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ABSTRACT

This article deals with structural analysis, which
is a simple but efficient method in the field of
Fault Detection and Isolation (FDI), to determine
systems properties, such as observability, fault
detectability or diagnosability. Moreover, it al-
lows to determine subsets of the model equa-
tions which may or may not yield fault indica-
tors, namely residuals. Because some residuals
are obtained by inverting parts of the model, the
notion of constraint invertibility is used to assess
the possibility of building a residual. Invertibili-
ties are often considered a posteriori, after that the
structural analysis has been performed, in order
to keep the computable residuals. Taking into ac-
count these invertibility constraints in all steps of
the structural method would allow, firstly, to pro-
vide directly computable residuals, and secondly,
to reduce the complexity of structural analysis al-
gorithms. Two types of non-invertibilities may be
distinguished: those which are defined according
to the nature of the functions, and those which are
due to the structure of the model. Two algorithms
are proposed for determining the latter ones. Inte-
gration of the two kinds of invertibilities from the
first step of the structural analysis is the objective
of this paper.

functions (or constraints) and variables (known or un-
known). This bipartite graph represents the structure
of the model, that is to say the way the physical vari-
ables of the model are interconnected (or constrained)
by the model relations. The model relations can be
non-linear, qualitative, or described by a lookup table.
No precise knowledge, neither on the type of the rela-
tions, nor on the values of the parameters, is required
to build the bipartite graph. A structural analysis can
thus be performed at the early stages of the design of
a diagnosis system, to provide structural properties of
the model as for instance observability, controllabil-
ity, fault detectability and isolability. It may also help
the designer in identifying potential residual genera-
tors (Maquin et al, 1997) and locations of sensors
with the objective to enhance the system monitora-
bility ((Frisk and Krysander, 2007(Conrardet al,
2009, (Rosichet al,, 2007, (Carpentieet al, 1997).

Classically, a structural analysis involves the follow-
ing steps (Svard and Wassén, 2006

1. consider a behavioral model of the system to
monitor, the parameters of which may not nec-
essarily be identified;

2. extract a structural model, in the form of a bipar-
tite graph;

3. perform the Dulmage-Mendelsohn decomposi-
tion ((Dulmage and Mendelsohn, 195&f the
graph, in order to determine the monitorable sub-

1 INTRODUCTION

Structural analysis is an efficient and well-known
method to analyze systems monitorability and to
search for fault indicators, also called residuals, which
are used for Fault Detection and Isolation (FDI). A
residual is a function of known variables (measures
and inputs, called observations in the following) that is
computed on-line to test the consistency of these vari-
ables with the model of the system. An inconsistency
between the model and the observations informs on the
appearance of a fault and on its localization. Differ-
ent formalizations of structural models can be found
in the litterature. In this paper, the structural model
is a bipartite graph that represents the links between
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system, on which it is possible to generate resid-
uals;

search for potential residual generators, in an ex-
haustive way (Dustegoet al, 2009, (Krysander

et al, 200{3/, (Trave-Massuyest al, 2009,
(Pulido and Gonzalez, 20p4(Armengolet al,
2009). Indeed, a structural analysis allows to
determine sets of constraints from which a resid-
ual can — but not necessarily will — be derived.
Residual generators correspond to a subgraph of
the structural model, called ARR structure (ARR

: Analytical Redundancy Relation) or MSO sets
(MSO: Minimal structurally overdetermined —
see section 2.3);



5. select the implementable or realizable residualacademical example is presented in section 5 and illus-
generators, that is to say discard those for whichtrates the method.
a residual cannot be practically generated. There
are many methods for generating residuals. The2 STRUCTURAL ANALYSIS FOR FAULT
particular method we discuss in this article is DETECTION AND ISOLATION
the method where a computation sequence of un, 4 Bipartite Graph

known variables is determined by following paths . _ ) _
on the bipartite graph. For this method, a residualConsider a behavioral model of a physical system:

cannot be generated when there are non-invertible (@ R 2) =0
constraints that should be inverted when follow- BFLy e Ims 21y oo 2k = )
ing the computation sequence. e

en(T1y oy Ty 21,00 28) =0

Motivations. Industrial models we consider in this The model relations{c;},—.., are called con-
collaborative work between PSA-Peugeot Citroen andtraints: they link the variables, which may be known
LAGIS Laboratory, are MATLAB/SIMULINK sim-  ({i}i=1..x) or unknown (z;}i=1.m). These con-
ulation models composed of thousands of relationsstraints may be dynamic or static, expressed analyti-
among which lookup tables, cartographies, logicalcally or numerically. .. ) i )

or conditional relations. .. Difficulties arising from The structural model of this behavioral model is de-
analysing such models concern in the first place thdined by the grapléz = (C,V = X U Z,T'), where:
complexity of algorithms performing the exhaustive o C'is a set of vertices, representing the set of con-
search of potential residual generators. Current algo- straints{c; i—1...n;

rithms, though very efficient, cannot deal with certain , - . .
models. Model simplifications can be a solution to  ® V is a set of vertices, representing the set of vari-
this. To guide the search could be another one. A ables{vi}i=1...m+r. V' is the union of:

third possibility is to integrate feasability criteriore — X, the set of vertices representing unknown
residuals generation. We discuss the third possibility variables{x;}i—1.. m.,
in this article, keeping in mind that for the most com- — Z, the set of vertices representing known
plex models, a solution would combine many ideas. variables{z;}i—1. x,

Therefore, our objective is to take into accountand to . _ N il is th t of
integrate, in efficient algorithms, non-invertibilities, * edoe {(ci,v;)[v; appearsin;} is the set o
the first stages of the method. This should allow usto ~ ©@9€s: _ _
significantly reduce the number of potential residuals.The incidence matrix of the grapfi, notedS, is a
The same perspective is shared(ifrave-Massuyes boolean matrix, the rows of which corresponddo
et al, 2000, and in some of our previous workde  and the column of which correspondito It is defined
Flaugerguest al, 2009, which defined a DM-like as follows:

decomposition, and of which this article is a contin- . _

uation)l.a S ={sij|si; = 1if (¢c;,v;) € T, 0 otherwisg. (2)
In order to take into account invertibilities, not a pos- |, the following, it is considered that the verticesf

teriori but at each step of the analysis, it is necessary,q e heen deleted in the structural graph, so that only
to define them initially in the model structure. There iha constraints and unknown variables remain.

are two types of non-invertibilities: those which are

defined according to the nature of the functions, anc2.2  Canonical Decomposition

those which are due to the structure of the model. Thi ;

paper studies two particular cases of non-invertibilitiessrhe Eyerr?ge-Me?o_lelsohn algorithm decomposes the
related to the structure of the model, and provides twooraph inthree parts.

algorithms to indicate these non-invertibilities in the e ST is the over-constrained, monitorable, part of
initial structural model: the system.

e the first algorithm deals with differential- 0 P . ,
algebraic loops, for which integral causality is ® °° = U Si is the just-constrained, or observ-

) =1
mandatory; able, part of the system.

¢ tcgissg%%?e%?g ddg%s t"t‘]’gpe?é?gg%? dlggpbsj \g’rggg e S~ is the under-constrained part of the system.

cific orientation of the graph. 2.3 MSO, ARR structure

These two kinds of non-invertibilities are thus not Definition 1. A set M of equations is structurally
due to the mathematical form, or the nature of theoverdetermined ifA/ has more equations than un-
constraints, but result from the structure of the systemknowns.

The rest of the paper is structured as follows. sec Definition 2. A structurally overdetermined s8f is a

tion 2 recalls briefly the main concepts of structural prc:Lper structurally overdetermined (PSO) sebf =
analysis. The notion of constraint invertibility is M.

discussed in section 3. An algorithm for defining Definition 3. A structurally overdetermined set is a
the causality of dynamical relations, and another forminimal structurally overdetermined (MSO) set if no
avoiding algebraic loops are proposed in section 4. Arproper subset is a structurally overdetermined set.



A MSO set M verifies M*™ = M and |M| — Choosing a complete matching on unknown vari-
lvarx (M)| = 1 (varx (M) represents the set of un- ables of thel\/ SO setM allows to rearrange the equa-
known variables appearing in the relations of the setions of A and yields a rewriting of the equations in
M, and|z| represents the cardinal of. Such a setis M. This rewriting will be useful to design the residual
also called an ARR structure. The term ‘Possible Con-generator. Matching; to ¢;(x;, xx-;) IS interpreted
flict' is also used in(Pulido and Gonzalez, 2004 in the following way: «; is deduced from;, all re-
MSO sets are over-constrained subsystems and amaining variables;, being supposed known. The only
thus used to generate residuals. Different MSO-basedquation inM which hasn't been matched is said to
approaches for residual generation may be found in thée redundant, and acts as a consistency test. A resid-
litterature. The following list provides some of them, ual may thus be generated. Graphically, a matching
yet note that it is not exhaustive. Note also that twoinduces an orientation of the graph associated to the

methods may result in the same solution: MSO set:
e Loop-less MSO sets, which are returned by the e if the edge(c;, z;) belongs to the chosen match-
‘Ranking Algorithm’ described iffBlankeet al,, ing set, itis directed from; to x;

2006, may be used to provide a computation se- o gtherwise, the edge is directed framto c;.
guence which can be followed to generate Ana- , ' : .
lytical Redundancy Relations; The directed graph of th&/ SO takes known variables

) (measured and control variables) as inputs and pro-
e MSO sets corresponding to a state-space fornyjides a residual as output. This orientation may induce
(3) are considered ifSvard and Wassén, 2006  |oops, which are strong connected components (SCC),
where residuals are generated either in simulathe size of which is greater than((Dustegoret al.,
tion (open-loop), or by using observer techniques2004): a loop represents a system of equations which
(closed-loop). We will mention here works de- must be solved as a whole. Loops are not necessarily
tailed in (Aslund and Frisk, 2006 for systems solvable, as it will be discussed in susbsections 3.2 and
under the following generic form (3); 3.3.
All matchings cannot lead to a residual, because the
x f(z, 2) 3 encountered SCC have to be solvable. This matter is
0 h(zx,z) ®3) obviously linked with non-invertibilities and causality
constraints, and is discussed in the following section
e Generation of residuals by simulation is per- (3).
o 22008 tests with el Sondiion prop- 3 NON-INVERTIBILITIES AND
lems by designing an initial condition observer, SOLVABILITY OF SCC
placed upstream from simulated residual generaThe three following subsections present a state of the
tors. (Calderon-Espinozat al, 2007 considers  art on the solvability of SCC. Hypotheses made by the
limited initial conditions and interval techniques; authors will be, as much as possible, stated.
e Elimination methods have been proposed in ;
(Guernezet al, 1997, (Frisk, 200& for al- 3.1 SCCof S'Z_el _ . _ _
gebraic systems. When th&/ SO is not al- For a SCC of sizd, non-invertibility considerations
gebraic' diﬁerentiating equationik(rysander, are generally used to evaluate its SOlvablllty.

2008) may be a solution to derive an algebraic pefinition 7. Let a constraint;(..., z;,...) = 0, if z;
system. can be uniquely determined using— other variables
Anyway, it is possible, to help residual generation, ©f ¢i being known —then; is said to be invertible with
to determine an rearrangement of the equations of thE8SPect taz;. In the incidence matrix;; ; = 1is noted

MSO set which eases the residual generator desigril the edge is invertibles; ; = —1 otherwise.

This is done by using matchings over the structural Classical non invertible contraints are tables, maps,

model of the MSO set. non-linear functions, hysteresis, some logical func-
tions, conditional functions, or functions modelling

2.4 Matching logical sensors, such as detectors. Consequently, the
notion of non-invertibility allows to discard residual

;Pezl‘&l)lgyvmg definitions can be found iBlanke et generators implying the inversion of such relations.

Definition 4 (Matching) A matching is a set of non- 3.2 Solvability of differential algebraic SCC of
adjacent edges, i.e. without a common vertex. The sizen > 1

graph being bipartite, a matching corresponds to a setworks dealing with the structural solvability of differ-
of couples (constraint, variable). ential algebraic loops, in a numerical resolution con-

Definition 5 (Maximal matching) A maximal match-  t€xt, have been published. (Rulidoet al, 2008, itis
ing is a maximal-sized matching. stated that:

Definition 6 (Complete matching)A complete match- e integral causality is compulsory in loops;

ing on a set of vertice¥” is a matching such that all o differential loops are not loops but spirals, be-
vertices ofi” are covered, that is to say that all vertices cause they involve different temporal indices
in V are matched. ((Dressler and Freitag, 1994



Setting integral causality comes down to writing a
semi-explicit form of the differential algebraic equa-
tion (DAE). Implicit forms of a differential-algebraic

equation are barely considered in the automatic con

trol litterature (should one decide to use FDI tools
after the structural analysis), or by numerical solv-

ing tools (should one decide to simulate the residuals

open-loop). In the contrary, semi-explicit and explicit

forms are well-documented (indeed, state-space form

are derivated from an explicit form).

As far as semi-explicit forms are concerned, two fam-

ilies of methods for their numerical computation ex-
ist: ‘direct’ methods and ‘ODE’ method$hampine
et al, 1999). ‘ODE’ methods consist in transforming
the implicit equation in an ordinary differential equa-
tion. In (Svard and Nyberg, 2008the reader should
find explanations on:
e implicit and semi-explicit forms of differential al-
gebraic equations;
o the differential index of a semi-explicit DAE,
which indicates the difficulty of the resolution;
e solvability conditions by an ‘ODE’ method, that
is to say:
— possibility of writing a semi-explicit form;
— possibility of solving the algebraic part, and
thus write an ordinary differential equation;
— initial condition consistency.

These criteria are stated in a simulation context, bu

one should note that the scope exceeds numerical res
lution: indeed, a state-space form is obtained, and clasr.qh
I

sic automatic techniques can be applied afterwards.

3.3 Solvability of algebraic SCC of sizex > 1

A structural solvability condition for algebraic loops
does not exist, therefore, studying these loops must
be done on a case by case basis. Howe{Rwsich

et al, 2009 considers that only linear algebraic loops
are structurally solvable, and, to that end, introduces
a symboll in the incidence matrix, pointing linear de-
gendencies. In the same vein, another interesting ref-
rence is(Murota, 1987s Combinatorial Canonical
Form decomposition. As far as we are concerned, we
consider in this article that algebraic loops are not solv-
able.

4 ALGORITHMS TO DEFINE
NON-INVERTIBILITIES

4.1 Objectives

The general scope of this paper is the integration of
non-invertibilities in the various stages of structural
analysis, in order to reduce complexity of the al-
gorithms. This work echoes some of our previous
works, previously mentionned. We will focus here on
the definition of the (non) invertibility constraints in
the structural graph. As previously explained, non-
invertibilities may be intrinsic to the constraints (and
may be indicated directly on the structural model), but
may also result from the structure of the system. In this
section, two algorithms are presented to define some
on-invertibilities relatively to the structure. These
gwo algorithms are not based on the same hypotheses,
0 it is not always possible to use both, but they share

e same principles.

that case, structural analysis is used as a pre-analysisl. the first algorithm makes the assumption of a

of the system and can be complemented with FDI tech-

niques. _ _ _
On a side note, we will also mention here links be-

tween well-posedness and the solvability of differen-

tial equations(Vidyasagar, 1980for instance).
The criterion we will use for assessing the solvability
of differential loops is that, when removing differen-

tial constraints, the resulting graph must be loop-less.
Invertibilities are then considered in the (loop-less) re-
maining graph. Such loops are structurally equivalent
to ODEs. This criterion is strongly suggested by the
aforementionned references; it is also more restrictive

(DAEs may not verify this criterion and still easily be
solved), but, in the other hand, is structural in nature
More formally:

Criterion 1. Let a DAE with algebraic constraints,
and differential constraint€’y, linking variablesz,
x4, andz,. Here,x, are algebraic variables, thatis to
say that their derivatives do not appear in the loap.
andx, are differentiated variables. L&t, the graph
obtained by removin@'; andx4: this corresponds to
setting integral causality.GG,, is therefore defined by
constraintsC,, restricted to variablesiy U z,). The
solvability of such DAE can be assessed if:

1. G, is loop-less;
2. the complete matching i, only uses invertible
edges.

Indeed, let an implicit DAEF (24, x4, 4,2) = 0,
if the above criterion is verified, then it is possible to
rewrite F' asxg = f (x4, 2), To = g(x4, 2).

mixed-causality approach(§vard and Nyberg,
2008), therefore no causality is a priori pref-
ered. The purpose of this algorithm is to deter-
mine which differential constraints will always
appear in a loop, and therefore, set them in in-
tegral causality;

. for the second algorithm, we must first note that
the inversion of an algebraic constraint may al-
ways lead to an algebraic loop. In this case, for-
bidding the inversion will constrain the graph and
will imply that the loop will not be taken. How-
ever algebraic loops are difficult to identify when
they appear in a DAE. That's why this second al-
gorithm makes the assumption of a full integral
causality approach, in which case algebraic loops
can be identified. To sum up, the output of this al-
gorithm is the definition of non-invertibility con-
straints so that the graph orientation does not lead
to algebraic loops.

4.2 Introduction examples

The example in figure 1 illustrates the first algorithm,
whereas the example in figure 2 illustrates the sec-
ond algorithm. In the first example, we will draw the
reader’s attention on the following items:

e an analytical redundancy relation may be derived
by solving the algebraic loop made 6f andC>
, then by using as a redundant constraint, to test
the consistency. In that casg,is not used in a
matching;



e maitching! to & imply thatz is matched ta’; or 1. |M| =X,
C5. In either case, a differential loop containin . .
IiQS implied by the matching. P 9 2. the set of relations/ verify M9 = M.
Since the invertibility of redundant constraints has noDefinition 9 (Directable just-constrained subgraph)
relevance in our criterions (non-invertibilities are usedA directable just-constrained subgraph is a just-
when building a matching, not when testing the consis-constrained subgraph which has a complete matching
tency), we will always assume that it is not possible tousing only invertible edges.

take the integrator in differential causalitya match-  5afinition 10 (Reachable variable)A variable z is

ing, for it will always appear in a loop, and say that iy 15 hereachabldf there exists a directable just-

I i1s not invertible with respect té¢. The reason, on ; o ;
which our algorithms are based and which we will de_goens)t(ralned subgraphi{, X, I') containingz, i.e.

velop further in the following, is that it is not possible

to ‘reach’ x without using the integrator anel If it To assess the reachability of a variable, we use
were possible to ‘reach’ without using the integrator the algorithm described irfde Flaugergueet al,
and#, then derivatings to computei would be pos- 2009, which is an alternative canonical decomposi-
sible, i.e. it would be possible to matdhto &, which  tion (S;:W SO & S .), taking invertibilities into ac-
would correspond to &CC of sizel. count.

Lemma 1. An unknown variable is reachable if it ap-
pearsinS; . orS°

CI I c m mod*
. 2
X |x y 4.4 Defining the causality
u '—I I In this section, no hypothesis is made a priori on
the orientation of differential constraints and it

is assumed that the two orientations are possible
i i ) ) , (mixed-causality The only restriction is that integral
Figure 1: Non-invertible differential loop causality is compulsory inside loops. The key idea for
identifying differential constraints which will always

The second example shows that if one try to match@Ppear in a loop is the reachability of variables.

O, to z1, then one must match, to Cs, which creates  The following lemma may be used to determine
an algebraic loop. Our second algorithm’s purpose igvhether a differential constraint can appear in differ-
to indicate that’, is not invertible with respect to;, ~ €ntial causality in a strongly connected component of
from the begining, to prevent matching them. Detec-Siz€1, in which case differential causality is allowed.
tion of the algebraic loop is done in the same way, bylf not, differential causality is forbidden. More over,
testing if it is possible to ‘reacht, without usingC, ~lemma 2 is an implication: as pointed before, it
andz;. If it were possible, then inverting, to com-  Provides a sufficient but not necessary condition to
putez; would be possible and would correspond to aforbid differential causality.

SCC of sizel.
Lemma 2. A dynamical constrainf linking an in-
c, c, = tegrated variablex; and a derivated variabler,:
| x| % 3 I(z;,z4) cannot be taken in differential causality, in a
u y matching, ifz; is not reachable on the bipartite graph,
I I when the initial graph is modified as follows:
Q e Removd;
. ] . . e Place non-invertibilities on every edge linked to
Figure 2: Structural model holding an algebraic loop 24: on the incidence matriss, the columnz, is

setto—1: S(:,zq) = —|S(:, zq)|-

Since we have considered that algebraic loops are o ) _ _
not solvable and have given a criterion of solvabil- Proof. If it is not possible to reach; while z, is not
ity for DAEs accordingly, our notion of reachability reachable, and without using then it is not possible
should ideally be that there exist a path without alge-to Use! to calculater,. Two cases are possible: either
braic loops, such that SCC of sizeare invertible, and non-invertibilities prevent to reach;; or z4 and/or!
such that DAEs verify criterion 1. For practical pur- are needed to compute. In either case/ cannot be
poses, our notion of reachability ofis less evolved, in a loopless path in a matching, and the causality will
but it includes our ideal notion: it means that there is a@lways be integral in a matching. O
directed path, consistent with non-invertibilities, lead ] - )
ing to z. We will see that because of this, we are only  The algorithm tests the reachability of derivated
able to provide sufficient conditions in lemmas 2 andvariables one after the other; it must be noted that

3. placing an integral causality may imply that a variable
o which has precedently been evaluated as reachable is
4.3 Definitions no longer reachable. It is therefore necessary to reeval-

Definition 8 (Just-constrained subgraph subgraph  uate the reachability of derivated variables as long as
(M, X,T)is just-constrained if there is no more modification.



Algorithm 1 Defining causalities

Algorithm 2 Avoiding algebraic loops vO

1: Identify the set of differential constrainfson the 1

Replace differential constrainfg on the grapht
by sensors on the integrated variable
Initialize MODIF =1
while MODIF == 1do
MODIF =0
for all invertible edge,x,,,) do
if C andx,,, don't verify lemma 3then
C is not invertible with respect ta:,,:
modify S
MODIF =1
end if
end for
end while
ReturnS

graphS
2: Initialize MODIF =1 2:
3: while MODIF == 1do 3:
4: MODIF =0 4:
5. forall I € I for which differential causalityis 5
alloweddo 6:
6: Identify I's integrated variablexz; and 7:
derivated oney
7 if I;, doesn’t verify lemma 2hen 8:
8: I is not invertible with respect ta,: 9:
modify S 10:
9: MODIF =1 11:
10: end if 12:
11:  end for
12: end while
13: ReturnS

4.5 Avoiding algebraic loops
In this section, we assume thafwdl integral causal-

edges can thus be identified as non-invertible with a
low-cost algorithm.

Lemma 4. On the bipartite graph, modified by replac-
ing every differential constraint : z; = I(xz4) by a
measurement equation an (integral causality), the

ity approach is adopted. In order to detect algebraiset of constraints which will always appear in alge-
loops, differential constraints are removed so that onlybraic loops is given by the ‘Ranking’ algorithm.

algebraic constraints remain.

Lemma 3. An algebraic constrainC' linking vari-
ablesx, x,, matched towx,,, will always imply an
algebraic loop if one of the, & # m, is not reach-
able on the bipartite graph, when the initial graph is
modified as follows:

e Replace every differential constraiftz;, x4) by 1

a measurement function ory. In other terms,
set the edge between and/ to 0, and the edge
between; andI to 1 (integral causality);

e Remove”; 2.

e Place of non-invertibilities on every edge linked
to z,,,: on the incidence matri¥, the columnz,,

Proof. The ‘Ranking’ algorithm not only finds loop-
less ARR structures, but also identifies the loop-less
part of the graph(Blankeet al., 2009).

Algorithm 3 summarizes the improved algorithm. It
proceeds in two steps:

. lines1 to 14 correspond to the ‘Ranking’ algo-

O

rithm in (Blankeet al, 2006, which is slightly
rewritten for our need; these lines are justified by
lemma 4;

at line1b, algorithm 2 is run to define invertibili-
ties on remaining invertible edges.

issetto—1: S(:,zpm) = —|S(, Tm)|-

Algorithm 3 Avoiding algebraic loops

Proof. If it is not possible to reach one of they, 1
k # m, while z,, is not reachable, and without us- 2:

ing C, then it is not possible to us€' to calculate
Tm. TWO cases are possible: either thg are not

reachable due to invertibilities, ar,,, and/orC are 3
needed to compute,, and matching” to z,, implies 4:

a loop. This loop is algebraic since differential con-

straints have been removed (forced to integral causal-5:
| 6:

ity).

7.
The algorithm follows and is described in algo- g:

rithm 2.

In algorithm 2, every invertible edge is examined o:

at least once: the modified Dulmage-Mendelsohn de-
composition in(de Flaugerguest al, 2009 is run

putational time is concerned. Therefore improvements
were attempted.

Improvements

Improvements can be done thanks to a pseudo
‘Ranking Algorithm’, which identifies constraints

1

10:
each time, which has proved to be, empirically, for 11:

our industrial examples, quite heavy, as far as com-2:

13:
14:

Identify the set of differential constrainfsin S.
Replace each differential constraiht € I by a
sensor-like constraink,: I; (z;). NamesS’ this
new matrix.
AL = {constraints in5" }
J = {constraints inS’ containing one unknown
variable onl
K =varx(J
while J # ¢ do
AL = AL\ J
Modify S’ by setting rows/ and columngy to
0 (deletion of edges)
J = {constraints inS” containing one unknown
variable onl
K =varx(J
end while
J = {constraints inS’ which don’t contain any
variable
AL = AL\ J
In S, setevery link taAL to —1

5: S = Avoiding Algebraic Loops v(Of)
16: ReturnS

which will always appear in algebraic loops. Many



¢, 1 ch, I M, Table 1: Steps of the algorithm for defining non-
St % i ! invertibilities on algebraic constraints
2
wed I —~, —~c, Invertibility tested  Variable(s) toreach  Y/N
; B (1stturn...)
: I Cyp w.rt. z; T, W/OSCl & C4 N
Ca Cy W.rt. To & Xg, w/o r1 & Oy N
Co W.rt. zo r1 & Zg, w/o r9 & O N
Figure 3: Example g4 w.r.t. T3 T4, W;O T3 i g4 P\(l
5 W.ILL. 24 5, WO T4 5
Cs W.I.t. 25 z4 & X6, w/o rs5 & Cg Y
Cs W.I.t. x4 r5 & xg, w/ozy & Cs N
> EXAMPLE Mo Wirt. w9, WO G & My Y
In the following example (figure 3), it is assumed that Mo wW.rt. zo g, WO xo & Mo N
a few functions are not invertible; they are represented  (2nd turn...)
with an arrow indicating in which direction they must CyW.rt. x3 T4, WO x3 & Cy4 N
be used. Thus)/; is not invertible w.r.t.z1, andCs Cs W.I.t. x5 T4 & xg, WO x5 & Cg Y
is not invertible w.r.t. 5. At first glance, there are My w.rt. zg T, WOz & My Y
three MSO: one linking: andy;, one linkingu and (3rdturn...)
12, and the last linking;; andy.. We will show that Ce W.I.t. x5 24 & 26, WO x5 & Cf Y
the subpart of the system betweenandy, must be My w.rt. zg o, WO xg & My Y
taken with integral causality, and that, therefore, it is
not possible to generate the residual linkingandys
simply by following paths on the graph, which is not
obvious from the beginning, since there is only one t i
non-invertibility defined on that subpart. €& I ,c X, Ilz X, JM’
Our first algorithm will proceed as follows: g i o | ¥,
u
e the first integrator/; is examined: its output is N =c
reachable fromy,. Indeed, the subgraph between L [ x Clsx cs
y2 andx; is directable. No modification is made; ¥, % | | S X,
e the second integratak, is examined: matching ¢ L 7

15 to 25 is impossible, because this matching will
always induce a differential loop. This is identi-
fied by testing that it is not possible to reach
without using/l> and2;. Consequently, integral
causality is compulsory;

e the first integrator is re-examined: due to non-
invertibilities onI; andCj, its output cannot be
reached {, cannot be matched using an invert-
ible edge), therefore, it will always be used with
integral causality.

Since full integral causality is compulsory, the sec-
ond algorithm can be run: it will proceed as indicated hat th ill al inal defined
in table 1, and will detect the algebraic loop made of ~ t _aﬁthey_ Wi avlvays api_pe_ar Inaloop are detine
constraint$’s andCs. We have notindicated in table 1 with the integral causality;

the tests of obvious invertible edges, i.€C1, 1), e orientations of the graph which imply algebraic
(C2,72), (C3,23), (C4,74), (Cs,25), (Cs, T6). loops are forbidden.

On this example, our algorithm will thus return that __ . . -
constraints must be used in the way indicated by the ar] NiS Second aspect may be a bit restrictive, but our
rows on the figure 4. In the end, the definition of theseComMPplex industrial models have led us to think that it

non-invertibilities let us see more clearly and more ob-1S Needed to organize the MSO sets into a hierarchy,
viously that it is not possible to generate the residua®nd get intermediate or partial results, corresponding

Figure 4: Compulsory orientations returned

tegrating non-invertibility notions in a structural anal-
ysis — which the complexity of our models leads us to
— therefore it is important to well define invertibilities
in the first place. Focus has been put on defining in-
vertibilities regarding the structure of the system, that
is to say:

o differential constraints for which we can assure

ki i to restrictive or intermediate hypotheses like this one.
linking y1 andy, by following paths on the graph. Improvements could be done regarding this hypothe-
6 CONCLUSION sis (that algebraic loops are forbidden), with a view to

allowing linear algebraic loops for instance.
The objective of this paper is to analyze a structural
model and determine if there are equations in theackNOWLEDGEMENTS
model that cannot be used to compute unknown vari-
ables, when generating residuals. When these equd-his work was partially supported by the Association
tions are found, non-invertibilities are defined to pre- Nationale de la Recherche Technique (ANRT), and
vent them to be used. This paper eventually aims at inPSA Peugeot Citroén.
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