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ABSTRACT

The goal of testing is to discriminate between
multiple hypotheses about a system – for exam-
ple, different fault diagnoses of an HVAC sys-
tem – by applying input patterns and verifying or
falsifying the hypotheses from the observed out-
puts. Definitely discriminating tests (DDTs) are
those input patterns that are guaranteed to dis-
criminate between different hypotheses of non-
deterministic systems. Finding DDTs is impor-
tant in practice, but can be very expensive (

∑p
2-

complete). Even more challenging is the prob-
lem of finding a DDT that minimizes the energy
consumption of the testing process, i.e., an in-
put pattern that can be enforced with minimal en-
ergy consumption and that is a DDT. This pa-
per addresses both problems. We show how we
can transform a given problem into a Boolean
structure in decomposable negation normal form
(DNNF), and extract from it a Boolean formula
whose models correspond to DDTs. This al-
lows us to harness recent advances in both knowl-
edge compilation and satisfiability for efficient
and scalable DDT computation in practice. Fur-
thermore, we show how we can generate a DNNF
structure compactly encoding all DDTs of the
problem and use it to obtain an energy-optimal
DDT in time linear in the size of the structure.

1 INTRODUCTION
There is a great need to reduce energy consumption
whenever possible. This holds in particular for the op-
eration of buildings through electricity, heating, venti-
lation, and hot water. In industrialized countries the
latter constitutes 32% of the total energy use. This
percentage is even higher if some of the HVAC com-
ponents are faulty. It is therefore desirable to identify
these faulty components as soon as possible in order
to restore the normal operation of the HVAC system.
Furthermore it is desirable to minimize the energy con-
sumption of the fault identification process. This im-
plies that energy use should be taken into account dur-

ing the testing process. Testing involves applying input
patterns to a system such that different fault hypothe-
ses about the system can be verified or falsified from
the observed outputs.

In many real-world applications of testing, like the
testing of HVAC components, the underlying models
are non-deterministic, which means that applying an
input can lead to several possible outputs. One major
source of non-determinism is model abstraction that
aggregates the domains of (continuous) system vari-
ables into sets of values such as “low”, “med”, and
“high”. In such cases the resulting models can no
longer be assumed to be deterministic functions, even
if the underlying system behavior is deterministic. An-
other source of non-determinism is the testing situation
itself: Even in a rigid environment such as an automo-
tive test-bed, there are inevitably variables or param-
eters that cannot be completely controlled while the
device is being tested.

In the area of diagnosis, Struss (1994) intro-
duced definitely discriminating tests (DDTs) for non-
deterministic systems modeled as constraints. For a
DDT, the sets of possible outputs are disjoint and
thus it will necessarily distinguish among hypotheses.
Finding DDTs is important in practice because it helps
to reduce the number of input patterns that need to
be applied and thus allows to quickly identify the
faulty component. However, the problem of comput-
ing DDTs is in general very expensive (

∑p
2-complete).

Heinz and Sachenbacher (2009) introduced opti-
mal distinguishing tests (ODTs), which generalize
DDTs by maximizing the ratio of distinguishing over
non-distinguishing outcomes. An efficient method
for computing ODTs was presented in (Schumann
et al., 2009), based on encoding the ODT problem
into a Boolean formula, and compiling the formula
into a graph in decomposable negation normal form
(DNNF) (Darwiche, 2001; Darwiche and Marquis,
2002). The DNNF allows efficient derivation of good
upper bounds on ratios of model counts, which are
then used to prune a systematic search for ODTs.

This method is able to compute DDTs as a spe-
cial case, and in that role exhibits much better per-
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formance than an earlier algorithm by Sachenbacher
and Schwoon (2008) specialized for DDTs, as shown
in (Schumann et al., 2009). Hence it represents the
state of the art in DDT computation. As also shown
in (Schumann et al., 2009), however, it can still run
out of memory on instances of moderate size, which
can be explained by the fact that the final DNNF graph
is computed based on a number of auxiliary DNNF
graphs, and the compilation can require a multitude
of auxiliary variables to be introduced, which leads to
slower computation and higher memory requirements.

In this paper, we present a DNNF-based method
that is adapted specifically to the problem of com-
puting DDTs, and requires computation of just a sin-
gle DNNF graph defined over the system variables.
This representation is used to transform a quantified
Boolean formula defining the DDT problem into a
SAT problem that can be solved using an existing
SAT solver. This leads to a significantly more effi-
cient method for computing DDTs compared to that
of (Schumann et al., 2009).

Furthermore, we present a generalization of DNNF-
based test generation that takes into account the energy
consumption of enforcing a given input pattern. More
specifically, we show how we can compute the values
of input variables that can be enforced at minimal en-
ergy consumption and that constitute a DDT. Using
the algorithm in (Schumann et al., 2010) we achieve
this by constructing a DNNF graph, in two steps, that
represents all DDTs and allows for the retrieval of an
energy-optimal DDT in time linear in the size of the
graph. Note, in contrast to the work in (Schumann
et al., 2010) we now apply the algorithm to differ-
ent problems, like HVAC systems, where the aim is to
minimize energy consumption during the testing pro-
cess.

Experimental results from a real-world application
show that our method can compute DDTs for instances
that were previously intractable, and energy-optimal
DDTs where previous approaches could not even com-
pute an arbitrary DDT.

The remainder of the paper is organized as follows.
We start with an example of the testing problem, be-
fore formally defining DDTs. We then review the no-
tion of DNNF and a generic procedure for energy min-
imization with DNNF, in the context of our testing
problem. Sections 6-8 present our new methods for
computing both DDTs and energy-optimal DDTs and
Section 9 describes their experimental evaluation. Fi-
nally, we conclude with some words on related and
future work.

2 EXAMPLE
We start with a small example that motivates and illus-
trates the problems we are tackling and to which we
will refer in the paper.

Consider the simplified model of an HVAC system
shown in Figure 1. It consists of two components: a
pipe and a radiator. The latter is connected via the pipe
to the hot water supply of the building and distributes
the thermal energy to the ambient air. In this exam-
ple we also assume that the radiator contains a fan.
The fan power determines how quickly its heat supply

heat convection
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water temperature

tempe-
rature 
sensor

fan volume
fan speed 

setting

radiator

pipe radiator broken-pipe
f w h h s t f w h
L L L L L L L L L
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H L H H L H H L L
H H H H H H H H L

Figure 1: Model of an HVAC system with a possibly
faulty pipe component.

leads to a temperature increase and hence to a change
in sensor values. In total, there are three controllable
input variables (water flow f , water temperature w, fan
speed setting s), one internal variable (heat convection
h ), and one observable output variable (temperature t).
As a simplification, we abstract from the actual values
for these variables and distinguish only the values high
(H) and low (L) for each variable. The models of the
two components are given at the bottom of Figure 1:
• the higher the water flow and water temperature,

the more heat convection will be transmitted by
the pipe;
• the higher the heat convection in the pipe, and the

higher the fan speed setting of the radiator the
higher the temperature increase in the room;

However, in case of a broken-pipe, no water, i.e. no
heat convection is transmitted to the radiator and thus
no temperature increase can be observed.

The energy-optimal testing problem for this exam-
ple is to find a test that can be enforced at minimal
energy consumption and that will determine with cer-
tainty whether the pipe is broken, i.e., which of the fol-
lowing two hypotheses holds: M1 = {pipe, radiator},
M2 = {broken-pipe, radiator}. For this example, it
can be assumed that enforcing a value L requires al-
ways less energy than enforcing a value H. Hence the
test requiring the lowest energy consumption is f = L,
w = L, and s = L. However, this is not a DDT
because when stimulating the system with these in-
put values we will certainly observe no temperature
increase for both of the hypotheses and thus will not
be able to distinguish them. Indeed, there are only two
DDTs in this case: (L,H,H) and (H,H,H) (where we
will observe a temperature increase iff the pipe is not
broken). Hence, (L,H,H) is the energy-optimal DDT
for this example.

3 ENERGY-OPTIMAL DEFINITELY
DISCRIMINATING TESTS (DDTS)

Following the framework in (Heinz and Sachenbacher,
2009; Schumann et al., 2009), we assume that the sys-
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tem can be modeled as a constraint satisfaction prob-
lem (CSP), which is a triple M = (V,D, C), where
D = D(v1) × . . . × D(vn) are the finite domains of
finitely many variables vj ∈ V , j = 1, . . . , n, and C =
{C1, . . . , Cm} is a finite set of constraints with Ci ⊆
D, i = 1, . . . ,m. We denote by X the set of all solu-
tions, that is, assignments ~x ∈ D to the variables such
that all constraints are satisfied. More formally, X =
{~x | ~x ∈ D, C(~x)}, where C(~x) denotes ∀i ~x ∈ Ci.

In addition, the system under investigation defines
a set of controllable (input) variables I and a set of
observable (output) variables O. Formally, a hypothe-
sis M for a system is then a CSP whose variables are
partitioned into V = I ∪ O ∪ L, such that I and O
are the input and output variables of the system, and
for all assignments to I, the CSP is satisfiable. The
remaining variables L = V \ (I ∪ O) are called in-
ternal state variables. We denote by D(I) and D(O)
the cross product of the domains of the input and out-
put variables, respectively: D(I) = ×v∈I D(v) and
D(O) =×v∈O D(v).

The goal of testing is then to find assignments of
the input variables I that will cause different assign-
ments of output variables O for different hypotheses.
In the general case of non-deterministic systems, an in-
put assignment can yield more than one possible out-
put assignments. In order to capture sets of outputs,
for a given hypothesis M and an assignment ~t ∈ D(I)
to the input variables, we define the output function
X : D(I) → 2D(O) with ~t 7→ {~y | ~y ∈ D(O), ∃ ~x ∈
X : ~x[I] = ~t ∧ ~x[O] = ~y}, where 2D(O) denotes
the power set of D(O), and ~x[I] and ~x[O] denote the
restriction of the vector ~x to the input variables I and
output variables O, respectively. Note that since M
will always yield an output, X (~t) is always non-empty.

A DDT is an assignment to the input variables such
that the sets of observable possible outputs for the dif-
ferent hypotheses are disjoint:

Definition 1 (Definitely Discriminating Test) Con-
sider n ∈ N hypotheses M1, . . . ,Mn with input vari-
ables I and output variables O. Let Xi be the output
function of hypothesis Mi. An assignment ~t ∈ D(I) is
a definitely discriminating test (DDT) if
∀i ∀j 6= i Xi(~t) ∩ Xj(~t) = ∅.

For testing with non-deterministic automaton mod-
els instead of logical theories or CSPs, there exists the
analogous notion of strong distinguishing sequences
(Alur et al., 1995; Boroday et al., 2007). These are in-
put sequences for a non-deterministic finite state ma-
chine, such that based on the generated outputs, one
can determine the internal state either for some or all
feasible runs of the machine. Finding such sequences
with a length bounded by some k ∈ N can be reduced
to the problem of finding DDTs, by unrolling the au-
tomaton into a constraint network using k copies of the
automaton’s transition and observation relation (Esser
and Struss, 2007). Hence in this paper we restrict our-
selves to models given as (static) networks of finite-
domain constraints.

In this paper we do not only consider the problem
of finding arbitrary DDTs but also the problem of find-

ing DDTs that can be enforced with minimal energy
consumption:
Definition 2 (Energy-Optimal Definitely Discrimi-
nating Test) Let T be the set of all DDTs discriminat-
ing the hypotheses M1, . . . ,Mk and let e(c, v) denote
the energy consumption for enforcing value c ∈ D(v)
on variable v. Further let E(~t) =

∑l
h=1 e(ch, vh) de-

note the energy consumption of a test vector ~t = (v1 =
c1, v2 = c2, . . . , vl = cl). A test vector ~t ∈ T is called
energy-optimal DDT iff

E(~t) = mini {E(~ti) | ~ti ∈ T}.

4 DECOMPOSABLE NEGATION NORMAL
FORM (DNNF)

We briefly review graph-based representations of
propositional theories (Darwiche and Marquis, 2002).
A propositional theory is in negation normal form
(NNF) if it only uses conjunction (and, ∧), disjunc-
tion (or, ∨), and negation (not, ¬), and negation only
appears next to variables. An NNF is decomposable if
the conjuncts of every AND-node share no variables.
A DNNF (decomposable NNF) is smooth if the dis-
juncts of every OR-node mention the same set of vari-
ables. Such a graph G represents each of its models by
a subgraph Gs that satisfies the properties:
• every OR-node in Gs has exactly one child,
• every AND-node in Gs has the same children as

it has in G, and
• Gs has the same root as G.

Henceforth the term subgraph always denotes a graph
satisfying all of the above properties.

DNNF graphs can be generated for propositional
theories in conjunctive normal form (CNF) using the
publicly available C2D compiler (Darwiche, 2005),
and smoothness can be ensured with negligible over-
head. The complexity of this compilation is polyno-
mial in the number of variables and exponential only
in the treewidth of the system in the worst case. Fig-
ure 2 illustrates a smooth DNNF graph representing
the set of DDTs for the example shown in Figure 1.1
This DNNF is composed of two subgraphs consisting
of the nodes A1, O2, A3, -f, w, s and A1,
O2, A4, f, w, s respectively.

5 ENERGY MINIMIZATION WITH DNNF
Given a smooth DNNF representation of a proposi-
tional theory it is possible to obtain an energy-optimal
model in time linear in the size of the DNNF as shown
in Algorithm 1.2 It takes as inputs a smooth DNNF
graph and the energy consumption values e(l) for each
of its literals. The energy-optimal model, i.e., the sub-
graph for which

∑
i e(li) is the lowest, is obtained by

1Note that this graph is also deterministic, i.e., the dis-
juncts of every OR-node are pairwise logically inconsistent.
Although not required in this work, this property is always
enforced by C2D.

2This is a variation of the minimization procedure de-
scribed in (Darwiche, 2001), which labels leaves with 0 and
1 only.
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Figure 2: DNNF representing set of DDTs for the ex-
ample in Figure 1. “A" and “O" indicate AND- and
OR-node, respectively. Numbers in non-leaf nodes are
their identifiers.

a bottom-up propagation of energy values where each
OR-node is labeled by the lowest value of its children
and each AND-node is labeled by the sum of the val-
ues of its children.

For example, let us assume the following energy
consumptions for enforcing values of the input vari-
ables in the example of Figure 1:

e(-f) = 5 e(-w) = 10 e(-s)=7
e(f) = 10 e(w) = 20 e(s)=15

where e(−x) (resp. e(x)) denotes the energy con-
sumption for enforcing the value L (resp. H) on
variable x. An energy-optimal model for this example
can then be found by propagating these energy
consumption values using Algorithm 1 as shown in
Figure 3 (left). This model is given by the leaves of an
energy-optimal subgraph. The latter graph is retrieved
by traversing the DNNF top-down such that for each
OR-node a child with the lowest value is kept and for
each AND-node all children are kept. Figure 3 (right)
illustrates the energy-optimal subgraph. Hence an
energy-optimal model for this example is (−f, w, s).
Its energy consumption is retrieved from the label of
the root, 40 in this case.

Note that an energy-optimal subgraph may only
give a partial instantiation of the inputs, for example:

s

A1

20

35

15 w In that case an energy-optimal DDT
is obtained by simply enforcing the lowest value on
each remaining variable, and its energy consumption is
obtained by adding the energy consumptions of these

Algorithm 1 Energy Minimization with Smooth
DNNF

e(N) =



e(l) if N is a leaf node
representing literal l

mini e(Ni) if N =
∨
i

Ni

∑
i

e(Ni) if N =
∧
i

Ni

-f f

O2

A4A3

s

A1

w 105 20

25

3025
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Figure 3: Propagation of energy consumption values
for the DNNF graph shown in Figure 2 on the left and
an energy-optimal subgraph on the right.

enforced values to the label of the root of the subgraph.

6 BOOLEAN FORMULATION OF DDTS
In order to exploit the above efficient minimization
procedure for retrieving an energy-optimal DDT, we
aim to compile the DDT problem into smooth DNNF.
Intuitively, this requires a proposition theory that en-
codes input vectors such that it is not possible for the
corresponding outputs based on the different hypothe-
ses to overlap. Such a theory in DNNF can be obtained
in a number of steps, described next.

Since each hypothesis Mi is a CSP, we may assume
that each Mi is given as a logical theory in conjunctive
normal form (CNF) via any known translation of CSP
to SAT (Walsh, 2000). Let M1 and M2 be the two
hypotheses we wish to distinguish about a system with
(I,O,L) as input, output, and internal variables. As
pointed out in (Sachenbacher and Schwoon, 2008), the
existence of a DDT is characterized by the following
quantified Boolean formula:

∃I ∀O ∀L ¬(M1 ∧M2),

or equivalently,

∃I ¬(∃O ∃L (M1 ∧M2)),

which states that there is an input vector such that the
system cannot behave in a way consistent with both
hypotheses.

Removing the quantifiers and enlisting the projec-
tion operation, we obtain the following propositional
theory (denoted F ) over the input variables I only:

F = ¬(ΠI(M1 ∧M2)),

where ΠI(X) is the projection of theory X on vari-
ables I. The models of theory F are precisely the set
of all DDTs.

7 COMPUTING DDTS VIA SAT
We are now ready to tackle the two tasks described ear-
lier: computing DDTs, and computing energy-optimal
DDTs. The first requires one call to a DNNF compiler
followed by one call to a SAT solver.

Since projection can be performed in linear time
on DNNF (Darwiche, 2001), we already make use of
DNNF compilation for computing ΠI(M1∧M2) (i.e.,
¬F ). A single call to a DNNF compiler then suffices to
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Figure 4: Overview of methods for DDTs and energy-optimal DDTs.

put ¬F in DNNF. This leverages the power of DNNF
compilation to obtain a compact representation of a
theory over the input variables I only.

Figure 5 (left) depicts a result of this compilation, a
DNNF graph GF̄ ,3 for the example in Figure 1. Note
that this graph does not need to be smooth, while the
one described in the next section does.

What we actually need to pass on to a SAT solver
is the negation of this graph, in CNF. This can
be obtained using the well-known Tseitin translation
(Tseitin, 1968) coupled with DeMorgan’s laws, where
the resulting CNF will contain auxiliary variables but
have a size polynomial in the DNNF size. Tseitin’s
translation consists of three steps:
• introduction of one auxiliary variable for each

non-leaf node of the DNNF,
• generation of clauses associated with each new

variable,
• collection of all clauses into a single CNF with

an additional constraint that forces the root to be
true.

With our example graph GF̄ , we will introduce three
new variables: O1, A2, O3. Now if we impose nega-
tion at the root, apply DeMorgan’s laws to push nega-
tions down to leaves, and finally apply Tseitin’s trans-
lation, we obtain:

O3 ↔ (f ∧ ¬f)
A2 ↔ (w ∨ ¬O3)
O1 ↔ (s ∧ ¬A2)
O1 ↔ true

The corresponding clauses are shown in Figure 5
(right) and serve as a CNF encoding of the DDT prob-
lem, ready to be passed to a SAT solver.

8 COMPUTING ENERGY-OPTIMAL DDTS
Models of the CNF encoding described in the previous
section correspond to the set of DDTs, and given suf-
ficient computational resources a SAT solver will be
able to find one if it exists.

To enable efficient energy minimization, we now in-
voke once more the DNNF compiler to turn this CNF
into smooth DNNF. This graph then represents exactly
the set of all DDTs. Thus Algorithm 1 can be applied

3We have kept the trivial OR-node (¬f ∨ f) in the graph
for illustration purposes.

-w

f

-s

-f

O1

O3

A2

{¬O3}
{¬A2, w,¬O3}

{A2,¬w} {A2, O3}
{O1,¬s, A2}

{¬O1, s} {¬O1,¬A2}
{O1}

Figure 5: DNNF representing the non-DDTs from
which the clauses on the right are derived, which en-
code the DDTs.

to efficiently obtain an energy-optimal DDT (or the set
of all energy-optimal DDTs if desired). See Figure 3
for an example run of this algorithm.

Note, that by relabeling the nodes of GF̄ accord-
ing to DeMorgan’s laws as described in (Darwiche
and Marquis, 2002) we can straight forwardly obtain a
graphical representation of the DDT problem in linear
time. However, since this graph is not guaranteed to
be decomposable it cannot be used to find an energy-
optimal test in linear time.

Figure 4 summarizes and illustrates the overall high-
level procedures for the two new DDT computation
methods. In a nutshell, we are able to solve the
energy-optimal DDT problem with two DNNF com-
pilations and two linear-time procedures (one to gen-
erate a CNF for the negation of GF̄ and one to retrieve
an energy-optimal DDT). Recall that the complexity
of the DNNF compilation is polynomial in the number
of variables and exponential only in the treewidth of
the system in the worst case. Hence the applicability
of our approach in practice does not so much depend
on the size of the problem but on the structure of the
system under test.

9 EXPERIMENTAL EVALUATION
We evaluated our new testing methods on a model
of an automotive engine test-bed (Luo et al., 2007),
which consists of a throttle, a pipe, and an engine com-
ponent.

The model was originally given in the form of a
mixed discrete-continuous model. It has been turned
into a set of 40 discrete problem instances of vary-
ing sizes (i.e. variable domains) by applying domain
abstractions of different granularity to the continuous
variables in the model, using the method described in
(Lunze and Nixdorf, 2001), and a direct encoding from
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CSP to SAT (Walsh, 2000).
The goal is then, for each of the instances, to find

leaks in the pipe component by assigning three to
four controllable variables, and observing three to four
measurable variables.

inst. ODT eoDDT DDT inst. DDT
1 0.06 0.03 0.01 21 84.5
2 0.07 0.03 0.01 22 110
3 0.10 0.04 0.02 23 146
4 17.7 0.42 0.05 24 167
5 396 1.7 0.17 25 191
6 1566 7.4 0.44 26 246
7 - 19.8 0.82 27 286
8 - 35.1 1.31 28 345
9 - 154 2.42 29 432

10 - 213 3.78 30 518
11 - 250 5.94 31 615
12 - 502 8.18 32 670
13 - 880 11.7 33 792
14 - 1292 16.8 34 914
15 - 1969 24.6 35 1056
16 - - 35.4 36 1139
17 - - 33.0 37 1329
18 - - 42.1 38 1492
19 - - 58.0 39 1724
20 - - 65.8 40 1894

Table 1: Computation times in sec applying the ODT,
energy-optimal DDT (eoDDT), and DDT approach to
different instances of the example application.

The experiments were performed on a Linux Dual-
Core PC with 1GB of RAM using the DNNF com-
piler C2D (Darwiche, 2005) and the SAT solver Tinisat
(Huang, 2007). Table 1 shows the computation times
for finding a DDT using the previous ODT method
(Schumann et al., 2009), an energy-optimal DDT us-
ing our new method (two compilations), and a DDT
using our new method (compilation+SAT). Blank en-
tries signify failure due to memory exhaustion.

The results indicate improvements of several orders
of magnitude over the previous state of the art. For ex-
ample, the largest instance solved by ODT (# 6) took
it 1566 seconds, but took our new DDT method only
0.44 seconds, and we were able to find an energy-
optimal DDT in 7.4 seconds. The improvement al-
lowed much larger instances to be solved with both
our new methods, and particularly with the compila-
tion+SAT method for DDTs.

As we briefly discussed in the introduction, the
poorer performance of the ODT method appears to be
partly due to the more complex DNNF compilations
required. Figure 6 illustrates this issue in more con-
crete terms, where the number of nodes in the largest
DNNF graph generated is shown for each instance, for
the ODT method and our new DDT method.

For example, for instance 6 the DNNF has already
over 100,000 nodes for the ODT method, but less than
3,000 nodes for the new method. Figure 6 does not

Nr. of DNNF nodes

inst.
020000400006000080000100000120000140000160000180000

1 4 7 10 13 16 19 22 25 28 31 34 37 40

ODTDDT

Figure 6: Number of nodes of the largest DNNF gen-
erated for each of the instances in Table 1.

show DNNF sizes for the second compilation required
by our method for energy-optimal DDTs, but they are
always smaller than in the first compilation except in
the case involving instance 1.

Finally, that our method for DDTs scales much bet-
ter than for energy-optimal DDTs is consistent with
the difference in complexity between SAT and compi-
lation. For an illustration of this difference, consider
the fact that compilations produced by the C2D com-
piler are known to permit model counting in linear
time (Darwiche and Marquis, 2002)—model count-
ing is known to be #P-complete while SAT is NP-
complete.

10 RELATION TO PREVIOUS WORK
The problem of computing definitely discriminating
tests in the area of diagnosis was first introduced in
(Struss, 1994). Struss (2007) then shows how to op-
timize the testing process by reducing the number of
tests that need to be carried out to discriminate a set of
fault hypotheses. In contrast to that work our approach
seeks to directly compute optimized individual tests
that discriminate a set of hypotheses. This motivation
is similar to that of the works on computing optimal
distinguishing tests (Heinz and Sachenbacher, 2009;
Schumann et al., 2009). However, while the latter
methods aim at computing tests that will discriminate
hypotheses most likely our approach targets problems
for which there exist tests that definitely discriminate
hypotheses. As the experimental results have shown
this specialized problem can be solved much faster,
even when we optimize the tests with respect to en-
ergy consumption.

In automata theory, Alur et al. (1995) studied the
analogous problem of generating strong distinguishing
sequences for non-deterministic finite state machines,
which for sequences of bounded length can be reduced
to that of finding DDTs (Esser and Struss, 2007). The
work of Torta and D. Theseider Dupré (2008) then also
considers the cost for testing such systems. Here the
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authors aim at discriminating a set of hypotheses and
assume that the available actions will necessarily dis-
tinguish between them. In contrast to that work we
have considered the testing of static nondeterministic
systems where different actions will not necessarily
discriminate between hypotheses.

From a conceptual point of view the work in (Dar-
wiche, 1998) is the closest to ours. It exploits the ben-
efits of DNNF compilation for the fault diagnosis of
systems. First it computes the DNNF graph represent-
ing the set of all diagnosis and then it uses a minimiza-
tion procedure to extract all minimal ones. Thus the
aim of this method is to identify all minimal diagnoses
that are consistent with a set of observations. However,
in practice, the resulting set of diagnoses, i.e. of fault
hypotheses, can be very large. Our approach comple-
ments this work. It aims at tackling this problem by
providing a procedure for discriminating between dif-
ferent hypotheses, like these fault hypotheses. It thus
needs to consider not only the observable and faulty
variables of a system but also the controllable ones.
We have shown how to exploit the distinct properties
of the DDT problem by solving it based on DNNF
graphs that are defined over input variables only. Us-
ing a variation of the minimization procedure in (Dar-
wiche, 1998) we were also able to identify the actions,
i.e. the assignments to controllable input variables that
can perform the discrimination of fault hypotheses and
that can be carried out with minimal energy consump-
tion.

11 CONCLUSION AND FUTURE WORK
We have presented a new algorithm for computing
DDTs that exhibits much better efficiency and scala-
bility than previous approaches on a realistic bench-
mark. This was achieved by constructing a Boolean
formula that encodes the complex DDT problem (

∑p
2-

complete) and that can be transformed into a SAT
problem via DNNF compilation, which is often very
efficient for real-world problems that have structure.

In addition we have studied the problem of comput-
ing DDTs that can be enforced at minimal energy con-
sumption, a problem which is very relevant in practice
but has not been considered before. We proposed an
algorithm for this problem that involves one additional
step of DNNF compilation such that energy-optimal
DDTs can be retrieved from the final DNNF in time
linear in the size of the DNNF. With this algorithm
we were able to compute energy-optimal DDTs for in-
stances where previous methods could not even find an
arbitrary DDT.

The success of our new methods can be partly as-
cribed to the fact that they are better able to exploit
structural properties of the system (compared with
Sachenbacher and Schwoon 2008), or that they re-
quire less complex DNNF compilations (compared
with Schumann et al. 2009).

Topics for future work include extending our ap-
proach to systems that admit possibly discriminat-
ing tests but not DDTs, and to systems whose non-
determinism is quantified by a probabilistic model. It
would also be interesting to analyze to what extent
incremental DNNF compilation techniques like (Ven-

turini and Provan, 2008) could be used for the test gen-
eration of even larger systems.
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