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ABSTRACT 

An approach for predicting remaining useful life of power 
MOSFETs (metal oxide field effect transistor) devices has 
been developed. Power MOSFETs are semiconductor 
switching devices that are instrumental in electronics 
equipment such as those used in operation and control of 
modern aircraft and spacecraft. The MOSFETs examined 
here were aged under thermal overstress in a controlled 
experiment and continuous performance degradation data 
were collected from the accelerated aging experiment. Die-
attach degradation was determined to be the primary failure 
mode. The collected run-to-failure data were analyzed and it 
was revealed that ON-state resistance increased as die-attach 
degraded under high thermal stresses. Results from finite 
element simulation analysis support the observations from 
the experimental data. Data-driven and model based 
prognostics algorithms were investigated where ON-state 
resistance was used as the primary precursor of failure 
feature. A Gaussian process regression algorithm was 
explored as an example for a data-driven technique and an 
extended Kalman filter and a particle filter were used as 
examples for model-based techniques. Both methods were 
able to provide valid results. Prognostic performance 
metrics were employed to evaluate and compare the 
algorithms. 

1. INTRODUCTION 

Power semiconductor devices such as MOSFETs (Metal 
Oxide Field Effect Transistors) and IGBTs (Insulated Gate 
Bipolar Transistors) are essential components of electronic 

and electrical subsystems in on-board autonomous functions 
for vehicle controls, communications, navigation, and radar 
systems. Until very recently it was common wisdom that 
electronic devices fail instantly without any prior indication 
of failure. Therefore, current maintenance schedules are 
usually based on reliability data available from the 
manufacturer. This approach works well in aggregate on a 
large number of components, but, owing to the statistics, 
failures on individual components are not necessarily 
averted. For mission critical systems it is extremely 
important to avoid such failures. This calls for condition 
based prognostic health management methods. The science 
of prognostics is based on the analysis of failure modes, 
detection of early signs of wear and aging, and fault 
conditions. Predictions are made in-situ on individual in-
service components. The signs of early wear are then 
correlated with a damage propagation model and suitable 
prediction algorithms to arrive at a remaining useful life 
(RUL) estimate. 

To carry out prognostics on electronic components it is 
essential to understand the failure modes, their effects, and 
the physics of fault propagation. This requires analysis of 
run-to-failure data. Since more often than not current 
systems are not adequately instrumented to provide 
necessary information from electronic components to build 
health management algorithms, dedicated experiments are 
needed to fill that gap. In particular, accelerated aging 
allows collecting run-to-failure data in a manageable 
timeframe. The prognostic technique for a power MOSFET 
presented in this paper is based on accelerated aging of 
MOSFET IRF520Npbf (which comes in a TO-220 
package). The aging methodology utilizes thermal and 
power cycling and was validated with tests using 100V 
power MOSFET devices. The major failure mechanism for 
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the stress conditions is die-attachment degradation, typical 
for discrete devices with lead-free solder die attachment. It 
has been determined in these experiments that die-attach 
degradation results in an increase in ON-state resistance due 
to its dependence on junction temperature. Increasing 
resistance, thus, can be used as a precursor of failure for the 
die-attach failure mechanism under thermal stress. Data 
collected from these experiments were augmented by a 
finite element analysis simulation based on a two-transistor 
model. The features based on normalized ON-resistance 
were computed from in-situ measurements of the electro-
thermal response. A Gaussian process regression (GPR) 
framework to predict time to failure was used as a data-
driven prognostics technique. The extended Kalman filter 
(EKF) and the particle filter (PF) were used as model-based 
prognostics techniques based on the Bayesian tracking 
framework. 

2. RELATED WORK 

In (Saha, Celaya, Wysocki, & Goebel, 2009a) a model-
based prognostics approach for discrete IGBTs was 
presented. RUL prediction was accomplished by using a 
particle filter algorithm where the collector-emitter current 
leakage has been used as the primary precursor of failure. A 
prognostics approach for power MOSFETs was presented in 
(Saha, Celaya, Vashchenko, Mahiuddin, & Goebel, 2011). 
There, the threshold voltage was used as a precursor of 
failure; a particle filter was used in conjunction with an 
empirical degradation model. The latter was based on 
accelerated life test data. 

Identification of parameters that indicate precursors to 
failure for discrete power MOSFETs and IGBTs has 
received considerable attention in the recent years. Several 
studies have focused on precursor of failure parameters for 
discrete IGBTs under thermal degradation due to power 
cycling overstress. In (Patil, Celaya, Das, Goebel, & Pecht, 
2009), collector-emitter voltage was identified as a health 
indicator; in (Sonnenfeld, Goebel, & Celaya, 2008), the 
maximum peak of the collector-emitter ringing at the turn of 
the transient was identified as the degradation variable; in  
(Brown, Abbas, Ginart, Ali, Kalgren, & Vachtsevanos, 
2010) the switching turn-off time was recognized as failure 
precursor; and switching ringing was used in (Ginart, 
Roemer, Kalgren, & Goebel, 2008) to characterize 
degradation. For discrete power MOSFETs, on-resistance 
was identified as a precursor of failure for the die-solder 
degradation failure mechanism (Celaya, Saxena, Wysocki, 
Saha, & Goebel, 2010a; Celaya, Patil, Saha, Wysocki, & 
Goebel, 2009). A shift in threshold voltage was named as 
failure precursor due to gate structure degradation fault 
mode (Celaya, Wysocki, Vashchenko, Saha, & Goebel, 
2010b; Saha, et al., 2011). 

There have been some efforts in the development of 
degradation models that are a function of the usage/aging 

time based on accelerated life test. For example, empirical 
degradation models for model-based prognostics were 
presented in (Saha, et al., 2009a) and (Saha, et al., 2011) for 
discrete IGBTs and power MOSFET respectively. Gate 
structure degradation modeling discrete power MOSFETs 
under ion impurities was presented in (Ginart, Ali, Celaya, 
Kalgren, Poll, & Roemer, 2010). 

3. BACKGROUND 

3.1. Accelerated Aging Experiments 

Accelerated aging approaches provide a number of 
opportunities for the development of physics-based 
prognostics models for electronic components and systems. 
In particular, they allow for the assessment of reliability in a 
considerably shorter amount of time than running long-term 
reliability tests. The development of prognostics algorithms 
face some of the same constrains as reliability engineering 
in that both need information about failure events of critical 
electronics systems. However, these data are rarely ever 
available. In addition, prognostics requires information 
about the degradation process leading to an irreversible 
failure; therefore, it is necessary to record in-situ 
measurements of key output variables and observable 
parameters in the accelerated aging process in order to 
develop and learn failure progression models. 

Thermal cycling overstress leads to thermo-mechanical 
stresses in electronics due to mismatch of the coefficient of 
thermal expansion between different elements in the 
component’s packaged structure. The accelerated aging 
applied to the devices presented in this work consisted of 
thermal overstress. Latch-up, thermal run-away, or failure to 
turn ON due to loss of gate control were considered as the 
failure condition. Thermal cycles were induced by power 
cycling the devices without the use of an external heat sink. 
The device case temperature was measured and directly 
used as control variable for the thermal cycling application. 
For power cycling, the applied gate voltage was a square 
wave signal with an amplitude of ~15V, a frequency of 
1KHz and a duty cycle of 40%. The drain-source was biased 
at 4Vdc and a resistive load of 0.2! was used on the 
collector side output of the device. The aging system used 
for these experiments is described in detail in (Sonnenfeld, 
et al., 2008). The accelerated aging methodology used for 
these experiments was presented in detail in (Celaya, et al., 
2010a). 

Figure 1 shows an X-ray image and a scanning acoustic 
image of the device after degradation. It can be observed 
that the die-attach solder has migrated resulting in voids. 
This supports the observation that the thermal resistance 
from junction to case has increased during the stress time 
resulting in increase of the junction temperature and ON-
resistance (RDS(ON)). Figure 2 presents a plot of the measured 
RDS(ON) as a function of case temperature for several 
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consecutive aging tests on the same device. For each test 
run, the temperature of the device was increased from room 
temperature to a high temperature setting thus providing the 
opportunity to characterize RDS(ON) as a function of time at 
different degradation stages. It can be observed how this 
curve shifts as a function of aging time, which is indicative 
of increased junction temperature due to poor heat 
dissipation and hence degraded die-attach. 

a)  

b)  

Figure 1. Failure analysis of a device after thermal 
overstress aging: a) X-ray microscopy of the degraded 

device and b) scanning acoustic microscopy of the degraded 
device. 

 
Figure 2. RDSON degradation process due to die-attach 

damage. 

Seven aging runs were performed in order to provide 
evidence of the underlying hypothesis that damage 
accumulates as a function of aging time and that damage 
rate is higher for aging under higher stress conditions like 
higher operating temperature. Please refer to (Celaya, et al., 
2010a) for further details on the experiments. 

3.2. Device Physics Modeling 

In earlier work, a finite element model (FEM) was 
developed for a power MOSFET similar to the IRF520Npbf 
in order to simulate the physical phenomenon under thermal 
stresses. This work was originally presented in (Celaya, 
Saxena, Vashchenko, Saha, & Goebel, 2011b). I-V 
characteristics at different gate bias voltage (Vgs) were 
obtained while keeping the generic simulation parameters 
reasonably close to the tested MOSFETs. From the mixed-
mode simulation of a single transistor model it was 
observed that the safe operation area (SOA) becomes 
limited at higher temperatures by critical voltages and 
currents that can be identified by the instability points in the 
simulation results. Please refer to (Celaya, et al., 2011b) for 
further details on the simulation setup and results. 

The two-transistor model in figure 3 was developed to 
represent a device with partial die-attach degradation. The 
objective was to represent a degraded device of total area 
Wt, with two independent power MOSFET transistors with 
area W1 and W2 respectively and Wt= W1+W2. The first 
transistor in the model represents the area of the device 
without die-attach damage and nominal thermal resistance 
from junction to case. The second transistor represents the 
area of the device with degraded die-attach and increased 
thermal resistance from junction to case. The second 
transistors runs by principle at higher temperature 
representative of hot spot formation on the device.  

 
Figure 3. Two-transistor model circuit for mixed-mode 
simulation. Finite element models were used for each 

transistor. 

The first transistor has original default parameters including 
the thermal resistance RT1 and area factor 90% while the 
second transistor depicts degradation due to electro-thermal 
stress represented by 10% of area with deviation of the 
thermal resistance coefficient scaled by the parameter K. As 
can be seen from the simulation results in figure 4, even a 
small deviation in the thermal resistance of the second 
transistor (RT2=KxRT1) results in significant reduction of the 

!"#$% 

!"#$& 
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critical voltage in auto bias conditions. Please refer to 
(Celaya, Saxena, Vashchenko, Saha, & Goebel 2011) for 
further details on the simulation setup and results. 

a)  

b)  

Figure 4. Results of numerical analysis for different thermal 
resistance parameters K of the W2=10% second transistor 

model region at 450K heat sink and RT2=KxRT1; a) nominal 
transistor with area W1, b) degraded transistor with area W2. 

This model appears to be a good candidate for use in a 
physics-based degradation model. The model parameters K, 
W1 and W2 could be varied as the device degrades as a 
function of usage time, loading and environmental 
conditions. Parameter W1 defines the area of the healthy 
transistors. The lower this area is, the larger is the 
degradation in the two-transistor model. Parameter K serves 
as a scaling factor for the thermal resistance of the degraded 
transistors. The larger this factor is, the larger is the 
degradation in the model. Similar to the empirical model 
used in this work and presented in later sections, the 
parameters of the two-transistor model should be estimated 
based on the actual fault progression dynamics. 

3.3. Drain to source ON state resistance as a health state 
assessment parameter 

In-situ measurements of the drain current (ID) and the drain 
to source voltage (VDS) are recorded as the device is in the 
aging regime and the power cycling is at 1 kHz square 
waveform. The ON-state resistance in this application was 
computed as the ratio of VDS and ID during the ON-state of 
the square waveform. As indicated in section 3.1, this 
parameter allows the observation of the die-attached 
degradation process and it is used in this study as a feature 
that reflects the state of health of the device. It is broadly 
understood that RDS(ON) increases as the junction 
temperature of the devices increases. In our accelerated 
aging setting, it is not possible to measure junction 
temperature directly, as a result, the increase in junction 
temperature is observed by monitoring the increase in 
RDS(ON) (Figure 2). Furthermore, junction temperature is also 
a function of the case temperature, which is also measured 
and recorded in-situ. Therefore, the measured RDS(ON) was 
normalized to eliminate the case temperature effects and 
reflect only changes due to degradation. 

Due to manufacturing variability, the pristine condition 
RDS(ON) varies from device to device. In order to take this 
into account, the normalized RDS(ON) time series is shifted by 
applying a bias factor representing the pristine condition 
value. The resulting trajectory ("RDS(ON)) from pristine 
condition to failure represents the degradation process due 
to die-attach failure and represents the increase in RDS(ON) 
through the aging process. 

 
Figure 5. Normalized ON-state resistance ("RDS(ON)) and 

filtered trajectory for device #36.  

As described earlier, these measurements are taken during 
the power cycle regime on the ON-state portion of the 
square switching signal. These measurements do not have a 
fixed sampling rate due to the nature of the implementation 
of the data acquisition system. On average, there is a 
transient response measurement every 400 nS. This consists 
of a snapshot of the transient response which includes one 
full square waveform cycle. The algorithms under 
consideration benefit from a uniform sampling in terms of 
ease of implementation and reduced complexity. Since the 
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complexity of GPR is O(n3), computational effort increases 
with number of data points and hence it is important to keep 
the number of training points low. A similar issue is also 
present on the EKF and PF. Therefore a resampling of the 
curve was carried out to have uniform sampling and a 
reduced sampling frequency on the failure precursor 
trajectory. In order to cope with these restrictions, the 
signals were filtered by computing the mean of every one 
minute long window (see Figure 5). 

4. PROGNOSTICS ALGORITHMS 

A prognostics algorithm in this application predicts the 
remaining useful life of a particular power MOSFET device 
at different points in time through the accelerated life of the 
device. Three algorithms are considered in this article, a 
data-driven algorithm based on the Gaussian process 
regression framework, and two model-based algorithms, the 
extended Kalman filter and the particle filter, which are 
based on the Bayesian estimation framework. 

As indicated earlier, "RDS(ON) is used in this study as a 
health indicator feature and as a precursor of failure. The 
prognostics problem is posed in the following way: 

• A single feature is used to assess the health state of the 
device ("RDS(ON)). 

• It is assumed that the die-attached failure mechanism is 
the only active degradation during the accelerated aging 
experiment. 

• Furthermore, "RDS(ON) accounts for the degradation 
progression from nominal condition through failure. 

• Periodic measurements with fixed sampling rate are 
available for "RDS(ON). 

• A crisp failure threshold of 0.05 increase in "RDS(ON) is 
used. 

• The prognostics algorithm will make a prediction of the 
remaining useful life at time tp, using all the 
measurements up to this point either to estimate the 
health state at time tp in a regression framework or in a 
Bayesian state tracking framework. 

• It is also assumed that the future load conditions do not 
vary significantly from past load conditions. 

Six accelerated aging tests for power MOSFETs under 
thermal overstress were available. Figure 6 presents the 
"RDS(ON) trajectories for the six cases. Cases #08, #09, #11, 
#12 and #14 are used for algorithm development purposes. 
They are used either as training data for regression models, 
as empirical data for degradation models or as data to 
quantify prior distributions’ parameters of model and 
measurement noise and initial conditions. Case #36 is used 
to test the algorithms. The algorithms are developed and 
tested on the accelerated aging test timescale. In a real world 
operation, the timescale of the degradation process and 
therefore the RUL predictions will be considerably larger. It 

is hypothesized that even though the timescale will be 
larger, it remains constant through the degradation process 
and the developed algorithms and models would still apply 
under the slower degradation process. On the other hand, the 
algorithms under consideration have been used on several 
other prognostics applications. Here, by using accelerated 
aging data with actual device measurements and real sensors 
(no simulated behavior), we attempted to assess how such 
algorithms behave under these more realistic conditions. 

 

Figure 6: "RDS(ON) trajectories for all MOSFETs, #36 is used 
to test algorithms and the rest are used for degradation 

model development and algorithm training (if required). 

4.1. Degradation modeling 

An empirical degradation model is suggested based on the 
degradation process observed on "RDS(ON) for the five 
training devices. It can be seen that this process grows 
exponentially as a function of time and that the exponential 
behavior starts at different points in time for different 
devices. An empirical degradation model can be used to 
model the degradation process when a physics-based 
degradation model is not available. This methodology has 
been used for prognostics of electrolytic capacitors using a 
Kalman filter (Celaya, Kulkarni, Biswas, & Goebel, 2011a). 
There, the exponential degradation model was posed as a 
linear first order dynamic system in the form of a state-
space model representing the dynamics of the degradation 
process. The proposed degradation model for the power 
MOSFET application is defined as 

!!!"!!"! ! !!!!!" ! !!,            (1) 

where ! is time and ! and ! are model parameters that could 
be static or estimated on-line as part of the Bayesian 
tracking framework. This model structure is capable of 
representing the exponential behavior of the degradation 
process for the different devices (see Figure 6). It is clearly 
observed that the parameters of the model will be different 
for different devices. Therefore, the parameters # and $ need 
to be estimated online in order to ensure accuracy. This 
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empirical degradation model is posed as a dynamic system 
as follows. Let ! ! !!!"!!"!, then  

!"
!" ! !" ! !".                     (2) 

In this model, # and $ are also state variables that change 
through time. Therefore, the model is a non-linear dynamic 
system and Bayesian tracking algorithms like the extended 
Kalman and particle filter are needed for on-line state 
estimation. 

4.2. Gaussian process regression 

Gaussian Process Regression (GPR) is a data-driven 
technique that can be used to estimate future fault 
degradation based on training data collected from 
measurement data. First, a prior distribution is assumed for 
the underlying process function that may be derived from 
domain knowledge (Goebel, Saha, & Saxena, 2008). Then 
this prior is tuned to fit available measurements which is 
used with the probabilistic function for regression over the 
training points (Rasmussen & Williams, 2006). The output 
is a mean function to describe the behavior and a covariance 
function to describe the uncertainty. These functions can 
then be used to predict a mean value and corresponding 
variance for a given future point of interest. The behavior of 
a dynamic process is captured in the covariance function 
chosen for the Gaussian process. The covariance structure 
also incorporates prior beliefs of the underlying system 
noise. A covariance function consists of various hyper-
parameters that define its properties. Proper tuning of these 
hyper-parameters is key in the performance. While a user 
typically needs to specify the type of covariance function, 
the corresponding hyper-parameters can be learned from 
training data using a gradient based optimization (or other 
optimization) such as maximizing the marginal likelihood of 
the observed data with respect to hyper-parameters 
(Rasmussen & Williams, 2006). 

4.3. Extended Kalman filter 

Extended Kalman filter allows for the implementation of the 
Kalman filter algorithm for on-line estimation on non-linear 
dynamic systems (Meinhold & Singpurwalla, 1983; Welch 
& Bishop, 2006). This algorithm has been used in other 
applications for health state estimation and prognostics 
(Saha, Goebel, & Christophersen, 2009b). The extended 
Kalman filter general form is as follows. 

!! ! ! !!!!! !!!! ! !!!!                  (3) 

!! ! ! !! ! !! ! 
where f and h are non-linear equations, wk-1 is the model 
noise and vk is the measurement noise. Noise is considered 
to be normally distributed with zero mean and known 
variance. For the prognostics implementation using the 
degradation model in equation (1) the state variable is 

defined as ! ! !!!!! , therefore f is a vector valued 
function. Equation (2) gives the state transition equation for 
variable R; # and $ are consider constant but they need to be 
estimated, therefore !"!" !

!"
!" ! !  as part of the state 

transition function f. Measurements of R are available 
periodically but not for # and $. Therefore yk will be a scalar 
representing the measured R at step k and h will be a scalar 
function defined as ! !! ! !. 

4.4. Particle filter 

Particle filters (PFs) are based on Bayesian learning 
networks and are often used to track progression of system 
state in order to make estimations of remaining useful life 
(RUL. Bayesian techniques also provide a general rigorous 
framework for such dynamic state estimation problems. The 
core idea is to construct a probability density function (pdf) 
of the state based on all available information. In the 
Particle Filter (PF) approach (Arulampalam, Maskell, 
Gordon, & Clapp, 2002; Gordon, Salmond, & Smith, 1993) 
the pdf is approximated by a set of particles (points) 
representing sampled values from the unknown state space, 
and a set of associated weights denoting discrete probability 
masses. The particles are generated and recursively updated 
from a nonlinear process model that describes the evolution 
in time of the system under analysis, a measurement model, 
a set of available measurements and an a priori estimate of 
the state pdf. In other words, PF is a technique for 
implementing a recursive Bayesian filter using Monte Carlo 
(MC) simulations, and as such is known as a sequential MC 
(SMC) method. 

Particle filter methods assume that the state equations can be 
modeled as a first order Markov process with the outputs 
being conditionally independent which can be written as: 

!! ! !!!!!!! ! !!! 
!! ! ! !! ! !! 

 
where, k is the time index, x denotes the state, y is the 
output or measurements, and both % and & are samples from 
noise distributions. For this application, the PF framework 
was used to first track the degradation of RDS(ON) and then 
predict the remaining useful life of the power MOSFET 
based on whether the damage threshold has been reached by 
RDS(ON). The degradation model is presented in (1) and ! and 
!  are coefficients that are estimated initially by simple 
curve fitting for a few initial iterations.  The PF uses the 
parameterized exponential growth model for! !!!"!!"! , 
described above, for the propagation of the particles in time 
where the state vector is !!!"!!"!!! The measurement vector 
comprises of the !RDS(ON) parameters inferred from 
measured data. The values of !  and !  are learnt from 
regression on few initial inputs and are used as initial 
estimates for the filter. 
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5. REMAINING USEFIL LIFE PREDICTION RESULTS 

This section presents the results of the three algorithms 
implemented. Device #36 was used to test the RUL 
predictions provided by the different algorithms. RUL 
predictions for device #36 are made at tp:  140, 150, 160, 
170, 180, 190, 195, 200, 205 and 210 minutes into aging. 
Subtracting the time when the prediction was made from the 
time when the predicted increase in resistance crosses the 
failure threshold gives the estimated remaining component 
life. As more data become available, the predictions are 
expected to become more accurate and more precise. 

Figure 7 presents the state estimation results for "RDS(ON) 
and the forecasting of "RDS(ON) after measurements are no 
longer available. In this figure, measurements are available 
up to time tp. They are used by all three algorithms to adjust 
the state estimation. The prediction step starts after tp and 
time of failure tEOL=228 hrs. A detail plot focusing around 
tEOL is presented in Figure 8. 

Analysis of the subplots from top to bottom shows how the 
prediction progresses as more data become available and the 
device gets closer to end of life. It also illustrates how 
prognostics is a series of periodic RUL predictions 
throughout the life of the device. The results as presented in 
Figure 7 and Figure 8 do not allow for a direct comparison 
among the three algorithms under consideration. Rather, it is 
to visually assess the estimation and prediction process. A 
quantitative assessment of the performance is required for 
direct comparison.  

Figure 9 presents the #-' performance metric for the three 
algorithms. This metric quantifies and visualizes the RUL 
prediction performance through time (Saxena, Celaya, 
Balaban, Goebel, Saha, Saha, & Schwabacher, 2008). The 
y-axis represents the estimated RUL at the time indicated in 
the x-axis. Ground truth RUL (RUL*) information is used in 
this metric in order to assess the quality of the estimated 
RUL trajectories and it is identified by the 45o line in the 
plot. From this metric it was observed that the GPR 
approach is able to make predictions only at a considerably 
later time compared to the model-based approaches. This 
behavior is expected since the GPR method is data-driven 
and does not have the benefit of a model of the degradation 
process. Instead, the degradation process needs to start to 
get close to the elbow point of the exponential behavior in 
order for the prediction of RUL to become reasonably 
accurate. In general, the three approaches are all able to 
handle the RUL prediction process and predictions enter the 
# bound early in the life of the device. The RUL prediction 
results along with the prediction error are tabulated in Table 
1. 

 
Figure 7: Health state ("RDS(ON)) tracking and forecasting 

for GPR, EKF and PF. Forecasting at tp: 140, 150, 160, 170, 
180, 190, 195, 200, 205 and 210 (min). 
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Figure 8: Detail of the health state ("RDS(ON)) tracking and 
forecasting for GPR, EKF and PF. Forecasting at tp: 140, 

150, 160, 170, 180, 190, 195, 200, 205 and 210 (min). 

 

 

 
Figure 9: RUL prediction performance assessment for GPR, 

EKF and PF using the #-' prognostics metric. 

 

Table 1: RUL prediction results for GPR, EKF and PF at 
different tp and tEOL=228 hrs. RUL prediction error is 

between parentheses. 

tp RUL* GPR EKF PF 

140 88 N/A 64.98 
(23.02) 

77.65 
(10.35) 

150 78 N/A 80.22  
(-2.22) 

65.85 
(12.15) 

160 68 N/A 56.64 
(11.36) 

58.33 
(9.67) 

170 58 N/A 50.15 
(7.85) 

49.47 
(8.53) 

180 48 73.2  
(-25.2) 

42.75 
(5.25) 

38.68 
(9.32) 

190 38 33.4 
(4.6) 

30.35 
(7.65) 

27.14 
(10.86) 

195 33 17.6 
(15.4) 

18.57 
(14.43) 

24.76 
(8.24) 

200 28 14.6 
(13.4) 

17.24 
(10.76) 

21.09 
(6.91) 

205 23 13.8 
(9.2) 

18.28 
(4.72) 

16.66 
(6.34) 

210 18 11.8 
(6.2) 

13.46 
(4.54) 

14.68 
(3.32) 

 

6. CONCLUSION 

The paper reports on a case study of employing data-driven 
and model-based techniques for the prediction of remaining 
life of power MOSFETs. Several strong assumptions were 
made that need to be challenged in order to make the 
proposed process practical for field use. For instance, the 
future operational conditions and loading of the device are 
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considered constant at the same magnitudes as the loads and 
conditions used during accelerated aging. In addition, the 
algorithm development is conducted using accelerated life 
test data. In real world implementation, the degradation 
process of the device would occur in a considerably larger 
time scale. Determining the relationship between signatures 
from accelerated aging and signatures from “natural” aging 
is a topic of future work. 

The algorithms considered in this study have been used as 
prognostics algorithms in different applications and are 
regarded as suitable candidates for component level 
prognostics. This work attempts to further the validation of 
such algorithms by presenting them with real degradation 
data including measurements from real sensors, which 
include all the complications (noise, bias, etc.) that are 
regularly not captured on simulated degradation data. 

The in-situ data available for empirical degradation model 
development could be used to assess the two-transistor 
model parameters on an on-line tracking framework. The 
two-transistor model has the added advantage of being 
suitable to be included along the dynamics of the subsystem 
or system level. For instance, if the device is part of a power 
supply, the two-transistor model could be used as part of the 
whole power supply transfer function, therefore generating a 
system-level physics-based model with degradation 
parameters linked to the die-attach degradation process. 
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NOMENCLATURE 

RUL remaining useful life 
RDS(ON) ON-state drain to source resistance 
SOA safe operation area of the power MOSFET 
K scaling factor for thermal resistance on the two-

transistor model 
W1 are of nominal transistor in the two-transistor 

model 
W2 area of degraded transistor in the two-transistor 

model 
RT1 junction to case thermal resistance of the 

nominal transistor in the two-transistor model 
RT2 junction to case thermal resistance of degraded 

transistor in the two-transistor model 
ΔRDS(ON) normalized deviation in ON-resistance from 

drain to source 
tp time of RUL prediction 
tEOL time of end of life (time of failure) 
ID drain current 
VDS drain to source voltage 
RUL* ground truth for RUL 
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