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ABSTRACT
Existing data mining approaches to complex systems

anomaly detection use uni-variate and/or multi-variate
statistical hypothesis testing to assign anomaly scores to
data streams associated with system components. The
former approach assumes statistical independence of in-
dividual components, while the latter assumes substan-
tial global systemic correlation. As a compromise be-
tween these two epistemological extremes, we present
a data-mining approach hybridizing existing statistical
techniques with theorem-proving methods to create a
novel algorithm for anomaly detection, diagnosis and
control in complex systems. Our algorithm takes sen-
sor inputs from physical sensors providing system sub-
component performance data and outputs (i) a global
systemic risk indicator and (ii) possible diagnosis hy-
potheses. We present results on three different systems,
and in comparison with current state-of-the-art fault de-
tection algorithms to demonstrate the viability of our ap-
proach. We find that our algorithm proves robust towards
increased data dimensionality in contrast with existing
clustering-based fault detection methods and can also de-
tect contextual faults that are undetectable using existing
statistical techniques.

1. INTRODUCTION
Monitoring large systems with multiple non-linearly in-
terconnected parts and multiple data outputs for detect-
ing and diagnosing is a problem that has been both
widely and sparely studied. Widely, because it occurs
almost ubiquitously in real-life applications of data min-
ing and model-based reasoning; sparely because, at least
in the data mining context, there exists no real consensus
for what a complex system actually is! It is not clear if
it is useful to postulate that a system with a causal graph
above a certain level of complexity is to be defined as
‘complex’. Nor can the size of the system or the ex-
tracted data be good measures of complexity.
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In this paper, we define what constitutes a complex
system in the machine learning context, with a partic-
ular emphasis on physical real-world systems. Having
done so, we demonstrate how several real-life system re-
quiring health monitoring and/or fault detection match
this definition and that existing statistical fault detec-
tion techniques fall short in predictive performance for
such systems. We propose using physical domain knowl-
edge to assist statistical anomaly detection techniques
for solving complex anomaly detection problems and
present our own algorithm for doing so. We conclude
with observations regarding the applicability of our new
algorithm to more sophisticated systems and avenues for
future research.

2. PROBLEM FORMULATION
Existing techniques for data-driven fault monitoring and
diagnosis rely heavily on statistical hypothesis test-
ing (Chandola, Banerjee, & V., 2009). The traditional
approach has been to estimate parameters of a distri-
bution that fits data generated by a system in its nor-
mal mode of operation and use the likelihood of incom-
ing data samples as a determination of fault probabil-
ity. Data samples considered unlikely to belong to the
base distribution are assumed to be faulty or likely to
lead to faults. Slight variations of this approach pop-
ulate a feature space with data samples and use met-
ric distances between neighbors and other local density
measures to compute anomaly probability. The underly-
ing assumption, however, remains the same - statistical
rarity is proportional with fault probability. Within the
scope of this paper, we call this the simplicity assump-
tion. Prior work on multi-variate fault detection in phys-
ical systems has generally emerged in two flavors: one
attempts to convert the multivariate data into multiple
uni-variate streams using some form of blind source sep-
aration (Baragona & Battaglia, 2007). These approaches
inevitably lose much of the information embedded in the
correlations between variables and thus are not suitable
for fault detection in complex systems. The other in-
volves computing the covariance or some derivative ker-
nel (Cheng, Tan, Potter, & Klooster, 2009) respect to this
joint statistic. These latter approaches are statistically
equivalent to approximating the joint density of multiple
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variables to establish fault probabilities and, while per-
forming admirably well in detection, tend to fail to iden-
tify the individual data variables responsible for the fault.
These quibbles aside, however, it is important to note
that the simplicity assumption is implicit in all these ap-
proaches and is critical for them to remain valid. Should
rare joint statistics not correspond with faulty system be-
havior, such multi-variate approaches must necessarily
fail.

As we show in Section 2.2, the simplicity assumption
need not hold true for several interesting physical sys-
tems. We define systems that violate the simplicity as-
sumption - in either the univariate or multi-variate set-
tings, as complex systems. It is further helpful to dis-
tinguish systems that are causally complex from systems
that are functionally complex. In the former case, sta-
tistical evidence from one source is not sufficient to pin-
point an anomaly, but statistical evidence from multiple
sources along with knowledge of their causal connec-
tions can serve the purpose. In the latter case, this is
not sufficient, and functional side information concern-
ing the system’s sub-components is necessary. In order
to motivate the significance of our definitions, we now
present three case studies: one involving a simple sys-
tem, one a causally complex system and the third a func-
tionally complex system.

2.1 The NASA engine
Our first case study considers a simulation of a Hy-
brid Combustion Facility (HCF) fuel feed system. The
fuel feed system consists of a large tank of pressur-
ized gaseous oxygen (GOX) fed through a series of con-
trol valves to an engine’s combustion chamber. Control
valves are used to maintain a specific GOX feed pressure
to the combustion chamber. The data extracted from the
simulation consists of 8 variables sampled at 10 Hz over
several runs of the HCF. Each run consists of 150 data
samples. The key variables in the system are the GOX
tank pressure (measured in psi) and the feed pressure,
viz. the measured pressure just before the GOX enters
the combustion chamber.

Fig 1 shows the difference between a normal HCF run
(Fig 1(a)) and one where a slowly increasing leak is in-
troduced in the tank (Fig 1(b)). The goal of a fault detec-
tion/monitoring algorithm would be to detect and possi-
bly diagnose the problem in Fig 1(b).

This is a simple system, in the sense that a faulty data
sample (as in Fig 1(b)) leads to a data sample that can
be differentiated from normal operation data using the
joint distribution. Even more intuitively, as the reader
may well appreciate from Fig 1, given plots of system
variable values for both normal and anomalous runs, a
domain-agnostic observer would be able to identify the
variable that is problematic as well as the temporal loca-
tion of the anomaly.

2.2 The rock climber
As we have suggested above, complex faults may be un-
derstood statistically as faults wherein individual data
streams, or even components, behave in a normal fash-
ion, but the overall systemic risk is increased1. To moti-

1The logically symmetric case where rare statistical arti-
facts are detected without any change in systemic risk is not
interesting from the fault detection standpoint.

vate this important class of anomaly, we have designed a
simulated test example of a rock climber.

The rock climber data set is designed with four sensor
variables, corresponding to force exerted by each of the
four limbs of the climber. The overall sum of the four
forces is constrained to remain close to the total weight
of the climber. If this sum falls below a preset fraction of
the climber’s weight, the climber will fall. Furthermore,
each limb is modeled as containing limited reserves of
endurance, which is modeled as an energy-equivalent
quantity concentrated largely in the lower limbs. The en-
durance reserve in a particular limb is modeled as being
replenishable if force exerted thereupon is reduced below
a threshold value. If endurance reserve in a limb drops
below zero, the maximum force capacity of that limb
is drastically reduced. With these simple constraints in
place, force exerted on each limb is simulated over time
as a random Gaussian variable with noise. The possibil-
ity of using a particular limb at a given point of time, i.e.
the cliff topology, is modeled using a 4-vector of 3-ary
random variables that allow for - no force, half force or
full force to be applied. Topology vectors correspond-
ing to deterministic fall situations, e.g. all four variables
zero at the same time, are discarded. Changes in limb
usage are enforced using the endurance constraints, an
unnatural formulation that nevertheless, yields realistic
climbing trajectories. A sample trajectory is shown in
Fig 2.

The rock climber data, the sensor values being gener-
atively constrained to lie within specific ranges, cannot
present statistical evidence of anomalous behavior from
any of the four data variables studied individually. How-
ever, the rock climber can and will fall if the endurance
reserves of more than one limbs fails at the same time.
In practice, this will be most likely to happen when the
climber is using only hands to climb and cannot find a leg
placement in time. The systemic risk of falling would be
the greatest in such a scenario. Contrastingly, a climber
using only both legs will be in a safe position, hence low
systemic risk.

Now, note that without either knowledge of the physi-
cal domain or labeled training data, fault diagnosis here
would be very difficult. Examining the latter possibil-
ity first, in theory, it is possible to train a monitoring
system using labeled data and obtain vectors of sensor
data that are rare and hence could be used to establish
the existence of systemic risk. However, this supervised
learning approach assumes the existence of either (a) a
system with a well-defined statistically identifiable ‘nor-
mal’ in the feature space or (b) a substantial number of
real-life failure examples. While these requirements are
generally quite straightforward to satisfy for general data
mining problems, as the example of the rock climber
shows, this is not necessarily the case with physical sys-
tems. Satisfying the second requirement (existing failure
data) in particular can be quite non-trivial for physical
systems, since any system requiring sophisticated moni-
toring is likely to have been designed with extremely low
failure rates. To take a real-life example, over 7 years of
flight time and O(109) data samples, the entire Boeing
fleet has reported 50 anomalous flight records. Finding
realistic physical data corresponding to existing faults,
thus, is difficult for physical systems. It could be ar-
gued that, in the absence of real fault data, large amounts
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(a) GOX tank pressure and feed pressure in HCF during a
normal run.

(b) GOX tank pressure and feed pressure in HCF during an
abnormal run.

Figure 1: A leak develops in a simulated Hybrid Combustion Facility towards the end of its run. Note the continued
drop of GOX tank pressure below nominal level after feed pressure has been reduced.

Figure 2: Sample run from rock climbing model. A1 and A2 correspond to arm data and L1,L2 correspond to leg data.
Note danger zone between time 400-600 when the climber is struggling to find footholds and is having to smear and
crimp out of a sticky situation!
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of ‘normal’ data could be used to identify the ’normal’
operation of the system, and any departures from this
normal behavior would constitute statistical evidence of
anomalous and hence potentially faulty behavior. As we
mention above, this approach assumes that the data is
amenable to analysis as a one-class classification prob-
lem. In practice, this need not be the case.

In the rock climbing example, almost all possible
combinations will be seen in climbing trajectories, given
sufficiently interesting topology. The risk involved in
the climbing arises from two factors (i) the skill level
required for the move, and (ii) the force applied on var-
ious limbs over time. It is evident that neither of these
two factors can be identified from the force sensor data.
While this particular situation is specific to the rock
climbing example, we feel our example to be quite rep-
resentative of real world physical systems. In particu-
lar, note that statistical access to the endurance variable
for the four limbs would transform this complex prob-
lem to a simple problem, in that the risk of falling would
vary proportionally with the minimum of the endurance
reserves. In realistic physical systems, the analyst has
to, of a necessity, make do with the data variables that
are available (can be economically sensed), as opposed
to the ones that would properly characterize the system.
Problems analogous to the force-endurance pair, thus,
may be quite frequently encountered in physical com-
plex systems, if not necessarily recognized as such.

Finally, note that there are no causal connections be-
tween the four data sources in the rock climber data set,
and thus, it constitutes a functionally complex system.

2.3 ADAPT electrical dataset
While the previous two examples highlight the signifi-
cance of complexity in analyzing systems for faults, an-
other important concern in monitoring real-world physi-
cal systems is the large number of variables. For simple
large systems, it is possible to use multi-variate anomaly
detection techniques to detect potential anomalies, but it
is not clear if a diagnosis can also be made. Separat-
ing component-specific information from joint statistics
is a non-trivial problem, although some innovative solu-
tions have been attempted with partial success. Greater
success. however, has been obtained by using Bayesian
networks to model the system and infer the existence of
anomalous data (Mengshoel et al., 2008).

To present an example of a causally complex system
as well as to study the behavior of existing algorithms
in comparison with our approach for large systems, our
third case study uses a large simulated electrical circuit,
originally developed at NASA for testing fault detection
algorithms. The Advanced Diagnostic and Prognostic
Testbed (ADAPT) is an electrical power system testbed
developed at the NASA Ames Research Center. ADAPT
provides: (i) a standard testbed for evaluating diagnostic
algorithms and software; (ii) a capability for controlled
insertion of faults, giving repeatable failure scenarios;
and (iii) a mechanism for maturing and transitioning di-
agnostic technologies onto manned and unmanned vehi-
cles (Poll et al., 2007). For power generation, ADAPT
currently uses utility power. For power storage, ADAPT
contains 3 sets of 24 VDC 100 Amp-hr sealed lead acid
batteries. Power distribution is aided by electromechan-
ical relays and two load banks with AC and DC outputs;
there are also several circuit breakers. ADAPT loads in-

clude pumps, fans, and light bulbs. There are sensors
of several types, specifically for measuring voltage, cur-
rent, relay position, temperature, light, and liquid flow.
Control and monitoring of ADAPT takes place through
programmable automation controllers. With the sensors
included, ADAPT contains a few hundred components
and is representative of EPSs used in aerospace.

Earlier work using this particular dataset (Mengshoel
et al., 2008) has generated data samples from failures
in both circuit components and sensors designed from
real-world failure examples. 16 of these runs are pub-
licly available (NASA-Dashlink, n.d.) and comprise our
second dataset. Each sampled point consists of 82 val-
ues, which are a mixture of continuous and Boolean vari-
ables. A single run contains 200 data samples and the
overall dataset consists of 16 runs. In a large majority
of cases, each individual component of the system has a
single associated data variable.

In addition, nominal descriptions of possible modes of
operation of each physical device in the circuit, includ-
ing foreseeable failure modes, are also provided. That
is, for every component in the circuit diagram, its physi-
cal description (battery/relay/sensor etc) are given, along
with the number of possible modes of its operation. A
relay, for instance, can have 4 possibilities: open in nor-
mal operation, closed in normal operation, stuck open
or stuck closed. A position sensor can either be oper-
ating normally or be stuck. A voltage sensor can ei-
ther be operating normally, with an offset or it could be
stuck. While such information is unlikely to be specifi-
cally available for most physical complex systems, it is
worth considering that it could be easily deducible in an
approximate sense from a high-level system description
in several cases.

3. PRIOR WORK
As stated above, standard anomaly detection techniques
typically take the form of density estimation. For our
evaluation, we select the Inductive Monitoring Sys-
tem (IMS) algorithm (Iverson, 2004) currently used by
NASA in various vehicle health management capacities.
This choice is particularly appropriate, since it reflects
the state-of-the-art currently operational while, at the
same time, being grounded strongly and simply in the
theory of density estimation.

IMS essentially operates as a clustering algorithm, de-
veloping a ‘knowledge base’ in the form of cluster cen-
troids based on normal operating values of the system.
Each cluster is represented with two vectors, one con-
taining the upper range values for each parameter, and
one containing the lower range values. The idea behind
IMS is to compute the distance of an incoming data sam-
ple to existing known nominal centroids in the multi-
dimensional variable space. If the distance of the data
sample in the variable space exceeds some threshold, the
sample is considered anomalous. The number of clusters
is not pre-determined and is defined dynamically.

In addition to an inability to process complex anoma-
lies, the performance of IMS will inevitably depend
heavily on the appropriateness of the distance metric
employed. While the Euclidean metric appears natural
for use for real-world data, scaling along various dimen-
sions based on salience to fault probability should pose
a knotty problem. To take an extreme example, a nor-
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Figure 3: Circuit diagram of an ADAPT electrical circuit model.

malized Euclidean metric would make no distinction be-
tween a window wiper stopping and the port engines of
an aircraft blowing out! Dimension salience would have
to be scaled by hand, which is an arduous task for larger
systems. Furthermore, the distance metric must, of a ne-
cessity, suffer from the curse of dimensionality(see, e.g.
(Houle, Kriegel, Kroger, Schubert, & Zimek, 2010)) ,
wherein the distance metric will lose its discriminative
capacity in higher-dimensional spaces.

Bayesian approaches can resolve causal complex
anomalies, viz. anomalies that can be inferred from
causal connections between components (which are not
captured using simpler joint statistics). However, it is not
clear if they can resolve functional complex anomalies,
as in the rock climbing example. Interpreting Bayesian
network inference results can also be difficult should
the causal graph of the network differ significantly from
the hardware, a problem that often arises in software-
intensive devices.

4. THE HYBRID-LOGIC ALGORITHM
From our observations in Section 3., there appears to
be substantial evidence in support of the hypothesis that
fault detection approaches that do not use domain infor-
mation over and above the statistical information embed-
ded in individual data streams extracted from a system
cannot expect to detect or diagnose complex anomalies.
It is possible to further divide domain information, as de-
scribed before into two types - causal and functional.

The causal type references information that defines
aspects such as upstream/downstream, parent/child and
serial/parallel behavior between different nodes in the
system. An example of such causal information corre-
sponding to an electrical circuit is shown in Figure 4(a).
Note that a sparse set of logical statements can be used to
completely describe the causal imperatives of a sophis-
ticated structure such as a complicated circuit diagram.
Causal information, therefore, is not hard to encode in
logical terms. The functional type references informa-
tion that defines the sub-components of the system using
their operational behavior. An example of such func-
tional information corresponding to an electrical compo-
nent is shown in Figure 4(b). Note again, that the func-
tional definition, in this case of an electro-mechanical
relay, need not have any bearing on the real-world defi-
nition of the component, but simply needs to reflect the
theoretical expectations an expert would expect from the
component with respect to its system neighborhood.

Using both statistical and physical information in tan-
dem, our hybrid-logic algorithm (schematically outlined
in Fig 5) outputs a global systemic risk value which re-
flects the overall probability of systemic failure. The key
insight required in our approach is to understand the def-
inition of systemic risk in the form of a Boolean formula,
e.g.

Risk = A1 ·A3 ·A4 +A1 ·A2 ·A8 + · · ·
Here, the literals Ai represent different logical outcomes
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(a) Causal node information for ADAPT electrical dataset (b) Functional definition of a relay in ADAPT electrical
dataset

Figure 4: Causal and functional information can be determined from domain expertise and used to improve fault
detection.

Figure 5: Schematic of hybrid-logic fault detection algorithm
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corresponding to a particular data stream. The basic op-
eration of the algorithm can then be broken up into three
steps

1. Individual data streams are tracked using expecta-
tion maximization for each known behavior mode.
Logical outcomes are assigned to each data stream
based on adaptive thresholds.

2. Logical satisfiability of various conjunctive clauses
corresponding to a particular system failure mode is
evaluated.

3. Overall quantitative value of systemic risk is eval-
uated based on influence of individual conjunctive
clauses.

We now describe how each of these three steps is im-
plemented in our algorithm.

4.1 Tracking individual streams
While far more sophisticated approaches to clustering in-
dividual data streams exist, incremental online expecta-
tion maximization (Neal & Hinton, 1998) serves our pur-
pose quite adequately. During training, we use expecta-
tion maximization to estimate the mean and variance of
each mode of normal operation of each data stream. In
testing, for every incoming data sample, a Z-test statistic
is computed used to determine its likelihood of belong-
ing to any of the modes of the data stream. The statistic
corresponding to the largest p-value assigns the current
estimated mode of operation for the data point, thereby
setting the logical value of Ai. To instantiate this specif-
ically in the case of the rock climber, let us assume that
each of the four data sources has three modes of op-
eration - rest, half-flexed and fully-loaded. Each data
stream would then have three literals associated with it,
e.g. RightArmRest, RightArmHalf and RightArmFull.
The values of these literals would be set to true or false
based on the determination of mode of operation made
in real time by the EM algorithm.

The two significant drawbacks of the EM algorithm
are generally held to be (i) the need to know the num-
ber of modes in the data distribution beforehand and (ii)
the lack of theoretical convergence guarantees for arbi-
trary data distributions. In practice, it is found that most
realistic system variable data tends to have well-defined
modes with tight variances. Thus, objection (ii) is not
a significant point of concern. Several somewhat com-
putationally expensive techniques exist to determine the
number of modes in a distribution empirically. In theory,
therefore, objection (i) can be overcome if necessary for
a particular application. In practice, the number of ac-
tivity modes for physically realistic system variables sel-
dom exceeds a handful and is known a priori. In the
ADAPT dataset, for example, this information is explic-
itly stated. In the other two, it is possible to identify this
information manually with very little effort2.

4.2 Evaluating logical satisfiability
During training, given labeled anomaly data, we assign
the logical values corresponding to the known faulty data

2While such an approach is naturally not scalable with in-
crease in system size, we take comfort in the fact that real world
physical complex system cannot grow unboundedly in size!

sample, as well as those corresponding to the nth previ-
ous data samples, as individual conjunctive clauses to a
knowledge base. Duplicated entries are eliminated. The
value of n is either doubled or halved based on whether
the entropy of the data stream has increased or decreased
in the past n samples, thereby creating a recursive up-
date. Intuitively, this suggests that we will sample from
a larger prior history if the data stream has been be-
having in an unpredictable manner, and from a smaller
history if it has been behaving in a predictable manner.
Conjunctive clauses corresponding to expert insight into
the problem domain is added separately to the Boolean
knowledge base. All the conjunctive clauses, combined
disjunctively, represent the algorithm’s comprehensive
understanding of possible risks to the system. Making
a closed-world assumption, all statements not encoded
in the knowledge base are assumed to correspond to safe
modes of system behavior. Again, instantiating this ex-
planation with the practical example of the climber, risky
profiles of the form

Risk = RightArmFull · LeftArmFull + · · ·
can be encoded into the knowledge base either extrane-
ously from expert knowledge, or through labeled fault
data.

During testing, our statistical methods will track in-
dividual data streams and update the values of the log-
ical literals corresponding to these in real-time. In the
example above, if the stress on the right arm on the
climber rises close to its maximal value, the literals
RightArmHalf and RightArmRest will be set to 0 and
RightArmFull will be set to 1. Our algorithm concomi-
tantly samples the satisfiability of the existing risk for-
mulae in its knowledge base. Recall that satisfiability is
the problem of determining if the variables of a given
Boolean formula can be assigned in such a way as to
make the formula evaluate to ‘true’. Equally impor-
tant is to determine whether no such assignments ex-
ist, which would imply that the function expressed by
the formula is identically ‘false’ for all possible variable
assignments. In this latter case, we would say that the
function is unsatisfiable; otherwise it is satisfiable. Well-
known solvers exist for evaluating Boolean satisfiability;
we use the Prover9/Mace4 (Prover9/Mace4, n.d.) solver
in our implementation.

Note that for the hybrid-logic approach, system diag-
nostics do not require separate inference, since the addi-
tion of a literal that renders the knowledge base unsatisi-
able restricts the fault to the causal chain containing the
offending literal. By tracing the satisfiability of causal
chains containing elements of this isolated chain from
the leaf nodes upwards, the causative system component
can be easily identified.

4.3 Evaluating systemic risk
Given that we have learned, through training and teleme-
try under normal operating conditions, a Boolean for-
mula that characterizes the systemic risk possibilities for
our physical system. To quantitatively assess this risk,
we define the inverse of evaluated data stream p-values
as the risk posed by the underlying sub-process. Also,
a normalized implicative weight is assigned to every
clause in our knowledge base, depending on its sequen-
tial distance from an actual faulty data sample. In our
implementation, a clause that occurs i samples before a
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faulty sample is detected is assigned a value exp(n−i
n ).

The implicative weights remain persistent across time,
unless changed by a subsequent update of an identical
clause in the database. The risk values of conjunctive el-
ements in the risk formula are multiplied and weighted
with their implicative weights; the values of all clauses
deemed satisfiable at a particular sampling instance are
added to realize a single number corresponding to the
systemic risk potential.

5. RESULTS
Recall that the fundamental thesis of this paper is that
systemic faults that violate the simplicity assumption
cannot be detected using purely statistical means and re-
quire the addition of some causal or functional informa-
tion. The GOX dataset presents an example of a sys-
tem containing only a simple anomaly, which can be de-
tected by purely statistical means. The ADAPT dataset
contains simple faults as well as causally complex faults,
while the rock climber dataset contains only functionally
complex faults.

To establish the relative merits of the clustering-
based, bayesian network-based and hybrid logic-based
approaches to detecting each of these three classes of
faults, we ran experiments on all three datasets. As can
be seen in Fig 6, IMS detects simple anomalies quite well
in both GOX and the ADAPT datasets. In GOX, there is
only one fault to be detected, and IMS works quite well
in picking it up early. Of the 16 faults present in the
ADAPT dataset, 7 are simple and 9 are causally com-
plex. To ensure fairness of comparison, for every fault
in ADAPT, we have trained IMS using only the relevant
sensor data, and ignored all others (to alleviate the di-
mensionality problem). Fig 6(a) shows the performance
of IMS in identifying that a battery has failed. The rise
in the risk indicator (distance from nearest known nor-
mal operating mode) shows that IMS has detected the
anomaly statistically. An examination of the components
of the distance metric responsible for the deviation picks
out the battery sensor as the offending entity, allowing
for a reasonable diagnosis. In Fig 6(b), however, where
the detection task involves a more sophisticated causally
complex fault, the IMS risk indicator, while adequate for
detecting that ‘some’ anomaly is being observed, can-
not pin it down to a specific component. That is, even an
analysis of the deviation components, in this case, proves
insufficient to identify the faulty component. In Fig 6
we see that our hybrid-logic approach retrieves accurate
predictions in both the GOX and ADAPT datasets, while
also presenting a meaningful risk metric for a function-
ally complex anomaly in the rock climbing data. In con-
trast, IMS can neither detect, nor diagnose these anoma-
lies. IMS fails entirely in detecting faults on the rock
climber data, since it fails to define statistically signifi-
cant ‘normal’ modes of operation for the climber.

Finally, since the climbing dataset is of our own con-
struction, we can access the ground truth with respect to
the systemic risk faced by the climber by tracking his
cumulative endurance reserve. This datum, which is in-
accessible to measurement in the problem formulation,
must necessarily be inversely correlated with systemic
risk. As we show in Fig 7(b), the hybrid-logic algorithm
reliably reproduces this inverse correlation with a very
small phase. Thus, in comparing performance on our

first two datasets, it is evident that hybrid-logic performs
comparably well with IMS in detecting simple anoma-
lies, and outperforms it in detecting complex anomalies.

Table 1: Diagnostic performance on ADAPT dataset.

Test # Bayesian network Hybrid-logic

309 BATT1 BATT1
310 INV1 INV1
305 ESH175 ESH175
306 ISH262 ISH262

In the absence of access to the intricate Bayesian net-
works developed in (Mengshoel et al., 2008) etc., we
rely on reported results therein to attest to the ability
of Bayesian networks to detect both simple and causally
complex anomalies. Specifically, for both the examples
from the ADAPT dataset mentioned above, (Mengshoel
et al., 2008) report accurate fault detection using MAP
inference over their Bayesian network. Thus, Bayesian
networks can detect both simple and causally complex
anomalies. In Table 1, we describe the diagnostic infer-
ence of both regular Bayesian networks and our hybrid-
logic approach on two simple and two complex anoma-
lies in the ADAPT dataset. Our algorithm’s running time
does not yet compare favorably with reported Bayesian
network inference times of O(10−3), with test sample
prediction occurring in closer to O(10−1) seconds on
average on the ADAPT dataset. However, considerable
performance improvement might be expected in upgrad-
ing from the current implementation (in Matlab).

While, in theory, Bayesian networks should also prove
incapable of detecting functionally complex anomalies
(for which causal information is insufficient), we have
not been able to empirically test this proposition in a
meaningful manner so far, since, for the dataset in ques-
tion, there is no causality for the Bayesian model to per-
form inference with; a correct implementation of MAP
inference on this completely unconnected graph is iden-
tical to fault detection using parameter estimation on in-
dividual data streams. Since the acausal nature of the
rock climber data streams could be construed as a spe-
cial case, we cannot yet claim empirical validation for
the thesis that Bayesian networks will prove incapable of
handling functionally complex systems. Further testing
on a more appropriate dataset (containing causal connec-
tions as well as functional faults) is needed.

A further interesting observation about the hybrid-
logic approach emerges from our experimental results
independent of its value in detecting and diagnosing
complex anomalies. In Section 3., we have described
how IMS and other traditional clustering-based algo-
rithms, through the use of a single distance metric, are
susceptible to reduced performance for problems where
data elements possess a large number of features. It
could be argued that our approach, relying on parameter
estimation techniques to assess fault probabilities in indi-
vidual data streams, would also suffer from the same de-
fect. However, note that the construction of our systemic
risk indicator naturally introduces an element of mod-
ularity to the risk metric. Data features that are found

8
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(a) IMS and hybrid-logic results on GOX dataset (b) IMS and hybrid-logic results on ADAPT dataset # 309

Figure 6: Both IMS and hybrid-logic approaches can detect simple faults quite well.

(a) Systemic risk indicator corresponding to a
climber’s trajectory across a cliff-face in one run.
Both IMS and Bayesian network methods completely
fail to recognize danger signals given climber data.

(b) Systemic risk predicted with total endurance re-
serves available to climber averaged across 100 dif-
ferent runs on same topology with randomized climb-
ing patterns (arm-leg placement sequences). Risk in-
dicator reliably increases when endurance reserves
decrease.

Figure 7: Hybrid-logic algorithm detects faults in latent endurance variable inaccessible to standard statistical and
causal fault detection approaches.

(a) IMS results on GOX dataset with extra irrelevant
features added.

(b) Hybrid-logic results on GOX dataset with extra
irrelevant features added.

Figure 8: IMS and other clustering approaches can detect simple faults quite well.

9



Annual Conference of the Prognostics and Health Management Society, 2010

to be irrelevant for assessing risk potential do not corre-
spond to logical literals in the risk formula, and hence
cannot affect the quality of the result. Thus, the use of a
metric sensitive to causal and functional dependencies
(see Fig 9) in the underlying system allows us to de-
crease the space complexity of our algorithm consider-
ably and, in practice, renders it immune to performance
degradation in higher dimensional feature spaces. With
reference to Fig 9(b) specifically, note that doubly count-
ing nodes cannot diminish the statistical reliability of the
hybrid approach as compared to simpler approaches as
the total statistical information in the causal graph is not
decreased. This ensures that our algorithm does not sac-
rifice predictive performance for reducing search space
complexity. The trade-off is, in fact, with respect to the
pre-processing and system specification overhead that
goes into setting up the hybrid-logic approach. In light
of the fact that this overhead is a one-time training cost,
we feel that it is positive from the standpoint of fault de-
tection.

We test our hypothesis on the GOX data set by artifi-
cially appending 22 and 192 irrelevant features to each
data point in two separate experiments and testing fault
detection performance. Training is conducted using mul-
tiple normal runs as well as copies of faulty runs of the
engine. The hybrid approach reliably learns the rela-
tionship between gas tank pressure and feed pressure.
As shown in Fig 8, the hybrid approach is robust to in-
crease in dimensionality, as opposed to existing cluster-
ing methods.

6. DISCUSSION
The results from our experimental comparison of vari-
ous fault detection approaches are summarized in Table
2. While we have not been able to empirically demon-
strate a more general applicability for our algorithm as
opposed to the state-of-the-art in Bayesian network in-
ference, we have been able to show that our algorithm
performs very well in a causally unconnected domain
where Bayesian network inference fails to detect po-
tential anomalies. We further show that, discounting
system specification and training overhead, adopting a
hybrid-logic approach should do no worse than exist-
ing statistical methods in predicting simple anomalies,
while concomitantly providing detection coverage for
functionally and causally contextual anomalies. Specif-
ically, for causally complex anomalies, with a computa-
tional overhead, it allows for the introduction of causal
information into the prediction algorithm. Even further,
with the same computational (but further pre-processing)
overhead, it allows for the introduction of domain expert
knowledge to allow for the prediction of functionally
complex anomalies. Finally, we have shown that using a
functionally designed risk indicator instead of a uniform
metric allows the hybrid-logic approach to avoid perfor-
mance degradation in high-dimensional feature spaces,
an innovation that could potentially be transferred into
existing techniques independent of the deployment of the
rest of the algorithm.

Touching upon avenues for future work, we note with
some dissatisfaction that developing reasonable algo-
rithms for complex system fault detection presents the
appearance of a chicken-and-egg problem, in the sense
that algorithmic development has languished in the ab-

sence of sufficiently rich datasets from real-life measure-
ments while data collection has suffered from a lack of
focus arising due to the absence of clear algorithmic re-
quirements. Having obtained some clarity with respect
to the nature of interesting anomalies in physical sys-
tems, we anticipate being able to present evidence for
the existence of functionally complex anomalies in real-
world physical systems and the value of using hybrid-
logic algorithms for detecting them in the near future.
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(a) Existing fault detection algorithms will construct a risk
statistic from all five data streams in a system.

(b) Hybrid-logic will use only nodes in causal module(s)
presenting anomalous statistical behavior.

Figure 9: Visualization of the modular nature of risk assessment in the hybrid-logic algorithm.

Table 2: Ability of anomaly detection algorithms to detect and diagnose various kinds of system faults

Simple Causally complex Functionally complex

Clustering ! % %

Bayesian networks ! ! ??
Hybrid-logic ! ! !
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