ Rm is the control effort or load on each of the
m components in the system. If B (x) does not have full col-
umn rank, i.e, rank{B (x)} = k < m ∀x, then the system is
overactuated, and B (x) can be factorized as:

B (x) = Bν (x)Bu (x) (3)

where Bν (x) ∈ Rn×k and Bu (x) ∈ Rk×m both have rank
k. Now the system can be rewritten as:

ẋ = A (x) +Bν (x)ν
ν = Bu (x)u

(4)

where ν(t) ∈ Rk can be interpreted as the net control effort
produced by the m system components.
Because Bν (t) has full column rank, a desired system out-
put will uniquely determine the net output control effort,
ν (t) (using the pseudo inverse); however, since Bu (x) has
a nullspace of dimension m − k there are available degrees
of freedom in assigning component loads, u (t), for a given
ν. Then component loads for best risk management can ef-
fectively be expressed as a function of ν, where any inherent
redundancies in actuation, identified by the null space of Bu,
are used to minimize component damages while still resulting
in the net control effort commanded.
Practical applications of control allocation are currently found
in aerospace (Gokdere, Bogdano, Chiu, Keller, & Vian, 2006;
Karpenko & Sepehri, 2005) and automotive vehicles (Hattori,
Koibuchi, & Yokoyama., 2002). A survey of efficient meth-
ods for determining the optimal control allocation for general
linear and nonlinear systems is discussed in (Oppenheimer,
Doman, & Bolender, 2006). Proof of the equivalence of
this type of control allocation and optimal control is given
in (Harkegard & Glad, 2005), for nonlinear systems with
quadratic cost functions.

3.1 Load-Allocation as a Bounded Optimization

The objective of the general fault-adaptive control problem is
to select the current component load allocations in an attempt
to optimize the system’s intrinsic cost function. In this work,
component loads are allocated at the current control time-step
by attempting to optimize an objective function that uses sys-
tem modeling and fault prognostic information to quantify the
expected trade-off between system performance and fault risk
over a specified prognostic horizon. Constraints on allow-
able system performance and fault growth risk over a prog-
nostic horizon will be enforced in the domain of allowable
component load allocations in an attempt to satisfy minimum
remaining-useful-life requirements for failing components.

The analysis presented in this document will use a fault risk
metric of the following generic form:

f
(
d̃i (t+ τ)

)
, Pr

(
di (t+ τ) > d̃i (t+ τ)

)
=α,

{i = 1, 2, ..N} , given {ui (t) ...ui (t+ τ)} (5)

where τ is the length of the prognostic horizon, di (t) is the
estimated degradation of component i at time t, d̃i(t + τ)
is a VaR estimate for component damage at the prognostic
horizon, and f(d̃i(t + τ)) represents a risk metric that penal-
izes VaR estimates. VaR estimates are defined as the thresh-
old damage such that the probability of the actual damage
exceeding a given magnitude at a given future time equals
α. Published literature contains relatively few examples of
VaR being employed to manage the risk posed by incipient
fault models; however, VaR is a standard risk assessment
tool in finance, and it is powerful and widely applicable tool
for risk management in systems with degrading components
(Schreiner, Balzer, & Precht, 2008; Schreiner et al., 2010;
Venkataraman, 1997).
A general form of the cost function used to represent the rel-
ative aversion to the risk of degrading future system perfor-
mance and the risk posed by degrading components is

g (|ν − r|) |t+τt + f
(
d̃i (t+ τ)

)
(6)

where r represents the desired net output control effort re-
quired for nominal performance and g(|ν−r|) penalizes per-
formance degradation over a given prognostic horizon.
In published literature on prognostics for risk management
there is a nearly ubiquitous use of expected remaining use-
ful life (RUL) or expected time to failure (TTF) estimates to
assess risk; however, in general, the methodology used to as-
sess risk from fault prognosis information should be tailored
to the system’s expected use, its maintenance costs, the dan-
ger of potential failure modes, and the growth of uncertainty
over a prognostic horizon. In this paper, the length of the
prognostic horizon and the utility of various metrics for quan-
tifying risk from prognostic predictions will be explored as a
design choice. In cases where RUL or TTF based risk metrics
are deemed most appropriate they can be realized as a spe-
cial case of finite horizon prognosis, in which the prognostic
horizon is extended until component failure is assured.
Constraints on allowable system performance are defined ei-
ther in terms of a maximum deviation from commanded sys-
tem states or a maximum deviation from the desired nominal
system output force at a given time,

|yc − yo| ≤∆ (t) (7)

|ν − r| ≤ ∆̃ (t) (8)
A finite horizon prognosis constraint will place an upper-
bound on the probability that a component will become dam-
aged by more than a specified amount over the prognostic
horizon. This constraint is written as follows:

Pr (di (t+ τ) > γi (t+ τ) |ui (t)) ≤ β (9)
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where γi (t+ τ) is the maximum allowable fault dimension at
time t+τ and β is the upper bound on the probability that the
fault dimension of component i is larger than its maximum
allowable value at time t+ τ .

3.2 Verifying Constraint Feasibility

If the future performance requirements are known in advance,
then the existence of feasible solutions to the optimal compo-
nent load allocation problem can be verified by first finding
the minimum allowable net output control effort needed to
satisfy the performance constraints;

ν̃ = min
ui

{ν} , s.t. |ν − r| = ∆̃ (t) , ∀t (10)

where ν̃ is the minimum allowable net output control effort
under the performance constraint. Feasible solutions to the
optimal load-allocation problem exist if there exists a distri-
bution of component loads that result in ν̃ and do not violate
the prognostic constraint at the end of the mission. This con-
dition is written as follows:

Pr (di (T ) > γi (T ) |ui (t)) ≤ β,
s.t. ν̃ = Bu (x (t))u, t ∈ [t0, T ] (11)

4. UGV APPLICATION EXAMPLE

Simulation studies for optimal load-allocation on a skid-
steered UGV will demonstrate some of the fundamental prop-
erties of the proposed control methods. As shown in Figure
1, each of the wheels in a skid steered vehicle are fixed to the
frame and are pointing straight forward. The system is over-
actuated, as the four motors of the four-wheeled UGV are
linked through their mutual contact with the ground. Assum-
ing that all of the robot’s wheels are getting approximately
the same traction, then a skid-steered wheeled vehicle will
behave much like a treaded vehicle. In the presented simu-
lation studies the UGV’s modeling is simplified by treating
it as a treaded vehicle. The net output control effort of the
modeled UGV is defined as follows:

ν=

[
νf
νφ̇

]
=

[
T1 + T2 + T3 + T4
T1 + T2 − T3 − T4

]
=

[
TL + TR
TL − TR

]
(12)

where νf represents the net motive torque applied in the di-
rection of travel, νφ̇ represents the net turning torque, TL is
the sum of the motor torques on the left side of the robot, and
TR is the sum of the motor torques on the right side of the
robot.
The UGV model is

Mẋ = −C (x) +B · u

y =

[
r
2

r
2−r

αW
r
αW

]
x

x =

[
wl
wr

]
=

[
w1

w3

]
=

[
w2

w4

]
u =

[
T1 T2 T3 T4

]T
, y =

[
v
φ̇

] (13)

M =

 mr2

4 + r2I
αW 2

mr2

4 −
r2I
αW 2

mr2

4 −
r2I
αW 2

mr2

4 + r2I
αW 2


B =

[
1 1 0 0
0 0 1 1

] (14)

where the coefficients in this model are defined in Table 1.
Note that the UGV model is linear except for a possibly non-
linear fictional force, C (x), and the system is overactuated,
because the B matrix does not have full column rank.
In simulations linear kinetic friction will be used,

C (x̂) =

[
k/2 k/2
k/2 k/2

]
(15)

M1

F1

F2

F3

F4

W

νf

v

M2

φ& φ&ν

M4

M3
Ti Fi

Figure 1. Visualization of motor torque allocation for a UGV

Symbol Description Units Value
r Wheel radius m 0.1
W Vehicle width m 0.4
I Wheel rotational inertia kg·m2 0.1
m Vehicle mass kg 1

C (x) Frictional force N -
wi Wheel speed of motor i rad/s -
wl Left side wheel speed rad/s -
wr Right side wheel speed rad/s -
Ti Torque produced by motor i N·m -
v Vehicle speed m/s -
φ̇ Vehicle angular velocity rad/s -
α Terrain-dependent parameter - -

Table 1. Definitions of symbols used in the UGV model

4.1 Prognostic Modeling

Winding insulation breakdown is a primary failure mecha-
nism for the UGV’s motors. The following model is used
to estimate winding insulation lifetimes as a function of tem-
perature,

LN (t) = αe−βTW (t) (16)
where LN is the expected remaining useful life (RUL) for
new insulation in seconds and TW (t) (◦C) is the winding
temperature at time t (Montsinger, 1930).
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The RUL estimate for a motor winding at any given time is
calculated using:

L (t) = LN (t) ·
(
1− d (t)

100

)
(17)

where d(t) is the percentage of insulation lifetime used prior
to time t,

d (t) =

∫ t

0

dτ

L (τ)
(18)

A probability distribution is added to the α coefficient in Eq.
(16) to capture uncertainty in the prognostic model. Fig-
ure 2 shows the resulting probabilistic insulation life ver-
sus temperature model, where the pdf’s mean corresponds
to α = 105 (s) , and standard deviations are given by α =
105 ± 1.5 × 104. The β coefficient in Eq. (16) is set to
0.035 (◦C−1).

50 100 150 200 250 300
10

0

10
1

10
2

10
3

10
4

10
5

Temperature (°C)

R
U

L ne
w

(s
)

4 σ

Figure 2. Addition of an uncertainty pdf to the insulation
breakdown model.

Thermal Model
A first order thermo-electrical model, shown in Figure 3, is
used to track the winding-to-ambient temperature as a func-
tion of copper losses,

Ṫwa = − Twa(t)

RwaCwa
+
Ploss(t)

Cwa
(19)

where Twa is winding-to-ambient temperature, Ploss is power
loss in the copper windings, Cwa is thermal capacitance, and
Rwa is thermal resistance.

Figure 3. Thermal model for motor windings

5. SIMULATION STUDIES

In simulation studies of the UGV load-allocation problem, the
intrinsic optimization problem, introduced in Eq. (1), is de-
fined using the following performance and component degra-
dation penalties:

JM (ν) =
1

T

∫ T

0

exp |φc (t)− φ (t)|+Kp1 (20)

Jd (u) = max
i

[
exp

(
d̃i (T )

)
· 4
3

]
+Kp2 (21)

where φc(t) and φ(t) represent waypoints for the desired and
actual path followed by the UGV respectively. Kp1 and Kp2

are penalty functions that effectively enforce constraints on
the maximum acceptable path error and the maximum accept-
able VaR estimate at the end of a mission. Performance and
component degradation constraints are defined as follows:

|φc(t)− φ(t)| < 1, ∀t ∈ [0, .., T ] (22)

d̃i (T ) < 90% (23)

The performance and prognostic penalties introduced in Eq.
(5) and Eq. (6) are defined as follows:

g (|ν − r|) =
∫ t+τ

t

∣∣∣∣exp
([

rf − νf
rφ̇ − νφ̇

])∣∣∣∣ dz (24)

f
(
d̃i (t+ τ)

)
=λ ·

4∑
i=1

[ exp
(
d̃i (t+ τ)− γi (t+ τ)

)
+ exp

(
d̃i (t+ τ)

)
+Cp] (25)

Pr
(
di (t+ τ) > d̃i (t+ τ)

)
=2% (26)

where λ represents the relative value of maximizing perfor-
mance and minimizing component degradations, γi (t+ τ) is
an upper-bound on the 98% confidence VaR estimates at time
t + τ , and Cp is an additional penalty that effectively disal-
lows controls that cause the upper VaR bound to be exceeded
(if other solutions exist). Simulation studies presented later in
this paper will explore the effect of varying τ and λ on the sys-
tem’s intrinsic evaluation function. In the reported simulation
studies, γi (t+ τ) is defined using a linear interpolation from
d̃i(t) to the maximum allowable degradation at the end of the
mission. The effect of varying the formulation of γi (t+ τ)
on load-allocation in a triplex redundant electro-mechanical,
was explored in a previous publication (Bole et al., 2010).
In simulations, the cost of possible motor load allocations is
evaluated by assuming that the current demands on the sys-
tem and the current component load allocations are constants
over the prognostic horizon. The space of feasible motor-load
allocations to be searched over is defined by the following
performance constraint:

0.8 · rL ≤ TL ≤ 1.2 · rL
0.8 · rR ≤ TR ≤ 1.2 · rR

(27)
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Figure 4. Plots of winding insulation degradation estimates (mean and ± 2 standard deviations) on the desired UGV path (a)
and the minimum allowable performance path (b), using λ & τ such that Jd (u (t)) |λ,τ = minλ,τ [Jd (u (t))]

where rL and rR are desired net control effort outputs from
the left-hand and right-hand motors respectively. The desired
torque output from the UGV at a given time instant is defined
by the following proportional control law:

r=

[
rL + rR
rL − rR

]
=rref (t)+

[
p1 · cos (φe) · ed
p2 · sin (φe)

]
(28)

where rref (t) is output control effort that would be used at
time t if the vehicle followed the reference path exactly, pi are
the proportional control coefficients, φe is the vehicle’s head-
ing error with respect to the reference path, and ed is the ve-
hicle’s position error with respect to the reference path. Com-
ponent load allocations for best risk management are found at
each time-step by evaluating the objective function on a suf-
ficiently dense uniform grid over the space of all component
load allocations satisfying the performance constraints.

5.1 Verifying Mission Feasibility

In the simulation studies discussed here, the four-wheeled
UGV is commanded to follow a figure-8 type path. By de-
sign, the commanded path is so demanding that following it
exactly will yield no solutions to the load-allocation problem
that satisfy the final VaR constraint (defined in Eq. (23)). The
existence of solutions to the load-allocation problem that will
not violate the performance and VaR constraints for the given
mission is proven by verifying that using the minimum allow-
able UGV performance over the mission will allow all mo-
tors to end the mission with adequate health. Figure 4 shows
simulation results for load-allocation controls that minimize
the final VaR evaluation metric (defined in Eq. (21)) on the
minimum allowable UGV performance path and the desired
UGV path. As shown in the figure, the motors on each side
of the vehicle are initialized at different levels of degrada-

tion in order to observe discrimination in the allocation motor
loads based on their relative healths. The simulation results,
shown in Figure 4, prove that although following the desired
UGV path exactly is guaranteed to result in violation of the
final VaR constraint, the load-allocation problem does have
feasible solutions satisfying both the performance and VaR
constraints.

5.2 Control with Foreknowledge of the Mission and the
Fault Growth Model

Due to the fact that in simulation studies the desired path for
the UGV and a fault growth model are known in advance,
the optimal load allocations over the given mission can be
approximated without the need for prognosis. Analysis of
the direct optimization of the system’s intrinsic cost func-
tion over a known mission will provide substantial insight into
the development of prognostics-based risk-management con-
trollers. Optimization routines will specify candidate UGV
paths over a mission by defining a set of waypoints and using
a third order spline to interpolate between those points.
The search space for the path planning routines is the set all
adjustments to given waypoints that will not violate the per-
formance constraint, given in Eq. (22). The net output control
effort output required to follow a given path is found by in-
verting the modeled UGV dynamics given in Eq. (13),[

TL (t)
TR (t)

]
= f−1

(
φp (t)

)
, ∀t ∈ [0, .., T ] (29)

where φp (t) is the (x,y) position of the UGV at time t.
Individual motor load allocations are derived using the fol-
lowing expression for splitting load proportionately among
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d̃1 (T ) d̃2 (T ) d̃3 (T ) d̃4 (T ) Jd|T0 JM |T0 (JM + Jd) |T0
min allowable performance path 49% 73% 49% 73% 2.76 2.16 4.93

load-allocation with future knowledge 64% 64% 64% 64% 2.52 1.69 4.21
prognosis based load-allocation 70% 86% 70% 86% 3.17 1.58 4.76

Table 2. Results of simulation studies

the two motors on each side of the vehicle:
T1 (t) · k1 + T2 (t) = TL (t)
T3 (t) · k2 + T4 (t) = TR (t)

(30)

Optimal motor load allocations for a given path are derived
by evaluating Eq. (1) over sufficiently dense uniform grid on
k1 and k2, and selecting the value resulting in minimum cost.
Figure 5 shows plots of the desired UGV path, the bounds
on allowable path error, and an approximation of the optimal
UGV path, for one cycle of the commanded figure-8 maneu-
ver. The simulated mission consists of eight repetitions of
this figure-8 maneuver. A nested optimization is used to es-
timate the optimal motor load allocations over the given mis-
sion. An outer-loop optimization routine uses a gradient de-
scent search over the space of allowable adjustments to a set
of waypoints, where the space of allowable adjustments to
each waypoint is shown in Figure 5 as the linear region be-
tween the black circles. An inner loop optimization routine
finds the net output torque from the left-hand and right-hand
motors required to follow eight repetitions of a given figure-
8 path, and then searches for the optimal proportional load
split among the motors on each side of the vehicle using the
uniform grid method described earlier.
Estimates of the optimal VaR metrics for the winding insu-
lation degradations and the control evaluation costs for the
given mission are shown in Table 2. Note that the estimated
optimal motor load-allocations will result in final winding

VaR estimate being nearly equal for all four motors, due the
fact that the control evaluation function is defined to penalize
only the highest motor degradation. Also, note that the er-
ror between the commanded and the estimated optimal path
is greatest in the extreme upper and lower regions of the
figure-8 path because introducing an error in those regions
results in the greatest reduction in the total distance traveled
by the UGV. Both of these results are expected when the fu-
ture commanded UGV path and the future fault grown model
are known in advance; however, in general, it will be very
difficult to match those results with controllers that rely on
uncertain predictions of future states.

5.3 Prognostics-Based Control

At each control time-step, a prognostics-based controller will
allocate motor loads to best manage the risk posed by uncer-
tain estimates of future system performance and fault progno-
sis. In simulation, motor load-allocations for best risk man-
agement are derived by evaluating Eq. (6) on a sufficiently
dense uniform grid over the space of all motor loads satisfying
the performance constraint. Fundamentally, the prognostics-
based control problem is to specify risk-reward evaluation
metrics, of the form given in Eq. (6), that will result in
the derived controls coming as close as possible to match-
ing the minimum control evaluation metric achievable using
foreknowledge. Figure 6 shows plots the intrinsic evaluation
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(a) Performance degradation penalty (b) Motor degradation penalty

(c) Net evaluation metric
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(d) Net control effort outputs for best computed λ & τ

Figure 6. UGV simulation results for λ = [0, 3, 6, ..., 160] and τ = [.4, 1.6, 2.8, ..., 24.4]; optimal value at λ = 100 & τ = 3.6s

metrics over a range of values for the prognostic horizon, τ ,
and the weighting factor, λ. The intrinsic evaluation metrics,
shown in the plots, were obtained by computing the optimal
motor load-allocations at each control time-step, after substi-
tuting τ and λ into the evaluation functions for predicted fu-
ture component degradations and system performance, which
were defined in Eq. (24) and Eq. (25). In general, as the
prognostic horizon is increased the increased uncertainty in
fault growth predictions will result in a greater perceived risk,
and thus a more conservative control. Also, increasing the
weighting factor, λ, on the prognostic penalty will tend to re-
sult in solutions with higher path errors and less component
degradations. Plots of the intrinsic evaluation metrics versus
λ and τ show these general trends. The trough seen in Fig-
ure 6 (c) indicates a domain of τ and λ values corresponding
to controls that are neither overly conservative nor overly ag-
gressive. The best computed intrinsic control evaluation costs
and the corresponding winding insulation degradation VaR’s
at the end of the mission are given in Table 2. Future work
will continue to explore the analytical relationships between
the metrics used to evaluate risk from prognostic estimates
and their resultant performance on example systems.

6. CONCLUSION

Any control technique that claims to manage or mitigate the
risk posed by load dependent fault modes can be viewed
as being implicitly derived based on the risk-reward opti-
mization that was explicitly addressed in this work. The
paper introduced a methodology for deriving and validating
prognostics-based fault-adaptive control routines that began
with the derivation of an expression for evaluating the desir-
ability of future control outcomes, and eventually produced
control routines that sought to optimize derived risk met-
rics using uncertain prognostic information. A case study on
the design of fault-adaptive control for a skid-steered robot
demonstrated some of the challenges associated with deriv-
ing risk metrics that will minimize the risk of component fail-
ures without becoming overly conservative and unnecessarily
sacrificing performance. Future work will introduce more so-
phisticated methods for utilizing stochastic prognostic infor-
mation to associate risk with a given distribution of compo-
nent loads; more sophisticated methods for solving the result-
ing stochastic optimization problems will also be explored.
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