
Diagnosability for Patterns in Distributed Discrete Event
Systems

Yuhong Yan 1, Lina Ye 2, and Philippe Dague 2

1 CSE, Concordia University, Montreal, Canada
yuhong@cse.concordia.ca

2 LRI, Univ. Paris-Sud 11, France
{lina.ye, philippe.dague}@lri.fr

ABSTRACT

A pattern is a Finite State Machine that can de-
scribe rich faulty scenarios, such as the occur-
rence of single faults, multiple faults, multiple
occurrences of a fault, or the repair of a system.
In distributed systems, the events in the pattern,
as well as in the system trajectories, are emit-
ted from different components. Our approach is
based on distributed simulation and communica-
tion to check the recognition of the pattern from
the conclusion of local recognition of local pat-
terns. The components communicate observable
events and shared communication events, as well
as their local recognition results during the check-
ing process without sharing their local models in
any way.

1 INTRODUCTION
Discrete Event Systems (DESs) are widely used to de-
scribe system dynamics. Classically, a fault is associ-
ated with one non-observable faulty event. The fault
diagnosis task in discrete event systems is to reason
about the occurrence of a fault from a sequence of ob-
served events emitted. If a finite sequence of observ-
able events can non-ambiguously identify a fault from
the other faulty or correct behaviors, this fault is called
diagnosable.

A pattern is modeled as a Finite State Machine
(FSM) with the events from the original system (Jéron
et al., 2006). It can uniformly describe various faulty
scenarios, such as single fault, multiple faults, multi-
ple occurrences of a fault, and the repair of a system
after the occurrence of a fault, etc. For example, a sin-
gle fault can be modeled as a FSM that includes one
transition that emits a faulty event; and a pattern for
two faults can be modeled as an FSM that contains two
branches from the initial state and each of the branches
presents a scenario that one of the two faulty events
precedes another respectively (Jéron et al., 2006). In-
deed, a pattern is a unified description of rich faulty
scenarios. Thus, studying pattern diagnosis and diag-
nosability is of great interest. A system can be diag-
nosed by deducing the recognition of the pattern from

a sequence of observed events. The purpose of pattern
diagnosability is to answer whether this recognition is
deterministic for all the trajectories with the same ob-
servations.

Our paper is to solve the pattern diagnosability prob-
lem in distributed discrete event systems. Our ap-
proach is based on distributed simulation, which is
new in the research of distributed diagnosability anal-
ysis. We align local trajectories into partially observ-
able global trajectories by distributed simulation. The
global consistency is ensured via the simulation, in-
stead of calculating a verifier (Pencolé, 2004). Fur-
ther, we develop a process to compute globally ob-
served traces and recognition of the pattern, and fur-
ther compute the pattern diagnosability from the lo-
cal recognition results. We have proved the correct-
ness of our method. One advantage of our approach
is that we avoid expensive operation to calculate local
diagnosers (Pencolé, 2004; Ye et al., 2009) and ver-
ifier (Pencolé, 2004). Another advantage of our ap-
proach is that the components do not share their local
models in any direct or indirect way (e.g. sharing their
local diagnosers (Pencolé, 2004)).

2 PRELIMINARIES
A distributed DES is composed of a finite set of com-

ponents, {G0, G1, ..., Gn}, each of which is modeled
as an FSM (Definition 1).
Definition 1 (Local Model). The local model of a
component Gi is an FSM Gi = (Qi,Σi, δi, q

0
i), where

• Qi is a finite set of states
• Σi is a finite set of events
• δi ⊆ Qi × Σi ×Qi is a set of transitions
• q0

i is the initial state
The set of events Σi is divided into three parts

Σi = Σio
⊎

Σiu
⊎

Σic , where Σio is the set of lo-
cally observable events which are disclosed to any
other components; Σiu is the set of locally unobserv-
able events; and Σic is a set of communication events
which are shared by Gi and at least one of the other
components, and are observable only to their own-
ers. As the locally observable events are disclosed to

1

21st International Workshop on Principles of Diagnosis

the other components, they can be considered glob-
ally observable as well in this paper. We assume that
an event can be labeled its owner’s name. Therefore,
for any pair of local components Gi and Gj , we have
Σio ∩ Σjo = ∅ and Σiu ∩ Σju = ∅. Globally, we have
Σo =

⊎n
i=1 Σio ,Σu =

⊎n
i=1 Σiu and Σc =

⋃n
i=1 Σic .

For convenient, δi ⊆ Qi × Σi × Qi is also used to
represent δi ⊆ Qi × Σ∗i ×Qi in the following way:
• (q, ε, q) ∈ δi, where ε is the null event
• (q, se, q1) ∈ δi if ∃q′ ∈ Q, (q, s, q′) ∈ δi and

(q′, e, q1) ∈ δi, where s ∈ Σ∗i , e ∈ Σi
We assume that the components do not share their

local model with the other components and there is no
central unit that knows all the local models. We further
assume that the components do not synchronize their
local clocks. That means the observed sequence of ob-
servable events from different components is not nec-
essarily the same as their occurrence sequence. If one
event from one component occurs before a commu-
nication event and another event from a second com-
ponent occurs after the communication event, we can
determine their sequences. Otherwise, we deduce the
two events can occur concurrently.
Definition 2 (Synchronization). Given two FSMs
G1 = (Q1,Σ1, δ1, q

0
1) and G2 = (Q2,Σ2, δ2, q

0
2),

their synchronized product based on the communica-
tion events is G1‖2 = G1‖Σ1c∩Σ2c

G2=(Q1 × Q2,
Σ1 ∪ Σ2, δ1‖2, (q0

1 , q
0
2)), where δ1‖2 is defined in the

following:
• {((q1, q2), σ, (q1′, q2′))}, if σ ∈ Σ1c ∩ Σ2c and

(q1, σ, q1′) ∈ δ1, (q2, σ, q2′) ∈ δ2.
• {((q1, q2), σ, (q1′, q2))} if σ ∈ Σ1 ∧ σ /∈ Σ2 and

(q1, σ, q1′) ∈ δ1.
• {((q1, q2), σ, (q1, q2′))} if σ /∈ Σ1 ∧ σ ∈ Σ2 and

(q2, σ, q2′) ∈ δ2.
• otherwise δ1‖2 is undefined.

Figure 1 depicts a distributed system with compo-
nents {G1, G2}. For G1, Σ1 = {c1, c2, u1, u2, o1},
Σ1o

= {o1},Σ1u
= {u1, u2},Σ1c

= {c1, c2}. G2
has similar definitions. The global model of the sys-
tem is G = {Q,Σ, δ, q0} = G1‖G2. We try to avoid
to use this operation to get the global model due to
its computational expensiveness and non-sharable lo-
cal models.

x1u1 c1
u2

Y1o2 c2
x0 x3 x4

c2

u2

o

Y0 Y3

c

o3

x2
c2

u1
o1 Y2

c1 o2 o3

Figure 1: A distributed system with two components
G1(left) and G2(right).

The prefix-closed language L(G) generated by G de-
scribes the behavior of the system, which implies all
the states in G are final states. We will use trajecto-
ries instead of words:

L(G) = {s ∈ Σ∗|∃q ∈ Q, (q0, s, q) ∈ δ}
In our paper, both the generated language and the

recognized language are assumed to be observable
alive, which means that there is no cycle containing
only unobservable events. Given a trajectory s ∈ L,
we denote L/s as the post-language of L after s and
denote PΣo(s) as the sequence of observable events in
s. PΣo

(s) (P (s) when no ambiguity) is also called a
trace. The inverse projection of a trajectory s is de-
noted as P−1(P (s)) = {t ∈ L(G)|P (t) = P (s), s ∈
L(G)}.

3 PATTERN DIAGNOSABILITY
From domain knowledge, we can associate a pattern
with the occurrence of single or multiple faults, or the
repair of a system (Jéron et al., 2006). A pattern can
be described as an FSM (Definition 3).

Definition 3 (Pattern). A pattern is an FSM with fi-
nal states set FΩ, Ω = (QΩ,ΣΩ, δΩ, q

0
Ω, FΩ), which

satisfies the following conditions:

• ∀q ∈ QΩ,∀σ ∈ ΣΩ, if (q, σ, q1) ∈ δΩ and
(q, σ, q2) ∈ δΩ, then q1 = q2.

• ∀q ∈ QΩ,ΣΩ(q) = ΣΩ where ΣΩ(q) = {σ ∈
ΣΩ|∃q′ ∈ QΩ, (q, σ, q′) ∈ δΩ}.
• FΩ ⊆ QΩ and δΩ(FΩ,ΣΩ) ⊆ FΩ

where δΩ(FΩ,ΣΩ) =
⋃
q∈FΩ,σ∈ΣΩ

{q′ ∈
QΩ|(q, σ, q′) ∈ δΩ}.
• q0

Ω /∈ FΩ

The first two conditions describe the pattern as a de-
terministic and complete finite state automaton. The
third condition characterizes that the final state set FΩ
is stable. The set of all the trajectories that transfer
the FSM to its final states is a recognized language of
this FSM. Then it can be deduced that its recognized
language Lm(Ω) is “extension-closed”, formally de-
scribed as

∀s ∈ Lm(Ω),∀s′ ∈ Σ∗Ω, ss′ ∈ L(Ω)→ ss′ ∈ Lm(Ω)

which means that once the system arrives in a final
state, it will be always in a final state in the future.
As Ω is complete, ss′ ∈ L(Ω) is always true. Given a
system FSM G and a pattern Ω, we assume: ΣΩ = Σ,
ΣΩo

= Σo. Notice that the FSM for pattern has final
states, while the model for components does not have
final states. It is because the components are assumed
to work continuously, while a pattern has a final state
to mark the recognition of a fault. Figure 2 presents a
pattern Ω for the system displayed in Figure 1.

p0 p
u1

Σ\u1 , o3

p3

o3

p1 p2
o2

ΣΣ\o2

Σ

Figure 2: Pattern Ω.

2

21st International Workshop on Principles of Diagnosis

A system can be diagnosed by deducing the recog-
nition of the pattern from a sequence of observed
events. Pattern diagnosability is to answer whether
this recognition is deterministic for all the trajectories
with the same observations. In addition, we want the
recognition process to be bound, i.e. there must ex-
ist n ∈ N , where N is the set of nature numbers,
that whenever s ∈ L(G) ∩ Lm(Ω) ∩ Σ∗Σo, for all
t ∈ L(G)/s ∩ Σ∗Σo, the inverse projection of P (st)
is also recognized by Lm(Ω). The term Σ∗Σo con-
strains the trajectory to end with an observable event
for the convenience of recognition. The following def-
inition follows the bound diagnosability in (Jéron et
al., 2006):

Definition 4 (Pattern Diagnosability). A system FSM
G is Ω-diagnosable if ∃n ∈ N, ∀s ∈ L(G)∩Lm(Ω)∩
Σ∗Σo,∀t ∈ L(G)/s ∩ Σ∗Σo,

if |t| ≥ n, then P−1P (st) ⊆ Lm(Ω).

Definition 4 says that if exists a nature number n, for
any trajectory s satisfying s ∈ L(G)∩Lm(Ω)∩Σ∗Σo,
and any sequence of events t satisfying t ∈ L(G)/s ∩
Σ∗Σo, if t is longer than n, then the inverse projection
of the projection of st is recognized by the pattern Ω.
In another word, all the possible trajectories of what
we can observe (which is the projection of st) is re-
congized by the pattern Ω, if we wait long enough.
This means we can non-ambiguously decide that the
pattern is recognized from what we have observed, if
we waitn long enough. This is the exact meaning of
Ω-diagnosability.

4 PATTERN DIAGNOSABILITY IN
DISTRIBUTED DISCRETE EVENT
SYSTEMS

4.1 The Principle
Following Definition 4, we need to find out whether all
the trajectories with the same trace can be recognized
by the pattern or not. If all the trajectories with the
same trace can be recognized by the pattern (or if nei-
ther of the trajectories with the same trace can be rec-
ognized by the pattern), this means that from what we
can observe (i.e. the trace), we can non-ambiguously
tell the recognition of the pattern (or not). Therefore,
the system is Ω−diagnosable. If some trajectories are
recognized while the others are not, but they have the
same trace, we could not tell wether the pattern is
recognized or not. In this case, the system is not Ω-
diagnosable.

Theorem 1 If there exist two trajectories for a system
which have the same trace, one of which is recognized
by the pattern Ω and the other is not, the system is not
Ω-diagnosable.

Proof: We use reductio ad absurdum. Assume two
trajectories s1, s2 ∈ L(G) have the same trace, i.e.
P (s1) = P (s2), and s1 is recognized by Ω, and
s2 is not, i.e. s1 ∈ Lm(Ω) and s2 /∈ Lm(Ω). If
we compute all the trajectories whose trace is P (s1)
(or P (s2)), we have at least two trajectories s1 and
s2, i.e. s1, s2 ∈ P−1(P (s1)). If the system is Ω-
diagnosable, we should have both i.e. s1 ∈ Lm(Ω)
and s2 ∈ Lm(Ω) from Definition 4, which violates the

assumption that s2 /∈ Lm(Ω). Therefore, the system is
not diagnosable. �

Based on Theorem 1, if we want to prove a system
is not Ω-diagnosable, we need to find out at least two
trajectories with the same trace, one of which is rec-
ognizable by the pattern, and the other is not. If we
want to prove a system is Ω-diagnosable, we verify all
the trajectories such that their traces are the same, they
should be uniformly recognized or not recognized by
the pattern. In a distributed system, we use distributed
simulation to identify globally consistent trajectories,
and then determine if the trajectories with the same
trace are uniformly recognized by the pattern or not.
The two definitions below are used in the rest of the
paper.

Definition 5 The critical transitions of a pattern are
the transitions in the pattern whose starting and end-
ing states are not the same. And the critical events are
the events emitted by the critical transitions.

The critical transitions in Figure 2 are (p0, u1, p1),
(p0, o3, p3), and (p1, o2, p2). The critical transitions
are critical because they progress the process of recog-
nizing a pattern.The critical events are {u1, o2, o3}.
Definition 6 A local pattern Ωi for a component Gi
is an FSM modified from Ω by keeping only the criti-
cal transitions and renaming the local non-observable
events which do not belong to Gi to a silent event ε.

For Ω in Figure 2, the local pattern Ω1 for compo-
nent G1 is the same as Ω except the looped transitions
are removed (see also Fig. 3 left). The local pattern Ω2
for component G2 renames u1 to ε and it is without the
looped transitions (see also Fig. 3 right).

p3o3

p0 p1 p2
u1 o2

p3o3

p0 p1 p2
ε o2

Figure 3: The local patterns for G1 (left) and G2
(right).

4.2 Distributed Simulation
We assume that the components can simulate their lo-
cal models and can send and receive messages to com-
municate their local observable events and communi-
cation events with one another. Via simulation, the
components identify whether their local patterns are
recognized, and then exchange the local recognition
results. Each component can conclude the same result
about the global diagnosability by synthesizing the lo-
cal recognition results it receives. This diagnoability
analysis is conducted off line, i.e. no observations at
the run time are used. We first present some data struc-
tures and then the simulation algorithm.

An Execution Tree is a tree T with labeled edges
to record the execution paths in a component. A tree
node is labeled by a state of the local model. An edge
is labeled by the event emitted from a transition t and
a unique id. The unique id is id1 ∈ N at the first
level and in the format of idn−1.k (k ∈ N) at the n-th
level, where N is the set of nature numbers. With an

3

21st International Workshop on Principles of Diagnosis

id, we can easily retrieve the execution path that leads
to the current transition. A method id = T.grows(t)
grows the tree T with the given transition t and returns
the generated id. A method T.getPath(id) returns an
array of transitions on the execution path that leads to
the transition labeled id. Gi.id is to tell the id belongs
to a component Gi.

Communications and messages. A message m
has a message type m.type ∈ {“communicate”,
“confirm”,“loop”}. The message content for “com-
municate” and “confirm” messages is a tuple
〈e,Gi.id,Gj .id〉, in which e is an event, Gi is
the sender component, Gj is the receiver com-
ponent. The message content for “loop” mes-
sages is 〈Gi.id1, Gi.id2, Gj .id〉, where the path
between Gi.id1 and Gi.id2 is a loop. If any
fields in the messages are unknown, null is
used. m = sends(type, 〈e,Gi.id,Gj .id〉) and
m = sends(type, 〈Gi.id1, Gi.id2, Gj .id〉) compose
the message m and send it to Gj . Gj .id is the last
transition id in the matched trajectory in Gj (cf. be-
low). If no matching trajectory exists, Gj is used. The
communication protocol is as following:

1. When a communication event is emitted, the
component sends a “communicate” message to
all components which share this communication
events (possibly more than one), and waits for
“confirm” messages from all its correspondents
before resuming the execution on the branch.
“Time-out” can remove any unsynchronizable
path from the execution paths pool. A method
b = m.matches(m′.e, id) matches a message m
with a message m′. It returns 1 iff m.e == m′.e
∧m.Gj .id ≥ id, otherwise b = 0. m.Gj .id ≥ id
holds if the current id in the receiver (aka Gj)
is a subbranch of Gj .id. Gj is considered as a
root. A path in a component can match multiple
paths in another component. To reuse the already
built paths, we keep all the confirmed messages
in memory.

2. When an observable event is emitted, the compo-
nent sends a “communicate” message to all the
components, and does not wait for an answer be-
fore continuing its execution.

3. When a loop is detected, the component sends a
“loop” message to all the components.

Matrix to record trajectories. A component
records its execution trajectories and their matched ob-
served traces from the other components in a matrix.
A cell contains an event and component.id. For con-
venience, the rows are aligned by the correspondent
communication events (ref. Table 1 and Table 2).

Distributed Simulation. In Algorithm 1, a local
model Gi = (Qi,Σi, δi, q

0
i) is simulated and the ex-

ecution paths are recorded. The main While loop
alternatively operates two methods simulate() and
processMessages(), until all the paths are explored
or some time-out conditions satisfied. The method
simulate() simulates the local model by exploring
all the possible execution paths. At each invocation,
simulate() stops only when all the execution paths
pause at the communication transitions waiting for

confirmations, or all the execution paths go into sta-
ble loops. processMessages() is to process received
messages.

As the local model has finite states, the whole sim-
ulation process runs into a loop eventually. We can
detect a loop by comparing the states on the execu-
tion path. If a loop has no communication events, we
just need to inform all the components that this loop
is detected. There is no need to repeat the execution
of the loop. If a loop contains communication events,
we need to execute the loop again until all the compo-
nents are in a stable and synchronized loop. An exe-
cution path is removed if its communication event is
not confirmed after the “time-out” threshold. There-
fore, Algorithm 1 terminates. We neglect some details
in Algorithm 1 for simplicity.
Algorithm 1 Distributed Simulation
MUP,MP = ∅ - the set of unprocessed/processed
received messages.
NUP,NP = ∅ - the set of unprocessed/processed
sent messages.

1: A = {q0
i }, δ′ = ∅

2: while A 6= ∅ or !(time-out) do
3: simulate()
4: processMessages()
5: A = {δi(q, e)|δi ∈ δ′, δi.pause = false}
6: δ′ = δ′\{δi|δi ∈ δ′, δi.pause = false}
7: end while
1: simulate()
2: while A 6= ∅ do
3: δ =

⋃
q∈A,e∈Σ δ(q, e, q

′), A′ =⋃
q∈A,e∈Σ δ(q, e)

4: for each transition δi(q, e, q′) ∈ δ do
5: id = T.grows(δi), Matrix← (e,Gi.id)
6: if e ∈ Σc then
7: id.pause = true, A′ = A′\q′, δ′ ← δi
8: m = sends(“communicate”, 〈e,Gi.id,

Gj .id〉) to ∀Gj 6= Gi, e ∈ Gj ,
9: NUP ← m

10: else
11: if e ∈ Σo then
12: ∀Gj 6= Gi, m =

sends(“communicate”, 〈e,Gi.id,
Gj .id〉)

13: end if
14: end if

{Detect loops}
15: if ∃δj(q′, e, q′′) ∈ T.getPath(id) ∧

δj .loop = false then
16: id′ = δj(q

′, e, q′′).id
17: ∀Gj 6= Gi, m = sends(“loop”, 〈Gi.id′,

Gi.id,Gj .id〉)
18: E = {e|e ∈ δk, δk ∈ (T.getPath(

Gi.id)− T.getPath(Gi.id
′))}

19: mark the loop from id’ to id in Matrix
20: if E ∩ Σc = ∅ ∨ all aligned trajectories in

loop then
21: A′ = A′\q′
22: end if
23: end if
24: end for
25: A = A′

4

21st International Workshop on Principles of Diagnosis

26: end while
1: processMessages()
2: for ∀m ∈MUP do
3: ifm.type == “communication” ∧m.e ∈ Σo

then
4: record (m.e,m.Gi.id) at the end of a line for

Gj in Matrix where Gj == Gi ∧ Gi.id ≤
Gj .id

5: MUP = MUP\m, MP ← m1

6: end if
7: ifm.type == “confirm” ∧ ∃m′ ∈ NUP that

m.match(m′.e,m′.Gi.id) == true then
8: align (m.e,m.Gi.id) with (m′.e,m′.Gi.id)

in Matrix, MUP = MUP\m, MP ← m
9: if all correspondents aligned to m′ then

10: m′.id.pause = false
11: NUP = MUP\m′, NP ← m′

12: end if
13: end if
14: ifm.type == “communication” ∧m.e ∈ Σc

then
15: for ∀m′ ∈ NUP that m.match(m′.e,

m′.Gi.id) == true2 do
16: align (m.e,m.Gi.id) with

(m′.e,m′.Gi.id) in Matrix
17: m′′ = send(“confirm”, 〈m.e,m′.Gi.id,

m.Gi.id〉)
18: MUP = MUP\m, MP ← m
19: if all correspondents aligned to m′ then
20: m′.id.pause = false
21: NUP = MUP\m′, NP ← m′

22: end if
23: end for
24: end if
25: end for

Example 1 Given two local models G1 and G2 as in
Figure 1, the execution matrix are those displayed in
Table 1 and Table 2. The execution trees are shown in
Figure 4 (a) and (b). Please notice that the trajectory
G2.3 has no matching trajectories inG1. Thus the last
row in Table 1 contains only the observable events of
G2.3. So does the last row in Table 2. �

Simulation Complexity. A local model Gi has
maximally |Qi|2 ∗ |Σi| transitions. From the code, the
first for loop on line 4 in simulate() is executed max-
imally |Qi|2 ∗ |Σi| times. We assume that the system
is well synchronized and that, after n limited execu-
tion steps, the system is in a stable synchronized loop.
This means the while loop on line 2 in simulate()
is executed n times. Therefore, the time complex-
ity of Algorithm 1 is O(|Qi|2 ∗ |Σi| ∗ n). We have
bounds for n in some simple cases. For example, when
the model has only one loop at the “end” state (like
in our example), n is the number of the transitions
in the longest path between the initial state and the
“end” state. Assume all the components are executed
n times. The time complexity to simulate the whole
system is O(

∑
i |Qi|2 ∗ |Σi| ∗ n).

1reuse of MP and NP is eliminated
2if no match, a new path from the initial state may start.

x0

x1

x3

{u1, 1}

Y0

Y1Y2

Y

x2

x3

{C2, 2}

{c1, 1.1}

{u 1.1.1}

{u1, 2.1}

Y3

Y3

{c1, 1}
{o2, 2}

{o3, 3}

{o2, 1.1} {o3, 3.1}{c2, 2.1}

x4

Y3

x4

{u2, 1.1.1}

{o1, 1.1.1.1}

{u2, 2.1.1}
Y3

{o3, 1.1.1}
{o3, 2.1.1}

{o1, 2.1.1.1}

(a)
(b)

Figure 4: (a) The execution tree for componentG1; (b)
The execution tree for component G2.

4.3 Checking Diagnosability
A component can use the following reasoning process
to decide the diagnosability of the system. The con-
clusion by any component should be the same.

1. The aligned local trajectories are globally con-
sistent. This is ensured by the design of the simulation
process which follows the only constraint of the dis-
tributed system - synchronization by communication
events. The aligned local trajectories can have sequen-
tial parts and concurrent parts. For example, PathG1.1
and Path G2.1 in Table 1 are paired and aligned by c1.
The pair can be represented by u1c1((u2o

∗
1)||(o2o

∗
3)).

The concurrent part joined by || indeed means that two
FSMs synchronize without common events. The sec-
ond trajectory in G1 formed by Path G1.2 and Path
G2.2 can be represented by o2c2((u1u2o

∗
1)||o∗3). And

third trajectory in G1 is formed by Path G2.3 can be
represented by o3o

∗
3. For G2, the trajectory made by

G2.1 and G1.1 is c1((o2o
∗
3)||o∗1); the trajectory made

by G2.2 and G1.2 is o2c2(o∗3||o∗1); and the trajectory
made by G3.3 is o3.o

∗
3.

2. Each component can compute the global
traces. By projecting the aligned trajectories on ob-
servable events, a component can obtain global traces.
For example, the group of traces for Path G1.1 and
Path G2.1 is o∗1||(o2o

∗
3); for Path G1.2 and Path G2.2

is o2(o∗1||o∗3), and for Path G2.3 is o3o
∗
3. G2 gets the

same results.
3. Compute the recognizability of the patterns.

First step: each component decides the recognizabil-
ity of the local observed trajectories against its local
pattern. We project each pair of trajectories on criti-
cal events to simplify the computation, because only
the sequences of critical events decide recognizabil-
ity. For G1, the three projected sequences for the three
pairs of aligned trajectories are: u1o2o

∗
3, o2(u1||o∗3),

and o3o
∗
3. It is easy to see that the first and the third are

recognized against local pattern Ω1, and the second is
rejected. For G2, we have three sequences: o2o

∗
3, o2o

∗
3

and o3o
∗
3. All are recognized against local pattern Ω2.

Please notice that, if a trajectory has concurrent terms,
if and only if all the possible paths are recognized by
the pattern, can we consider the trajectory is recog-
nized. For example, assume the pattern is o1o2 and
the trajectory is o1||o2. This trajectory is considered
non-recognizable, because one possible path o2o1 is
not recognizable by the pattern. The complexity to

5

21st International Workshop on Principles of Diagnosis

Path G1.1 {u1, G1.1} {c1, G1.1.1},⊗ {u2, G1.1.1.1} {o1, G1.1.1.1.1}∗ -
Path G2.1 - {c1, G2.1},⊗ {o2, G2.1.1}, {o3, G2.1.1.1}∗ - X by G1, G2

Path G1.2 - {c2, G1.2},⊗ {u1, G1.2.1} {u2, G1.2.1.1} {o1, G1.2.1.1.1}∗ × by G1

Path G2.2 {o2, G2.2} {c2, G2.2.1},⊗ {o3, G2.2.1.1}∗ - - X by G2

Path G2.3 {o3, G2.3} {o3, G2.3.1}∗ - - - X by G1, G2

Table 1: Matrix of execution trajectories of G1. ⊗marks communication events,Xmarks recognized trajectories.

Path G2.1 {c1, G2.1},⊗ {o2, G2.1.1} {o3, G2.1.1.1}∗ X by G1, G2

Path G1.1 {c1, G1.1.1},⊗ {o1, G1.1.1.1.1}∗ -
Path G2.2 {o2, G2.2} {c2, G2.2.1},⊗ {o3, G2.2.1.1}∗ × by G1

Path G1.2 - {c2, G1.2},⊗ {o1, G1.2.1.1.1}∗ X by G2

Path G2.3 {o3, G2.3} {o3, G2.3.1}∗ - X by G1, G2

Table 2: Matrix of execution trajectories of G2. ⊗marks communication events,Xmarks recognized trajectories.

compute local recognition is discussed at the end of
this section.

Second step: if and only if all the components unan-
imously vote for recognizing a pair of aligned trajec-
tories using their local patterns, this pair of trajecto-
ries is recognized by the global pattern. That local
recognition implies global recognition is ensured by
Theorem 2. That a local rejection can cause a global
rejection is easy to understand. If a global trajectory
is recognized by the global pattern, its projection on
one component’s events can also satisfy this compo-
nent’s local pattern. Therefore, if the projection of a
global trajectory on one component’s events does not
satisfy the component’s local pattern, this global tra-
jectory does not satisfy the global pattern either.

For our example, the pair of Path G1.1 and Path
G2.1 is recognized globally; the pair of Path G1.2 and
Path G2.2 is not recognized globally; and Path G2.3 is
recognized globally.

4. Decide diagnosability. From Theorem 1, if there
exist both recognized and unrecognized trajectories of
the same trace, the system is not diagnosable, other-
wise it is diagnosable. For our example, we find that
o2 is a possible trace for the pair composed by Path
G1.1 and PathG2.1 and the pair composed by and Path
G1.2 and PathG2.2. As the pair of PathG1.1 and Path
G2.1 are recognized by the global pattern and the pair
Path G1.2 and Path G2.2 are not, the system is not di-
agnosable. As we check all the possible trajectories,
our decision is sound. The complexity to check the ex-
istence of a common trace for trajectories is discussed
at the end of this section.

Our reasoning process relies on a proposition that
the local recognition of the local patterns implies
global recognition of the global pattern. It is easy to
tell the inverse implication stands. As a local pattern
is less constrained than the global pattern, if a local
pattern is not recognized, the global pattern cannot be
recognized. But there are cases that local recognition
does not imply global recognition. Theorem 2 gives a
sufficient condition that except the case that two con-
secutive critical transitions whose events are locally
unobservable events and belong to two different com-
ponents, local recognition implies global recognition.
Theorem 2 If there exist no two consecutive critical
transitions in the pattern whose events are locally un-
observable events and belong to different components,

the locally recognized trajectories against the local
patterns are globally recognized against the global
pattern.
Proof: Without losing generality, assume t1 and t2 are
two consecutive critical transitions in the pattern and
whose events are α and β respectively. t1 ≺ t2 denotes
that t1 precedes t2.

If α and β belong to the same component, it is a triv-
ial case, because one component can fully determine
their sequence from the simulation algorithm.

If α ∈ G1, β ∈ G2 belong to components G1
and G2 respectively. By the condition of the theorem,
α and β cannot be both locally unobservable events.
Therefore, α and β can be both locally observable, or
one is locally unobservable and the other is locally ob-
servable. Thus, at least one of G1 and G2 has both α
and β in its local pattern. Therefore, if this component
can determine their sequences locally through the sim-
ulation algorithm, this means globally their sequence
is determined. Thus, the local recognition leads to the
global recognition. �

Theorem 2 tells an exceptional case that if there are
two consecutive critical transitions whose events are
locally non-observable and belong to different com-
ponents in the pattern, local recognition does not al-
ways imply global recognition. In this case, we cannot
apply the methods developed in this paper. Figure 5
illustrates this exceptional case. In Figure 5(a), the
pattern has two consecutive critical transitions whose
events are u1 and u2 which belong to G1 and G2 re-
spectively. Since one component can only simulate ei-
ther u1 or u2, there is no way to determine their se-
quence by either of the components. For example, Fig-
ure 5(c) and (d) illustrate two components G1 and G2.
Their local patterns are (p0, u1, p1)→ (p1, o1, p3) and
(p0, u2, p2)→ (p2, o1, p3) respectively.

By distributed simulation, G1 gets one trajectory
u1c1(o1||o2) and G2 gets one trajectory u2c1(o2||o1).
It is easy to see that both G1 and G2 recognize their
local patterns. However, globally, we can only deduce
u1 and u2 are parallel, i.e. u1||u2, because they both
precede the communication point c1. There is no way
to distinguish their sequential order. This can also be
proved by synchronizing the local models of G1 and
G2 to get the global system model. In this case, the lo-
cal recognition does not lead to the global recognition.

If we change the pattern to Figure 5(b), where

6

21st International Workshop on Principles of Diagnosis

u1 and u2 are separated by an observable event o1,
the local patterns to G1 and G2 are (p0, u1, p1) →
(p1, o1, p3) and (p0, o1, p2) → (p2, u2, p3) respec-
tively. G1 can get u1c1(o1||o2) by simulation, and it
recognizes its local pattern. G2 can get u2c1(o1||o2)
by simulation, and it does not recognize its local pat-
tern. Therefore, globally, the pattern is not recognized.
This is the case that satisfies the condition of Theo-
rem 2. We can see that the sequence orders of u1 ≺ o1
and o1 ≺ u2 in the pattern can be determined by
one component. Thus local recognition implies global
recognition. However, our example is a case that local
non-recognition implies global non-recognition.

P0 P1 P3

(a) Pattern 1

u1 u2
P0 P1 P3

(b) Pattern 2

u1 u2

P2
o1

Σ\u1 Σ\u2 Σ Σ\u2 ΣΣ\o1

P2
o1

Σ\o2

(c) G1 (d) G2

x0 x1 x3x2

u1 c1 o1

y0 y1 y3y2

u2 c1 o2

o4
o3

Figure 5: Two consecutive local events in a pattern.

Briefly, we discuss when a local component can de-
termine the occurrence sequence of two critical events
α and β emitted by two consecutive critical transitions
in a pattern. Here we do not constrain the observ-
ability of α and β. If α and β belong to the same
component, then this component can determine their
occurrence sequence by simulation. If α and β be-
long to two different components G1 and G2 respec-
tively, their occurrence sequence cannot be determined
by their observed sequence. However, if there exists at
least a communication event c shared by G1 and G2,
and α ≺ c, c ≺ β, we can deduce that α ≺ β. This is
illustrated as in Table 3. This helps us to check local
recognition easily.

Path G1.1 α c ⊗
Path G2.1 c ⊗ β

Table 3: Matrix of execution trajectories of G1 and G2.

Complexity of Checking Diagnosability. The
steps one and two in the diagnosability check reason-
ing process are trivial, which involve trajectories align-
ment and projection.

The third step needs to compute whether a pair of
trajectories can be recognized by the local pattern. We
first project the trajectories on critical events. In a
general case, the projected trajectories have concur-
rent segments. Each projected trajectory can be rep-
resented as a regular expression. (Thompson, 1968)
converts a regular expressionE with n letters in length
into a Nondeterministic Finite Automaton (NFA) with
n states in linear time 1(n). The synchronized NFA Π
hasm = n1 ·n2 states. Therefore, we need to consider
whether L(Π) ⊆ L(Ωi), where Ωi is a local pattern
which is a Deterministic Finite Automaton (DFA). It is
known that it takes O(n1 ·n2) time to check L1 ⊆ L2,
for L1 and L2 are DFA with n1 and n2 states (Gelade
and Neven, 2008). However, to convert a NFA Π to a

DFA takes an exponential time 2m. Therefore, the to-
tal complexity is O(2m · p), where p is the number of
states in the pattern. Normally a pattern Ω is relatively
simple and critical events are not many. We can think
that m is much smaller than the length of trajectories.

The fourth step needs to compute the existence of
common traces for two pairs of trajectories when one
pair is recognized globally and the other is not. We first
project the trajectories on observable events. Then we
can get two synchronized NFAs Π1 and Π2 as above.
We need to tell whether L(Π1) ∩ L(Π2) = ∅. This
needsO(m1·m2) time complexity (Gelade and Neven,
2008).

5 RELATED WORK

(Sampath et al., 1995) introduced the diagnosability
problem for discrete event systems and proposed to
solve it by detecting some transition cycles of ambigu-
ous states in a global diagnoser. The main disadvan-
tage of their approach is its exponential space com-
plexity in the number of system states. (Jiang et al.,
2001) proposed a classical twin plant approach to im-
prove the algorithm complexity, which is only polyno-
mial in the number of system states. (Pencolé, 2004)
studied the diagnosability problem in distributed sys-
tems and provided a non scalable method of synchro-
nizing local non reduced twin plants until a global crit-
ical path is detected. Then (Schumann and Pencolé,
2007) proposed a scalable approach for diagnosability
verification in a distributed way through checking the
existence of a set of local reduced twin plants, where at
least one of them contains an observable possibly non-
diagnosable cycle. On the other hand, (Jéron et al.,
2006) extended the diagnosability problem for fault
events to that for supervision patterns, which can be
used to describe more general objectives. They veri-
fied pattern diagnosability by employing a global twin
plant method. (Ye et al., 2009) is the first paper to
discuss pattern diagnosability in distributed systems
based on the model in (Jéron et al., 2006). Their study
limited to simple patterns which contain only one lin-
ear branch leading to the final state. Compared to (Ye
et al., 2009), our paper starts with the same model as
in (Jéron et al., 2006), but without any constraints on
patterns. Thus, the result is more general than (Ye
et al., 2009). (Guillou et al., 2008) studies diagno-
sis of discrete event system with a formalism called
chronicle (Dousson et al., 1993). A chronicle is a
set of events and temporary constraints between those
events. It is more abstract than pattern represented by
FSM. (Guillou et al., 2008) extends the classic chron-
icle to include variables for modeling data flow and to
include synchronization points for using in distributed
systems. In (Guillou et al., 2008), faulty scenarios are
modelled in the variables, while in our paper, the faults
are presented by the patterns (or the FSM). In contrast
to our paper, (Guillou et al., 2008) studies the prob-
lem of diagnosis, instead of diagnosability. In addi-
tion, (Guillou et al., 2008) uses local diagnosers and
global diagnoser, while in our system we do not use
any central node to synthesize local results.

7

21st International Workshop on Principles of Diagnosis

6 CONCLUSIONS
We study pattern diagnosabilty in distributed discrete
event systems. We present the principle of pattern di-
agnosability (Theorem 1). For a distributed system, we
use distributed simulation to identify globally consis-
tent trajectories, and then determine if the trajectories
with the same trace are uniformly recognized by the
pattern or not. We present the correctness proof (The-
orem 2) and complexity analysis.

REFERENCES
(Dousson et al., 1993) Christophe Dousson, Paul Ga-

borit, and Malik Ghallab. Situation recognition:
Representation and algorithms. In IJCAI, pages
166–174, 1993.

(Gelade and Neven, 2008) Wouter Gelade and Frank
Neven. Succinctness of the complement and in-
tersection of regular expressions. In Susanne Al-
bers and Pascal Weil, editors, 25th International
Symposium on Theoretical Aspects of Computer
Science (STACS 2008), volume 1, pages 325–
336, Dagstuhl, Germany, 2008. Schloss Dagstuhl–
Leibniz-Zentrum fuer Informatik.

(Guillou et al., 2008) Xavier Le Guillou, Marie-Odile
Cordier, Sophie Robin, and Laurence Rozé. Chron-
icles for on-line diagnosis of distributed systems. In
ECAI, pages 194–198, 2008.

(Jéron et al., 2006) T. Jéron, H. Marchand, S. Pinchi-
nat, and M.O. Cordier. Supervision patterns in dis-
crete event systems diagnosis. Proceedings of the
8th International Workshop on Discrete Event Sys-
tems, July 2006.

(Jiang et al., 2001) S. Jiang, Z. Huang, V. Chandra,
and R. Kumar. A polynomial time algorithm for di-
agnosability of discrete event systems. IEEE Trans-
actions on Automatic Control, pages 46(8):1318–
1321, 2001.

(Pencolé, 2004) Y. Pencolé. Diagnosability analysis
of distributed discrete event systems. ECAI’04,
pages 43–47, 2004.

(Sampath et al., 1995) M. Sampath, R. Sengupta,
S. Lafortune, K. Sinnamohideen, and D. Teneket-
zis. Diagnosability of discrete event system.
IEEE Transactions on Automatic Control, pages
40(9):1555–1575, 1995.

(Schumann and Pencolé, 2007) A. Schumann and
Y. Pencolé. Scalable diagnosability checking of
event-driven systems. IJCAI-07, pages 575–580,
2007.

(Thompson, 1968) Ken Thompson. Regular expres-
sion search algorithm. Communications of the
ACM, 6(11), June 1968.

(Ye et al., 2009) Lina Ye, Philippe Dague, and
Yuhong Yan. Pattern diagnosability in distributed
discrete event systems. In Proceedings of the 20th
International Workshop on Principles of Diagnosis,
pages 179–186, Stockholm, Sweden, June 2009.

8

