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ABSTRACT

Modern systems frequently consist of a complex
mixture of hardware and software. Model-based
diagnosis typically assumes that the effects of the
software can be summarised by the commands
sent to the hardware and thus the software can
be left out of the model. In our effort to build
a diagnosis system for an autonomous underwa-
ter vehicle (AUV) we have an example where this
is not the case—commands sent to the hardware
are not all available to the diagnosis system for a
variety of reasons. In addition, the software con-
trolling the AUV, the mission script is frequently
completely changed from one mission to the next.
Taking advantage of the fact that the mission
script has a relatively simple structure that does
not include loops we show that a diagnosis model
of the mission script can be generated automati-
cally that integrates with the model of the phys-
ical hardware. We show that this model allows
us to diagnose faults that cannot be detected from
the hardware model alone.

1 INTRODUCTION
Autosub 6000 (McPhail, 2009) is an autonomous un-
derwater vehicle (AUV) designed to operate for days
at a time at depths of up to 6000m to collect science
data from the deep ocean. This is an extremely chal-
lenging task as the vehicle must execute missions in
an unknown environment with minimal intervention
from human operators. During more than 400 previ-
ous scientific missions, Autosub 6000 and its prede-
cessors have suffered both near losses and one actual
loss. In two cases the AUV has been recovered with
a remotely operated underwater vehicle at significant
expense. In one case the Autosub 2 AUV was per-
manently lost 17km under the 200m thick Fimbul Ice
Shelf in the Antarctic (Strutt, 2006). There are numer-
ous cases of missions that have had to be aborted but
where recovery was possible by the operations team
and the attending support ship.

Based on the experience of operating the Autosub
AUVs a project to apply automated diagnosis and re-

covery methods for Autosub 6000 was initiated with
the primary focus being on the detection of faults that
may result in collisions with the seabed. Collision
with the seabed is undesirable because it has been
demonstrated to have been one of the primary causes
of vehicle loss. The project aims to provide both on-
board diagnosis and, using telemetry broadcast acous-
tically to the support ship, off-board diagnosis when
the ship is in range of the AUV. The approach we are
taking is to use the Livingstone 2 (L2) diagnosis en-
gine (Williams and Nayak, 1996; Kurien and Nayak,
2000) on Autosub. L2 is a discrete, model-based di-
agnosis system that is compositional, allowing models
of individual components to be plugged together rela-
tively easily to build larger models. We describe L2 in
more detail in Section 3, although the version we use
is essentially identical to (Kurien and Nayak, 2000;
Hayden et al., 2004a). Consistency-based diagnosis
systems such as Livingstone are a great advantage in
this application in that we can use essentially the same
models both on- and off-board even though only a frac-
tion of the data is available off-board.

Autosub 6000 provides a configurable payload
space that can accommodate a range of sensor equip-
ment that may be changed between missions. While
a typical mission may last from 12 to 36 hours,
the turnaround time between missions may be much
shorter, with data analysis, changes to the hardware
and planning for the new mission all accomplished in
the space of a few hours while the batteries charge.
This effort culminates in the writing of a new mission
script that specifies the behaviour of the vehicle on the
next mission. The fact that Autosub is frequently re-
configured between missions means that it is funda-
mentally different from the space missions for which
L2 has previously been used. This leads to an im-
portant challenge: How can we update the diagnosis
model quickly and correctly between missions?

In many applications of diagnosis only the hardware
involved in the system needs to be modelled as the be-
haviour of any software is assumed to be captured by
the commands sent to the hardware. This can lead to
problems in diagnosing the overall health of the system
and in particular in recovery as it assumes the software
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is correct. However, it is particularly a problem on Au-
tosub for two reasons: First, as we said above, the mis-
sion script is generally written between missions so the
likelihood of errors in the software is greatly increased;
second, the architecture of the system means that com-
mands aren’t available to the diagnosis system at all.
For the on-board diagnosis, commands to components
aren’t broadcast on the network so can’t be seen by
the diagnosis engine, while in off-board diagnosis the
low bandwidth and high rate of packet loss means that
even if we did have access to the commands, not every
command may be received on the support ship. Our
solution to these problems is to automatically generate
a model of the mission script before it is downloaded
to the vehicle. The idea is that the line in the mission
script that is being executed can be used to generate
the commands sent to the relevant hardware systems,
and any changes in the hardware configuration can be
modelled by adding constraints into the overall system
model. Fortunately, the current generation of Auto-
sub mission scripts has a relatively simple structure,
so generating a finite state machine that represents all
the possible execution paths through the mission script
is relatively simple.

The situation where not all commands are visible
to the diagnosis system is a common one. It was
also encountered in developing the diagnosis system
for the Earth Observing One spacecraft (Hayden et
al., 2004b). The problem was overcome there by a
workaround which made internal command sequences
available to the diagnosis system.

The approach of building a diagnosis model of a
program automatically is related to that of (Mateis et
al., 2000) and its successors, although our program
models are much simpler, and theirs are of standalone
pieces of software. Using the state of the control
software to improve diagnosis is similar to ideas of
software-extended diagnosis presented in (Mikaelian
et al., 2005). The novelty here is in combining these
two ideas, with automatically generated models of the
software being integrated into a hand-built model of
the AUV hardware, allowing us to detect faults that
cannot be detected by either part alone.

Mission failures on Autosub are generally caused
by two classes of problem: hardware faults and er-
rors in the mission script. The second of these are
particularly likely in AUV operations due to the short
turnaround time between missions. An important ad-
ditional benefit of automatically generating a diagno-
sis model of the script is that various checks can be
performed to try to reduce human errors in creating
the mission script. These checks include making sure
that constraints such as bounds on the maximum oper-
ational depth of the vehicle are not exceeded, but also
calculating an expected profile of the mission to show
that for example it can reach its waypoints in the time
available.

In the next section we briefly describe the architec-
ture of Autosub 6000 and describe two scenarios, one
nominal and one including a fault, that demonstrate the
difficulty of diagnosis without a model of the mission
script. Section 3 then describes a fragment of the hard-
ware model for the vehicle, concentrating on the depth
control system as that is the most critical for vehicle
safety. In Section 4 we describe the mission scripts in

detail and the structure of the diagnosis model that is
generated from them for on-board and off-board diag-
nosis. In Section 5 we describe experiments to evalu-
ate the usefulness of the approach.

2 ARCHITECTURE OF AUTOSUB 6000
Autosub 6000’s architecture consists of a network
of components including science instruments, control
surfaces and motors, all controlled by a single mission
control component that executes the mission script and
distributes the commands in it to the various compo-
nents. Sensor data from each component is transmit-
ted over the network to mission control and also to the
logger, which supplies them to the diagnosis engine
and makes them available for acoustic transmission to
the surface. However, the commands from the mission
control component are not available to the logger. The
state of the mission control component is accessible
only via the line number in the mission script that is
currently being executed.

The vehicle only has four actuators, the propeller,
the releases for the abort weights, the rudder (control-
ling the yaw, i.e. turning to the left and right) and
the stern-plane (controlling the pitch, i.e. diving and
climbing1). Since a major objective of the project is to
prevent collisions with the seabed, and this is largely
governed by the stern-plane, we will concentrate on
that component here. The stern-plane is usually oper-
ated in one of the following modes:
• In DEPTH FOLLOWING mode the AUV flies at a

depth set by the depth demand parameter. It uses
the stern plane autonomously to control its depth
to achieve the demand.
• The ALTITUDE FOLLOWING mode is a special

case of the depth following mode where the depth
demand is set to observed depth of the seafloor
minus altitude.
• In SURFACING mode the AUV’s goal is to emerge

at the surface. It is also a special case of depth
following mode.
• The FIXED STERN-PLANE mode is used for effi-

cient diving and ascent by commanding the stern-
plane to a particular angle. The vehicle maintains
that angle until another command is given.

Similar to the DEPTH FOLLOWING and FIXED
STERN-PLANE modes there are corresponding POSI-
TION CONTROL and RUDDER CONTROL modes for the
rudder.

One consequence of the control scheme is shown
in Figure 1. In the top graph we see a normal de-
scent profile for the AUV. The vehicle is initially
commanded via DEPTH FOLLOWING demand to de-
scend to 200m. Subsequently it is commanded via
FIXED STERN-PLANE demand to descend in a spiral to
1000m, at which it halts to check its status and await
a start command from the surface before descending
again. Despite the fact that the depth demand remains
at 200m, the vehicle descends because depth demands
are ignored in FIXED STERN-PLANE descent.

1The roll of the vehicle is passively controlled by the cen-
tre of buoyancy being higher than the centre of gravity.
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Figure 1: Nominal (above) and faulty (below) be-
haviour of Autosub 6000 in mission M012.

In the second graph we have an example of a fault
occurring. Here the AUV is in ALTITUDE FOLLOW-
ING mode when (at approximately time 22350) the
potentiometer measuring the stern-plane angle fails.
This causes the stern-plane to stick down and the ve-
hicle to dive. To recover from the dive, mission con-
trol sets the depth demand higher, but the vehicle does
not respond. Eventually, at time 22420, the vehicle’s
maximum depth is exceeded and the abort weights are
dropped. Fortunately this occurs before the vehicle
hits the seabed, which could have led to the vehicle
being lost.

The key point illustrated by these two scenarios is
that without knowing if the vehicle is in DEPTH FOL-
LOWING or FIXED STERN-PLANE mode we cannot tell
if the behaviour is nominal. In both cases, the com-
manded depth is shallower than the vehicle depth and
yet the vehicle dives. In the first case, the AUV is
in FIXED STERN-PLANE mode so this is nominal be-
haviour, while in the second it is in DEPTH FOLLOW-
ING mode and there is a fault. Given that these com-
mands occur internally in the mission control node and
are not logged, if we wish to detect this fault we need
to be able to infer what the current mode is.

Further analysis of potential faults and correspond-
ing mitigations based on faults that have occurred in
previous missions of Autosub 6000 and its predeces-
sors is given in (Ernits et al., 2010).

3 DIAGNOSIS MODEL OF THE DEPTH
CONTROL SYSTEM

We use Livingstone 2 (L2) (Hayden et al., 2004b;
Williams and Nayak, 1996) as our diagnosis engine.
L2 is a discrete model-based diagnosis tool developed
at NASA Ames Research Center primarily for space-
craft diagnosis. L2 combines a discrete event model of
the system with a constraint solver that operates on the
system variables and detects inconsistencies between
the inferred state of the model and the observations of
the actual system. One can think of an L2 model of
a component as a finite state machine with states cor-
responding to nominal and fault modes of the system
and transitions between them corresponding to com-
manded mode changes or faults occurring. Each state
is associated with a set of constraints on the component
variables that characterise the behaviour of the system
in that mode. Because all the variables in L2 models
are discrete, the constraints are over corresponding do-
mains of discrete variables.

An L2 model is built from a hierarchical collection
of component models where the interactions between
components are represented by placing additional con-
straints on their variables in their parent component.
For example, in the Autosub 6000 model we have
components for the depth control system, the power
system, various instruments, etc. In addition we have
the automatically generated component representing
the mission script. All of these are contained within the
Autosub component where the connections between
variables of different subcomponents are specified.

We illustrate the modelling effort by the example
based on Figure 1. For the sake of brevity we restrict
ourselves to the depth control system.

Depth control diagnosis is based around just four
variables: the change in the demanded depth (either
decreased, increased, or constant), the change in the
actual depth (decreased, increased, or constant), the
difference between the demanded and measured depth
(positive, negative or zero), and motor power (positive,
negative or zero). The available depth control modes
were described in Section 2. For each mode we give a
brief description of how the depth control component
variables should behave in that mode.
• In DEPTH FOLLOWING and ALTITUDE FOLLOW-

ING modes predicting the behaviour of the AUV
qualitatively is rather difficult due to transients
when the depth demand changes frequently. Thus
in our model the only constraint in this mode is
that if the demanded depth stays constant, then
the difference between the demanded and mea-
sured depth should be decreasing or constant. In
other words, if the demand is constant, the vehicle
should not move away from the demand.
• In the FIXED STERN-PLANE mode the demanded

depth is ignored so the constraints on depth are
based on the commanded stern-plane angle rather
than on demand.
• In SURFACING mode the measured depth should

never increase.
In addition to these nominal modes, the system also

has a number of fault modes. The relevant one for
our scenario is called STERN-PLANE-STUCK-DOWN
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which is what results when the potentiometer in the
stern-plane fails (and also could be caused by a fail-
ure in the stern-plane motor, or a physically jammed
actuator). In this fault mode the depth will increase
no matter what the control mode as long as the pro-
peller is operating and the abort weights have not been
dropped.

As the description above indicates, the operation
mode of the depth control system determines the vari-
ables which are relevant. However, as we said in Sec-
tion 2, the mode commands are not sent to the logger
and hence are not available to the diagnosis system.
We solve this problem by connecting the depth control
system model to the automatically generated mission
script model (which we will describe in the next sec-
tion). To do this we specify in the model of the com-
plete AUV that if the network is nominal then the depth
control operating mode must be equal to the mission
script operating mode. Of course, if there were a fault
in the on-board network that meant commands were
not being delivered, this constraint would no longer
hold. We have omitted modelling network faults in the
current illustrative example for the sake of brevity.

The relevant sections of the static part of the Liv-
ingstone 2 model of the depth control diagnosis model
of Autosub 6000 are given in Figure 2. Although the
model is simplified, it is able to detect the stern plane
stuck down fault in a mission where the stern plane
feedback potentiometer failed. A graphical represen-
tation of the model is given in Figure 3.

4 DIAGNOSIS MODELS OF MISSION
SCRIPTS

Mission scripts used in Autosub 6000 (Pebody, 2007)
consist of a sequence of when blocks, each of which
defines the AUV’s behaviour for a fragment of the mis-
sion. An example is given in Figure 4 with three when
blocks representing the start of a mission. The argu-
ment of a when statement is a set of triggering events.
When a triggering event occurs, for example a Start-
CommandReceived or GotDepth, the body of the when
block is executed and the demands specified in the
body, such as that the motor power should be 300W,
are activated. The script blocks at the next when block
until the triggering condition is satisfied. In addition to
the main sequence of states, each mission script may
have up to two separate termination sequences that get
activated upon abnormal termination of the mission.

We can think of the mission script as of a sequence
of guarded update rules that update the values of de-
mands active in each state. To formalise the semantics
of mission scripts, we use the notion of model pro-
grams as defined in (Veanes et al., 2009). The defi-
nition of a model program is given in Definition 1.
Definition 1. A model program is a tuple P =
(Σ,Γ, φ0, R) where
• Σ is a finite set of variables called state variables;
• Γ is a finite set of action symbols;

• φ0 is a formula called the initial state condition;
• R is a collection {Rf}f∈Γ of action rules Rf =

(γ, U,X), where
– γ is a formula called the guard of f ;

enum MotorPower {NEGATIVE, ZERO, POSITIVE};
enum VerticalMode {SPLANE,DEPTH,TODEPTH,

ALTITUDE,SURFACE};

class Autosub6000 {
MissionControl missionControl;
DepthControl depthControl;
{
depthControl.vertModeIn =

missionControl.missionScript.verticalModeOut;
depthControl.motorPowerIn =

missionControl.missionScript.motorPowerOut;
}

}

enum DepthDemDifference{DECREASED,CONSTANT,INCREASED};
enum DepthDifference {POSITIVE, ZERO, NEGATIVE};

class DepthControl {
VerticalMode vertModeIn;
MotorPower motorPowerIn;
DepthDemDifference depthDemandDifference;
DepthDifference depthDemandMinusMeasured;
DepthDifference altitudeDemandMinusMeasured;
DepthDifference deltaDepth;
enum ModeType {nom,sPlaneStuckDown,
sPlaneStuckLevel, sPlaneStuckUp, unknownFault};

ModeType mode;
stateVector [mode];
{
switch (mode) {
case nom: // nominal
if (motorPowerIn = POSITIVE) {
if (vertModeIn=DEPTH || vertModeIn=ALTITUDE) {
if (depthDemandDifference = CONSTANT) {
((depthDemandMinusMeasured = POSITIVE) |
(depthDemandMinusMeasured = ZERO));

}
if (verticalModeIn = ALTITUDE ) {
if (altitudeDemandMinusMeasured=POSITIVE) {
((deltaDepth = NEGATIVE) |
(deltaDepth = ZERO)) ;

}
}
}

}
case sPlaneStuckDown:

if (motorPowerIn = POSITIVE) {
deltaDepth = POSITIVE;

}
case sPlaneStuckLevel:

if (motorPowerIn = POSITIVE) {
deltaDepth = ZERO;

}
case sPlaneStuckUp:

if (motorPowerIn = POSITIVE) {
deltaDepth = NEGATIVE;

}
case unknownFault:

// no constraints
}

}
failure toSPStuckD(nom,sPlaneStuckDown,unlikely) {}
failure toSPStuckL(nom,sPlaneStuckLevel,unlikely) {}
failure toSPStuckU(nom,sPlaneStuckUp,unlikely) {}
failure toUnknownFault(*, unknownFault, rare) {}

}
enum MissionControlState{MCS_RUNNING,MCS_ABORTED};

class MissionControl {
MissionScript missionScript;
MissionControlState missionControlStateObs;
{}

}

Figure 2: Simplified depth control diagnosis model of
Autosub 6000.
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Figure 3: A graphical representation of the diagnosis model given in Figure 2. The overall structure of the model
is given in the centre, with commands and observed variables on the left and the finite state machine model of the
the depth control component on the right. The octagonal states in the depth control component correspond to fault
states that can be transitioned to from any other state.

0 when( Start )
1 MotorPower( 300W),
2 SetElementTimer( 0:0:18:0),
3 RudderAngle(5),
4 SetDepthThreshold( 1000m),
5 SPlaneAngle( -20);

6 when( GotDepth )
7 MotorPower( 250W),
8 Altitude( 100m),
9 TrackP( StartWayPoint1, EndWayPoint1),
10 SetElementTimer( 0:1:2:30);

11 when( GotPosition, ElementTimeout)
12 TrackP( StartWayPoint2, EndWayPoint2),
13 SetElementTimer( 0:1:2:30);

Figure 4: A sample fragment of an Autosub 6000 mis-
sion script.

– U is an update rule {x := tx}x∈Σf
for some

Σf ⊂ Σ, U is called the update rule of f ,
– X is a set of variables, disjoint from Σ,

called choice variables of f , each χ ∈ X
is associated with a formula ∃xφ[x], called
the range condition of χ, denoted by χ∃xφ[x].

To illustrate how the formalisation works, let us look
at the mission script in Figure 4. The script contains 7
different kinds of demands: MotorPower, SetElement-
Timer, RudderAngle, SetDepthThreshold, SPlaneAn-
gle, Altitude and TrackP. In the formalisation, these
variables are all contained in Σ. The initial values of
the demands correspond to the rule φ0. The first when
block denoted by action symbol w1 ∈ Γ sets five de-
mands, thus we can think of it as action w1 with an
update rule U1 which assigns values to five variables.
The next when block corresponds to w2 and U2 and
sets four demands (resetting some of the previously
set demands). Update rules U3 of action w3 set two
demands. Action guards γ1, γ2, γ3 respectively need
to ensure that the when blocks can only be executed in
sequence and triggered by appropriate events. γ2 can
be thought of as e ∈ {GotDepth} where e ∈ X is the
event argument of action w2.

Because of the sequential nature of mission scripts
we add a variable pc to Σ that tracks the progress of the
mission script, and appropriate action guards to ensure
that w2 can only be executed after w1, w3 after w2,

etc. pc is a simple program counter that is incremented
after each when block is executed. pc is of an enumer-
ated type with the value range specific to the corre-
sponding line ranges of each particular mission script,
{L0L5, L6L10, L11L13} in the current case. For ex-
ample, γ2 becomes e ∈ {GotDepth} ∧ pc = L6L10
and modified update rules of w1 become U1 ∪ {pc :=
L6L10}.

While the above is sufficient for tracking the val-
ues of demands, the actual assignments to certain de-
mands have side effects in the mission control system.
The behaviour of the depth control system of Auto-
sub 6000 was outlined in Section 3. The mode of
the depth control system is changed by assignments
to the SPlane, Depth, Altitude and Surface demands.
Thus, when translating mission scripts to model pro-
grams we add a depth control mode variable dcm
to Σ and if appropriate update rules Ui of action wi
contain any of the four listed depth control demands,
we add an appropriate assignment dcm := {x|x ∈
{SP lane,Depth,Altitude, Surface}} to the update
rules of wi.

Thus, the set of state variables Σ becomes D ∪
{pc, dcm} where D is the set of all demand variables
of the AUV.

It is possible to distinguish triggering events in the
when blocks that take time, e.g. it takes time to reach
a depth of 1000m from the surface and it takes time
to reach a waypoint. Thus we can perform some tran-
sient analysis on the mission scripts and add transient
states to the mission script model. In fact, we need
only one transient state that is denoted by TODEPTH.
TODEPTH is used to designate a depth mode where
the AUV has just transitioned from some significantly
different depth following mode to a new depth or alti-
tude following mode. The constraints of the model are
activated only after the AUV has proceeded from the
transient step to the next step in the mission script.

Mission script model for onboard diagnosis
Figure 5 shows the automatically generated L2 model
of a mission script for onboard diagnosis. The Mis-
sionLineCmd enumeration is a finite domain represen-
tation of the program counter pc that tracks the state of
the mission script. For example, L5L8 represents the
fact that the AUV is executing the when block on lines
5–8 of the mission script. The mission script compo-
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/**
* Automatically generated enumeration denoting

* the states in the mission script.

*/

enum MissionLineCmd {noCommand,
noConstraints,
L0L4,
L5L8,
...
L253L255,
L256L258

};

/**
* Automatically generated mission script component.

*/
class MissionScript {

MissionLineCmd missionLineCmd;
Modetype mode;
MotorPower motorPowerOut;
VerticalMode verticalModeOut;

enum Modetype {initial,
noConstraints,
L0L4,
L5L8,
...
L253L255,
L256L258

};

stateVector [mode];
{
switch (mode) {

case initial:
//no constraints

case L0L4:
verticalModeOut = SPLANE;

case L5L8:
...
case L45L48:
motorPowerOut = POSITIVE;
verticalModeOut = TODEPTH;

...
case L85L89:
motorPowerOut = POSITIVE;
verticalModeOut = ALTITUDE;

...
case L247L250:
motorPowerOut = POSITIVE;
verticalModeOut = SURFACE;

case L251L252:
motorPowerOut = ZERO;
verticalModeOut = SURFACE;

}
}

transition L0L4(initial, L0L4) {
missionLineCmd = L0L4;

}
transition L5L8(L0L4, L5L8) {
missionLineCmd = L5L8;

}
...
transition L247L250(L243L246, L247L250) {
missionLineCmd = L247L250;

}
transition L251L252(L247L250, L251L252) {
missionLineCmd = L251L252;

}
}

Figure 5: Automatically generated model of the mis-
sion script for onboard diangosis.

nent has a state variable of type MissionLineCmd that
is used as the command input to sequentially transition
through the states. Each state of the mission script cor-
responds to a set of constraints which are specified in
the case clauses of the mode switch statement. For ex-
ample, the when block on lines 0–4 specifies that the
depth control mode is FIXED STERN-PLANE.

Given a model program representation of a mission
script m the rules for generating the onboard mission
script model can be summarised as follows:
• The values of pc assigned in each state are

converted into a MissionLineCmd enumeration
adding the value noCommand. The enumeration
is used as the range of commands passed to the
component.
• The values of pc assigned in each state are con-

verted into a ModeType enumeration adding the
value initial. A variable mode of this type is used
for tracking the state of the mission script compo-
nent.
• For every actionwi, given the set of variablesDm

that are selected to be included in the model, add a
constraint to the corresponding state (in the case
clause) of the mission script model that sets up
the relationship between the model variable and
an abstracted value of the demand.
• For every state of the mission script add a transi-

tion to the subsequent state triggered by the cor-
responding command.

Mission script model for off-board diagnosis
Underwater operations provide a huge challenge for
communication. All data exchanged between the AUV
and the support ship must be sent acoustically. While
the acoustic link provides communication up to the
range of 7km, its throughput is limited to 80 byte pack-
ets that are sent every 20-30 seconds. The probability
of packet loss increases proportionally with distance.
This means that only a very small subset of the on-
board telemetry can be communicated to the surface,
and packet loss is very frequent.

As the operators have the capability to send a mes-
sage to the AUV to abort the mission, they would like
to have diagnostic capabilities based on the acoustic
data, so in addition to the on-board diagnosis we have
also built a diagnosis system based on this telemetry.
However, this provides a number of additional diffi-
culties due to the likelihood of dropped data and due
to the infrequent reporting of each variable. In partic-
ular, commands are even less likely to be reported by
the telemetry, so as in the case of the example above,
a model of the mission script is needed to allow the
diagnosis engine to fill in the missing parts of the ve-
hicle’s behaviour. We can use exactly the same models
for off-board diagnosis as for on-board, taking advan-
tage of the ability of L2 to predict unobserved values.
However, the low rates of communication necessitate
a small change in the model of the mission script.

The mission script model for off-board diagnosis is
generated in the same way as for onboard diagnosis.
The differences are in the transitions as due to the long
gaps between receiving mission script progress mes-
sages and due to potential message loss, it is not guar-
anteed that every mission script state will be seen in
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class MissionScript {
...
transition L0L4(*, L0L4) {
missionLineCmd = L0L4;

}
transition L5L8(*, L5L8) {
missionLineCmd = L5L8;

}
...
transition L247L250(*, L247L250) {
missionLineCmd = L247L250;

}
transition L251L252(*, L251L252) {
missionLineCmd = L251L252;

}
transition toNoConstraints(*, noConstraints) {
missionLineCmd = noConstraints;

}
}

Figure 6: Differences in the automatically generated
model of the mission script for off-board diagnosis
compared to the onboard model.

the telemetry. Thus, as shown in Figure 6, transitions
to a mission script state are allowed from any previous
state, rather than only from the immediately previous
one. To accommodate situations where it cannot tell to
which mission script state the current set of readings
corresponds, we add an additional transient state no-
Constraints where the values of verticalModeOut and
motorPowerOut are unconstrained.

Interfaces of the mission script component
The automatically generated mission script component
has two interfaces: the interface to the monitor which
listens to current mission line indications and the inter-
face to the other components in the diagnosis model.
The interface to the other components of the diagno-
sis model is defined in the Autosub6000 component in
Figure 2. Thus the requirement of the model generator
is to only include values that are included in the cor-
responding domain types. The MissionLineCmd enu-
meration in mission script models also needs a corre-
sponding monitor implementation which we generate
automatically alongside the diagnosis model compo-
nent.

5 RESULTS
To test the efficacy of the automatically generated mis-
sion script models we ran the diagnosis engine on
logged data from eight actual Autosub 6000 missions,
including the mission that includes the nominal and
potentiometer fault data shown in Figure 1. The data
comprised a total of approximately 85 hours of AUV
operations. For comparison, we ran the diagnosis
model without the mission script model included. In
all cases the models generated no false positive fault
detections. However, in the case of the potentiometer
fault scenario, the model that did not include the mis-
sion script component failed to detect the fault, while
the model with the mission script component detected
it at mission time 22409 seconds since mission start,
approximately 54 seconds after evidence of the fault
first appears in the data and eight seconds before the
abort weights were dropped because the vehicle ex-
ceeded the maximum allowed depth.

We also ran the off-board telemetry on the same
scenario using simulated telemetry generated from the
logs, and without any packet losses. Telemetry mes-
sages were generated every 20 seconds, so each of the
five different sets of data would appear once in 100
seconds. In that case, the fault was detected at mis-
sion time 22469, one minute later than the on-board
diagnosis would detect it, and in this case 52 seconds
after the abort weights were dropped. This delay was
largely due to the fact that the mission line only ap-
pears in one of the five telemetry messages, and the
fault couldn’t be detected until a mission line had been
received.

While detecting the fault only eight seconds before
the abort weights were dropped (or a minute after)
may seem somewhat unspectacular, the abort weights
were dropped only because the vehicle exceeded its
maximum permitted depth. Had the vehicle not al-
ready been very close to its maximum depth the abort
weights would have been released much later. In par-
ticular, if the maximum depth had been deeper than
the seabed at that point in the mission, the vehicle
would have collided with the seabed and would not
have dropped its weights. This is very similar to an
event that led to a vehicle loss for an earlier Autosub
vehicle, which had to be retrieved using an ROV.

6 CONCLUSIONS AND FUTURE WORK
We demonstrate that by generating diagnosis models
of the program being executed we are able to pro-
vide diagnosis in situations where not all commands
that are relevant to diagnosis get logged or are directly
available to the diagnoser. While ideally, for the sake
of reliability, we would like to have direct access to
the commands, this approach enables us to work on
existing logs and on the current system without re-
quiring any changes to the software or hardware. We
solved the problem of unobservable demands by trans-
lating the corresponding software in an automated way
into the diagnosis model. In addition we show that
slightly different versions of these automatically gen-
erated models can be used with broadcast telemetry to
provide an effective off-board diagnosis system that is
robust to packet loss and noise. This is an extremely
valuable feature for Autosub 6000 as it lets the mission
controllers see what is happening on-board the AUV in
much greater detail than was previously possible and
intervene if necessary. In both cases, the automatically
generated models are used to constrain the behaviour
of the system more than the hardware models alone
can. This makes fault detection easier as there are
fewer ways to explain away anomalous sensor data.

Statistics collected over the hundreds of Autosub
missions carried out to date show that configuration
and mission script errors constitute a significant cause
of unsuccessful or partially successful missions and
catching those faults before launch is valuable. The
mission script checking that is carried out alongside
the generation of the models has already been shown
to reduce these errors.

When it comes to recovery from faults, the AUV is
handicapped by its lack of redundancy in actuators and
science instruments. However, we are currently look-
ing at this problem, and in particular at decisions about
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whether to abort a mission or carry on with reduced
functionality if a fault occurs. The mission script mod-
els are very useful for this analysis as they allow the
effects of a fault on future mission operations to be de-
termined. One example from a recent AUV mission
is a case where some batteries turned off during the
mission due to a fault. As there is some redundancy
in batteries for shorter missions and given that we can
roughly estimate remaining energy requirements, it is
possible to decide whether to continue on to the next
leg of the mission or not.

Mission script models have to be automatically gen-
erated for vehicles such as Autosub that perform mul-
tiple missions with short turnaround times. It is un-
realistic to expect the mission script planner to write
a diagnosis model alongside the mission script, and
there simply isn’t time for a diagnosis expert to build
a model once the script is written. Fortunately, in the
case of Autosub the scripts have very simple seman-
tics. A future challenge is to extend the approach to
more complex script languages. It may even be that if
on-board diagnosis becomes an important component
of future autonomous vehicles, the scripting language
will be constrained by the requirement that diagnosis
models can be automatically generated.
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