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ABSTRACT 

Unmanned Air Systems (UAS) show great promise for 

a range of civilian applications, especially „dull, dirty or 

dangerous‟ missions such as air-sea rescue, coastal and 

border surveillance, fisheries protection and disaster 

relief. As the demand for autonomy increases, the 

importance of correctly identifying and responding to 

faults becomes more apparent, as fully autonomous 

systems must base their decisions solely upon the 

sensors readings they receive – as there is no human on 

board. A UAS must be capable of performing all the 

functions that would be expected from a human pilot, 

including reasoning about faults and making decisions 

about how to best mitigate their consequences, given 

the larger context of the overall mission. As these 

autonomous techniques are developed their benefits can 

also be realised in non-autonomous systems, as real-

time aids to human operators or crew. This paper 

proposes a novel approach to PHM that combines 

advanced Functional Failure Mode Analysis with a 

reasoning system, to provide effective PHM for 

autonomous systems and improved diagnosis capability 

for manned aircraft.
*
 

1. INTRODUCTION 

This paper describes how PHM capability can be 

designed into autonomous or semi-autonomous systems 

to diagnose faults, predict remaining functional life and 

                                                 
* This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, 

which permits unrestricted use, distribution, and reproduction 

in any medium, provided the original author and source are 

credited. 

suggest reasonable actions to deal with these events, if 

(or when) they occur.  

 The objective of this paper is to show how PHM 

concepts can be included in system design and in doing 

so, provide effective prognostic capabilities from 

within the system in operation. This has far greater 

benefit than a PHM system that is „attached to‟ or 

added on top of an existing piece of hardware (Walker 

& Kapadia, 2009, Kurtoglu, et. al., 2008). This paper 

describes the integration of PHM into a system at the 

design stage, based on a PHM Cycle that includes both 

the Design and Operational perspectives. Making use 

of current commercial software tools such as the JACK 

autonomous software platform – „JACK‟ (Busetta, 

Rönnquist, Hodgson, & Lucas, 1999); and the 

Maintenance Aware Design environment – „MADe‟ 

(Rudov-Clark & Stecki, 2009), a greater accuracy in 

detection of faults can be achieved, and selection of the 

best response actions can be provided. These 

advantages are revealed when examining the potential 

application of these PHM concepts to engine health and 

power management on an Unmanned Air System 

(UAS). 

 Programmes such as ASTRAEA (Technology 

Strategy Board, 2010), are paving the way for 

commercial UASs to operate autonomously in non-

segregated airspace within the next decade, including 

the development of PHM and contingency management 

integrated with autonomous decision-making. This 

capability has already been demonstrated in practice, 

with flight trials of the UK QinetiQ/Ministry of 

Defence BAC 1-11 Autonomous UAV Surrogate in 

2007 and the forthcoming flight trials of the UK 

Ministry of Defence/Industry Taranis Unmanned 

Combat Air Vehicle demonstrator (Lucas, et. al., 2010). 
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2. THE “PHM CYCLE” 

The authors propose a PHM Cycle that is divided into 

two parts covering the design and operation of the 

system (See Figure 1).  

 The Design Cycle applies multiple iterations of risk 

analysis techniques, failure mode prediction, and 

identification of responding actions to achieve an 

appropriate level of functional fault coverage. The 

outcome of this is a knowledge base, which can then be 

applied to a system in operation. The Operational Cycle 

describes the PHM process when the system is put into 

operation. It describes how information about faults is 

gathered, assessed and presented to the end user, or 

addressed by the autonomous system. 

 By structuring the PHM design process 

appropriately, data from the Operational Cycle can be 

fed back and incorporated into the Design Cycle, 

yielding continuous improvement in future upgrades or 

revisions.  

2.1 The PHM Design Cycle  

2.1.1 System Design 

The Design Cycle begins with the specification of the 

system to be built, which is modelled as a functional 

block diagram. MADe, a software tool, enables an 

engineer to create functional models from the initial 

requirements and specifications of the system. The 

models make use of generic components or sub-

systems provided by MADe. These can subsequently 

be augmented or modified with specific data as the 

design matures. 

 

Figure 1, PHM Cycle 

2.1.2 Risk Analysis and Determination of 

Functional Failure Modes 

The first requirement of the risk analysis is to identify 

the possible Functional Failure Modes (FFMs) for the 

system and to understand their dependency flows 

throughout the system. FFMs are the result of specific 

underlying physical failures triggered by design, 

manufacturing, environmental, and maintenance 

causes. Such causes can initiate failure mechanisms 

(e.g. fatigue) that lead to a fault (e.g. fracture). 

 Often systems are designed and the PHM analysis 

focuses on component failures, i.e., the characteristics 

of these physical failures, rather than their impact on 

the functionality of the system.  

 MADe automates the generation of the dependency 

mapping required to determine end effects within the 

system or systems. It generates a database of specific 

system responses to each FFM, linked automatically to 

physical causes or mechanisms of failures and faults. 

The availability of such information is a key 

requirement for designing, developing, verifying and 

validating PHM system design. 

 The outputs of the risk analysis process are usually 

captured in a Failure Modes and Effects Analysis 

(FMEA). To ensure the consistency and accuracy of the 

system model and to optimise its extensibility to other 

applications, MADe failure concepts (cause, 

mechanism, fault & failure modes) are generated in a 

standardised taxonomy. Once the FMEA is available, 

the criticality of each FFM is established taking into 

consideration each specific failure and its „propagation 

paths‟ (the consequence of failure on the functional 

performance of the system). MADe‟s output of this 

process is the Failure Modes Effects and Criticality 

Analysis (FMECA). 

 Further assessment of the risk is obtained by 

carrying out reliability analysis. Conventional 

reliability analysis is performed on the basis of the 

expected Mean Time Between Failure (MTBF) of 

hardware components (as provided by manufacturers or 

on the basis of published MTBF standards). However 

PHM requires, in addition to hardware reliability 

assessment, an assessment of the reliability of specific 

functional outputs in the system – „functional 

reliability‟. Using the functional model as the basis, 

MADe provides the user with both hardware 

(component) and functional reliability assessments that 

provide the data for availability and maintainability 

assessments. 

 At the end of the risk assessment process, the user 

has knowledge of: 

 what the causes of failures are; 

 how the system can fail; 

 how critical each failure is; 

 what the interaction between failures is; and, 

 what the expected functional and hardware 

reliability of the system is. 

This data allows MADe to identify the required set of 

sensors to provide appropriate coverage of critical 

faults and FFMs. MADe uses the FMECA data to both 

determine the key FFMs that require diagnostic 

coverage and to validate the testability of the sensor set. 
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 Although 100% coverage of faults is always 

preferable, it is not necessarily achievable due to 

factors including the cost and weight of the sensors, the 

practicality of the required sensors (physical 

dimensions, accessibility), and their reliability. Some of 

the failure modes may have degrees of criticality that 

are below the level of concern and thus they could be 

excluded from further analysis.  

 MADe provides the user with an automated „sensor 

set design‟ function and the capability to conduct trade 

studies of the sensor sets based on parameters such as 

cost, weight, coverage and reliability. The sensor sets 

generated by MADe and results of the MADe failure 

effects analysis provide the basis for the design 

diagnostic rules needed to identify each failure mode. 

By applying this automated approach the engineer can 

select the best possible arrangement of sensors for the 

given constraints, providing the highest practical level 

of fault coverage achievable. 

 If 100% fault coverage is not achieved by the set of 

diagnostic sensors then ambiguity groups exist, i.e. a 

number of different failure modes have the same 

system functional responses. These ambiguity groups 

can be resolved by identifying the most likely fault as 

calculated using probability of failure and information 

about the physical processes and symptoms for each 

failure provided in the failures database.  

 The system designer must be aware of the potential 

implications of any unresolved ambiguities. These 

ambiguities will directly impact upon the ability of the 

PHM function to take the best remedial action – if it is 

unable to identify the correct failure mode then it is 

unlikely to respond correctly. As such, the designer 

should, possibly during subsequent design iterations, 

attempt to remove these ambiguities wherever possible 

or have contingencies built into the responses to handle 

their occurrence. 

 One other source of potential error is inaccurate 

sensor readings, which will invalidate the diagnostic 

rules. One example of an in-flight sensor error is 

highlighted in the loss of the B2 on take-off at Guam 

(Anon 2008), where the pitot static system generated 

erroneous airspeed readings. One potential solution, is  

the use of multiple redundant sensors that provide a 

means for resolving differences (e.g. by “voting”). The 

authors are looking at using deliberative reasoning 

techniques to complement this approach. For example a 

pilot will often feel the extension of the flaps on the 

motion of the aircraft, and can therefore detect if they 

actually extended or not. He or she would reason that 

there is an inconsistency in the aircrafts behaviour and 

then look for the cause. In a similar manner it is 

proposed that intelligent pre-processing of the 

incoming PHM data can offer a similar degree of 

redundancy. 

2.1.3 Predictive Failure Model Development 

A failure model should be produced that: describes how 

each potential fault will propagate through a system; 

identifies other induced faults; and the length of time 

the failure will take to propagate. This may require 

further modelling of the system‟s subcomponents and 

physical parts. The failure models will be based upon 

knowledge of existing parts, including autopsies from 

previous failures and individual part tests and 

evaluations. These failure models can be generated by a 

range of techniques and tools. MADe has the role of 

bringing these together in the form of a coherent 

summary, relating symptoms to functional faults and 

the physical causes. 

 The length of time it takes for a fault to propagate is 

vital information for choosing the best actions to 

mitigate the fault. If a failure is instantaneous (e.g., a 

fan blade failure due to catastrophic Foreign Object 

Damage (FOD)) then immediate action will be 

required. In other cases there could be some time to 

perform other actions to slow down the progress of the 

fault or mitigate its consequences. For example, 

compressor blade damage from a bird strike that leads 

to high-cycle fatigue failure can be addressed by 

reducing the engine speed thus reducing the rate of 

crack propagation). 

 Potentially, different faults and failure modes may 

be occur in rapid succession, leading to multiple 

simultaneous responses being detected. In this case, the 

PHM function will have to reduce the scope of its 

model and only consider failures that are imminent or 

critical. 

2.1.4 Capture of Operational Procedures 

With the possible FFM identified, the sensors chosen 

and the rules for identifying these failures deduced, the 

action (or actions) required for each failure must be 

determined. Traditionally these recommended actions 

have been captured in a textual form such as an 

operational handbook and checklist. However this 

relies on the user having the time to look up these 

actions or memorise them and then have the situational 

awareness to apply them appropriately. By determining 

the actions required for each FFM the user can be 

prompted with such actions, rather than relying on a 

manual or being left to identify and follow a check list. 

 Autonomous systems must be able to make their 

own decisions and thus cannot rely on user input or 

paper manuals. In semi-autonomous systems 

recommendations must be passed to higher-level 

decision-making systems, whether these are human or 

machine. In both cases, these require the action sets to 

be known to the system in order for it to make or aid in 

the decision making process. 
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 The level of autonomy of a UAS subsystem can be 

described by the Pilot Authority and Control of Tasks 

(PACT) Taxonomy (Taylor, Abdi, Drury, & Bonner, 

2001) which was developed as part of the UK MoD‟s 

Cognitive Cockpit (COGPit) Programme. This 

taxonomy is shown in Figure 2 and describes the 

contract between the pilot and autonomous subsystems. 

With a high PACT Level the autonomous systems have 

more control over decision-making and the pilot has 

less workload. Conversely at lower PACT levels the 

autonomous decision-making systems can only give 

advice and the pilot remains in full control of the 

vehicle. This is a model of how intelligent PHM could 

be used in an autonomous system or for decision 

support in a non-autonomous system. 

 

 Figure 2, PACT Levels of Autonomy 

 PHM requires reasoning about actions in rapidly 

changing environments, as such it is inappropriate to 

use conventional expert systems, which are not suited 

to time varying (non-monotonic) domains and lack a 

sophisticated knowledge representation. This has led to 

work on reasoning about actions, and theories of 

agency (Bratman, 1987). Architectures such as the 

Beliefs, Desires, Intentions (BDI) model have been 

developed to deal with these kinds of situations. (Rao 

& Georgeff, 1991). 

 BDI agents were first implemented in PRS 

(Procedural Reasoning System) as a system for 

automating and controlling spacecraft systems, in 

particular, the handling of malfunctions in the Reaction 

Control System (RCS) of NASA‟s space shuttle 

(Georgeff & Ingrand, 1989) and (Ingrand, Georgeff and 

Rao, 1992). PRS was used because of its ability to 

reason about and perform complex tasks in a flexible 

and robust manner, somewhat like a human assistant. 

PRS used goal-directed reasoning whilst remaining 

reactive to unanticipated changes in its environment. 

 Continuing the PRS lineage of BDI systems are 

dMARS and JACK  (Busetta, Rönnquist, Hodgson, & 

Lucas, 1999) which are distinguished by their intuitive, 

Subject Matter Expert (SME)-friendly representation 

language compared to alternative systems, which can 

be tedious to build and difficult for SMEs to 

understand.  

2.1.5 Develop Knowledge Base 

The knowledge base developed during the PHM Design 

Cycle includes: 

 a rule base for performing diagnostics and 

identifying the FFM or the underlying cause; 

 a predicted failure model; and, 

 a set of actions corresponding to each fault. 

The knowledge base should be designed in such a way 

that a decision-making system such as a BDI agent can 

reason about it. If possible, the actions should provide 

complete coverage of all identifiable faults, and give all 

possible responses (or actions to be taken) for the 

identified fault. If not, then probabilistic methods, such 

as Bayesian techniques, may be required to distinguish 

between the modes. 

2.2 The PHM Operational Cycle 

Once the Design Cycle has been completed and the 

PHM system contains a sufficient level of coverage the 

system, along with the knowledge base developed, can 

be put into use. 

2.2.1 Real-time Monitoring 

In operation, the PHM function will receive signals 

from each of the sensors located in the system or its 

subcomponents. These signals will be constantly 

monitored, as in conventional systems, so that signal 

levels that are outside the normal range are detected as 

anomalies. This differs from conventional approaches 

as instead of giving a simple warning the anomalies are 

passed to an onboard diagnostic unit that can provide a 

response appropriate in the current circumstances, and 

also show how to reduce or mitigate the identified 

fault‟s effects. 

2.2.2 Onboard Diagnostics 

The onboard diagnostic unit will make use of the 

knowledge base developed in the Design Cycle to 

associate the anomaly or anomalies with a particular 

FFM. The knowledge base can also provide enough 

information to identify or predict which physical parts 

or failure mechanisms are responsible for the failure. If 

the sensor readings are not sufficient, the diagnostic 

unit should once again examine reliability data, 

criticality, and dependencies to determine the FFM. 

2.2.3 Failure Prediction 

Once the particular FFM has been identified, the PHM 

system must predict the remaining life associated with 

that failure. The failure models (contained in the 

knowledge base) for the subcomponents or parts 
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identified to have failed, will be analysed in order to 

determine what time constraints are involved and how 

the failure will develop. 

2.2.4 Action Determination 

The PHM system now has all the information it needs 

to make an informed decision about which actions it 

should take (in the case of an autonomous system), or 

recommend. It now has at its disposal: 

 the sensor readings perceived to be anomalous; 

 the functional fault this corresponds to; 

 the physical defect or failure likely to have caused 

this fault; and 

 a model of how the system will continue to fail, 

including the estimated time before further 

failures occur. 

From this information the PHM function will select the 

actions that it perceives to be the best for the given 

situation. 

 When deployed, the PHM function would not select 

the final action to be performed. Instead it would pass 

the appropriate alternatives to a higher-level decision-

making system or human user who, in turn, would 

make this selection and initiate the associated action. 

This is due to the PHM function not necessarily having 

complete knowledge of the situational context 

surrounding the system‟s operation.  

 For example the PHM function might manage the 

power systems (i.e., the engine, drive trains, etc.) but 

this is only one element of the overall vehicle. As in 

Figure 3 the PHM and Power Management forms part 

of a delegated autonomy architecture in an autonomous 

system, such as an unmanned air vehicle (UAV) or 

unmanned underwater vehicle (UUV). However the 

human overseer always remains in the position of 

ultimate management responsibility. 

 

Figure 3 - Delegated autonomy architecture 

Hence the two systems work together to take 

appropriate action in response to a functional fault 

being detected. 

 The PHM function will be aware of the current 

requirements of the system it is managing (i.e. how 

much power is needed), as well as its current health 

(i.e. if any previous problems have occurred). It will 

not know how critical these requirements are with 

respect to the overall task being performed by the 

vehicle it is attached to. This is to separate the PHM 

from the higher-level reasoning. The PHM function 

should only respond to what is required of it and if it 

cannot meet these requirements it should inform the 

high-level decision maker.  

 It is the responsibility of the high-level decision 

maker to evaluate the mission or task, as it is in the best 

position to make such a decision. It can then feed new 

requirements to the PHM function. 

3. EXAMPLE: POWER MANAGEMENT ON A 

UAV  

Consider a UAS in flight, the autonomous software 

must be able to handle faults when they occur with 

equivalent or better levels of competence than a human 

pilot if the UAS is to achieve civil certification. The 

faults identified may require actions to be taken to avert 

danger and could cause the mission to be altered or 

abandoned. 

 The following scenario assumes a twin Rolls-Royce 

C250 engine UAS that has a PHM power management 

system including a knowledge base covering faults that 

can occur within these engines.  

3.1 Design 

The system would be designed as per the above Design 

Cycle description. 

 

1. A model is created of the engines, including 

the interactions between the critical internal 

components. 

 

2. A risk analysis is performed determining the 

various ways the engine can fail. The sensor types and 

locations are chosen and rules identified that connect 

the various sensor readings to FFMs. Data would be 

included from previous applications of that engine type 

or similar engines, such as maintenance logs, failure 

rates, and results of examinations performed on 

previously failed engines. The reliability and criticality 

date obtained would be used to aid in determining the 

physical cause of the failure. 

 

3. The reliability data is also used to aid in the 

creation of the failure models.  

 

4. The action set is created taking into account 

all of the possible actions that can be done to the 

engine. These may include increasing or decreasing the 

thrust or shutting down the engine completely. 

 

5. The knowledge base is created and ready to be 

inserted into the PHM function on the UAS. 
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3.2 Operation 

Consider the scenario of the UAS performing a search 

and rescue mission. During the operation a bearing 

within an oil pump on one of the two engines begins to 

suffer from too much wear.  

 The PHM system would monitor the engine sensors, 

detect any anomalies, and determine if these are 

significant (e.g., not just a spike due to a power on/off 

transition). The FFM would be detected by a sensor as 

a loss of oil pressure within that engine which, when 

compared to the rules generated by the MADe tool 

(contained within the knowledge base) would indicate a 

pump failure. By examining the failure probability of 

each component within the pump, the level of 

functionality lost, and the rate which functionality is 

decreasing, the power management system would 

recognise that the cause is likely to be bearing failure. 

 Analysis of the failure model for bearing wear 

failure will give the probable lead-on effects of this 

failure mechanism. The system would then examine the 

possible actions to overcome this failure which may 

include:  

 shutting the engine down immediately; 

 reducing thrust to 60% before continuing 

operation for up to 2 hours;  

 reducing thrust to 30% for 4 hours; and, 

 other combinations. 

The PHM system would then assess these actions, 

based upon the following situational information: 

 The current power requirement is that both 

engines need to operate at 30% thrust for 2 

hours; 

 Due to a fault that occurred earlier, the second 

engine has already been shut down; and, 

 The remaining engine is currently running at 

80% thrust to compensate. 

For the given situation the PHM would recommend the 

following actions: 

 

1. Turn on the second engine, and operate both 

engines at 30%, possibly damaging the second engine 

further; 

 

2. Leave second engine shutdown, and reduce 

thrust as much as possible, however it must be at least 

60% to meet the power requirements; 

 

3. Abort or alter the mission since the power 

requirements cannot be met; or, 

 

4. Reduce thrust to 70% and see if the oil 

pressure returns to nominal level. If it does, continue 

with the engine power at that level, otherwise reduce 

further. An example of a JACK graphical plan that 

implements this is shown in Figure 4. This shows how 

after reducing thrust the oil pressure will be monitored 

for some time to see if the problem is mitigated (the 

wait_for block). If it is not then the thrust is reduced 

further. If the problem gets worse, then the engine is 

shutdown. If the problem is mitigated, the maintain 

block will keep monitoring the problem to make sure it 

doesn‟t get worse some time in the future. 

 

 Upon receiving these possible actions, the higher-

level decision-making software can determine if the 

mission is important enough to continue (at the risk of 

further failure) or if it can be altered. Instead of being 

overloaded with multiple options, or receiving 

insufficient information from multiple simple warnings, 

the autonomous system will receive a set of possible 

actions that are succinct and meaningful. From this set 

it can choose the best action for the given situation. 

 

Figure 4 - An example JACK plan that handles an 

engine fault 

4. POTENTIAL BENEFITS 

Functional FMECA analysis ensures that functional 

failures are identified, unlike ad-hoc FMECA analysis, 

which often mixes functional and physical failures. The 

FMECA generated by MADe minimizes ambiguity 

between failure modes where possible by identifying 

the optimum combination of sensors, including sensor 

types, quantities and locations. When this FMECA is 

combined with existing diagnostic techniques 

(including probabilistic methods), there is a higher 

success rate in accurately identifying the FFM and the 

failure mechanism. 

 If a predicted remaining life model is available this 

can then be applied to assist with corrective action, as it 
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allows for decisions to be made based on what is likely 

to occur rather than purely on what has occurred. 

 Having identified the functional failure modes and 

determined their criticality, reasoning techniques can be 

applied to determine a set of actions which is the most 

appropriate for the given situation. This provides a 

greater level of awareness than a warning light. 

Normally a human would have to determine the 

appropriate action on their own based on the 

information available (warning lights, error codes, 

vibrations, etc.). However, if the human (or a decision-

making system), receives incorrect or incomplete 

information then they may take an unnecessarily 

cautious approach and shut the engine down, or may 

continue the current operation failing to take any 

remedial action. Both of these circumstances can lead 

to catastrophic consequences, as illustrated by the 

following examples. 

 The consequence of incorrect diagnosis of a fault is 

dramatically illustrated by the loss of British Midland 

flight 92 (Anon 1989). After an engine fault the aircrew 

used incorrect assumptions about the symptoms of 

failure and mis-diagnosed engine no. 2 as failing. A 

proper review to check the instruments and review 

decisions may have exposed the error, however the 

crew was already overloaded with other tasks and 

didn‟t complete this process. An intelligent PHM 

system would have been able to analyse the 

malfunction without distraction, offer advice on the 

correct engine to shut down, or alert the pilots if the 

wrong action was taken. 

 Another example is the loss of a Northrop 

Grumman B2 stealth bomber (Anon 2008). A common 

point of failure existed for airspeed measurement that 

caused the Flight Management System (FMS) to stall 

the aircraft on take-off. A more sophisticated reasoning 

process would have noticed the airspeed as being 

anomalous and used other sources of information, such 

as GPS-derived speed. This would have highlighted the 

readings given by the airspeed sensor as potentially 

invalid and could possibly have averted this accident. 

 The PHM function described, can potentially avoid 

disasters such as these by offering superior detection, 

diagnosis and procedures that increase the likelihood of 

the best actions being taken. 

 Often an overly sensitive failure detection system 

can cause “false positive” warnings, i.e., generating an 

alert for a non-existent fault. This problem is 

highlighted in a recent Flight International magazine 

article (Anon 2010) on the introduction of a new-

generation airliner with sophisticated fault detection 

and alert systems. One airline experienced a plethora of 

system nuisance warnings, which: “are driving down 

technical dispatch (reliability)”. Another operator 

reported: “What we are grappling with are algorithms 

for failure detection, which not only detects a failure 

but also acts upon it. Unfortunately this can lead to a 

perfectly healthy system being shut down or [a no-go 

fault warning] for a problem that was minor enough to 

have been deferred.”  

 The PHM function proposed in this paper aims to 

eliminate this problem by applying reasoning, 

equivalent to that of a human crew. The reasoning 

system is able assess the sensor readings and determine 

if they are only fluctuations, avoiding unnecessary 

shutdowns and dispatch delays. 

5. DISCUSSION AND CONCLUSION 

This functional failure mode approach, based on using 

reasoning to improve the diagnosis will maximise the 

likelihood of determining the failure mode correctly, 

and determine the most appropriate course of action – 

taking into account current circumstances (e.g., flight 

mode, power requirement, the state of both engines). 

Autonomous systems must have this capability to 

operate successfully. Manned systems will also benefit 

by improving the accuracy of failure mode 

identification and recommending the best action to 

take. By acting like an artificial assistant, such a system 

could greatly reduce the crew or operator workload in 

high stress situations, leading to improved levels of 

safety. 

 Currently the authors are implementing and 

demonstrating the capabilities of this approach in the 

ASTRAEA programme. The example being used is the 

lubrication system on the Rolls-Royce 250 engine, and 

how failures can occur, e.g. of bearings. The FMECA 

analysis is in progress and is being brought together in 

MADe. The autonomous PHM capability is being 

implemented in AOS‟s C-BDI, and the operational 

scenario is based upon a twin-engine UAS operating at 

high power in a hot and high altitude environment. It is 

expected that this demonstrator will be completed in 

2012 and the results published at that time. 
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