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ABSTRACT 

In the wind energy industry, gearbox failures are 

among the most costly and the most frequent, adding 

significantly to the operation and maintenance costs 

over the life cycle of the turbine.  Despite significant 

improvements in the understanding of gear loads and 

dynamics, even to the point of establishing 

international standards for design and specifications of 
wind turbine gearboxes,* these components generally 

fall short of reaching their 20 year design life.  In a 

significant number of gearbox failures, the primary 

bearing on the low speed shaft experiences faults in its 

operation, such as misalignment and movement on the 

mounts.  To investigate the topic of gear health 

management, a fault detection approach is applied to a 

test bed involving a spur gear double-reduction 

transmission, outfitted with a torque transducer and tri-

axial accelerometers on the bearing cases.  The test bed 

is not a wind turbine gearbox – the gear arrangement is 

different and the gears are smaller compared to that of a 
typical wind turbine gearbox – but it does serve to test 

the modeling and fault detection methods proposed in 

this paper. Both baseline and faulted measurements are 

taken from the experimental set-up for data analysis.  It 

is shown that the torque sensor provides an early 

                                                        
* International Organization for Standardization, Wind 
Turbines – Part 4: Standard for Design and Specification of 
Gearboxes, ISO/IEC 81400-4:2005, ISO Geneva, 
Switzerland, February 2005. 
** This is an open-access article distributed under the terms of 

the Creative Commons Attribution 3.0 United States License, 
which permits unrestricted use, distribution, and reproduction 
in any medium, provided the original author and source are 
credited. 

indication of fault precursors, such as misalignment and 

decreased lubrication, while also maintaining the 

capacity to identify mature faults, such as chipped and 

missing gear teeth.  The measurements are analyzed 

using statistical based methods – the Mahalanobis 

distance and Parzen discriminant analysis.  These 

features for fault detection are then characterized at 

various operating speeds for each of the geartrain 
conditions of interest.  An analytical model is created 

from first principles for verification of results and for 

simulation of the free and forced dynamics of the 

system. ** 

1 INTRODUCTION 

Wind energy production, now at a five-year average 

annual growth rate of 39% 

(windpoweringamerica.gov), is quickly taking its place 

as the leading player in the renewable energy arena.  As 

fossil fuel reserves continue to deplete, the need for 

more efficient and robust wind turbines increases.  

Condition monitoring plays a critical role in both 
increasing turbine efficiency and extending the 

operating life by facilitating better control strategies to 

avoid harmful operating conditions that augment 

unscheduled maintenance and decrease the turbine’s 

productivity.  Much work has already been 

accomplished as improved turbine design and control 

strategies have contributed to an increase in the average 

capacity factor from 22% (pre-1998) to 35% (installed 

turbine average from 2005-08) and beyond. 

(eree.energy.gov) 

 It has been shown that gearbox and generator 
failures are responsible for 17% of wind turbine 

failures while accounting for about 30% of the overall 
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cost of the system (Hyers et al., 2006).  These two 

factors combine to produce significant maintenance 

costs, making the drivetrain a prime candidate for 

condition monitoring.  Hyers et al. note that vibration 

based condition monitoring has been demonstrated as 

capable of detecting damage to the gearbox, claiming 
that it “seems to be a solved problem.”  While this may 

be the case, the necessity remains for identification of 

the precursors, or causes of gear and generator faults, to 

extend the operational life of these components towards 

their design life because, as it stands, “most systems 

require significant repair or overhaul well before the 

intended life is reached” (Musial et al., 2007).  That is 

to say, it is well known that these faults occur and 

detection of these faults has been demonstrated.  What 

remains to be clearly shown is the origin(s) of the 

frequent occurrence of these drivetrain faults. 

 As stated by Alban (1985), “It is very important, 
when studying a gear failure, that the examiner obtains 

an understanding of all possible environmental factors.” 

Investigation of the causes of gearbox failures by 

Musial et al. reveals that gearbox issues are universal in 

nature, and not specific to any particular manufacturer.  

It also appears that poor adherence to standards is not 

the primary source of failure, because failures have 

remained prevalent even after the development and 

adoption of international wind turbine gearbox 

standards.  Furthermore, Musial et al. noted that “It is 

reasoned that the accepted design practices that are 
successfully applied through other industrial bearing 

applications must be deficient when applied to wind 

turbine gearboxes.”  The source of failure also does not 

appear to stem from manufacturing quality because this 

only contributes to 10% of failures.  The majority of 

wind turbine gearbox failures initiate in the bearings.  

In addition to this observation, it is also noted that each 

bearing location prone to failure fails with relatively 

low dependence on machine size, make or model. 

(previous paragraph, Musial et al., 2007)   

 Musial et al. report all of the many factors to which 

these failures are not attributable, leading to the 
hypothesis that the potentially adverse and highly 

dynamic operating environment, illustrated in Figure 1, 

is the largest source of component failure because it is a 

shared operating condition among all wind turbines, 

causing bearing loads to exceed design specifications.  

Bearing failure directly and immediately affects shaft 

and gear alignment, which may result in extraordinarily 

high loads in related components leading to rapid 

failure (Fernandes, 1996).  As Xu and Marangoni note, 

for long-term and trouble-free operations, “adequate 

shaft alignment is essential.”  Generally, tooth bending 
fatigue is accepted as the most common gear failure 

mode, but it occurs much more readily with the 

presence of incorrect assembly, misalignment, 

overloads and inadvertent stress raisers (Fernandes, 

1996), all of which may result from bearing failure. 

Torsional vibrations also play a large role in 

accelerating tooth fatigue failure (Alban, 1985), and 

Figure 1 illustrates the torsional vibration in a wind 

turbine gearbox. 

 Another precursor to failure that is of concern in 
any geared system, particularly a gear system expected 

to last 20 years, is improper lubrication.  Lubricated 

systems generally require regular maintenance to 

ensure the rolling contacts remain in a suitable state. 

Major modes of lubrication related failures include 

rubbing wear, scoring, and pitting.  However, many 

strength related failures (such as tooth bending fatigue) 

are directly or indirectly influenced by lubrication (Mu, 

1994). 

 This paper is a preliminary investigation of the 

identification of precursors to drivetrain faults and gear 

failures, namely misalignment and improper 
lubrication, as well as an investigation of the 

identification of the actual faults resulting from the 

precursors including chipped gear teeth and missing 

gear teeth.  It is proposed that these sub-par operating 

conditions are just as observable and even, in many 

cases, more observable through the use of a torque 

transducer when compared to the use of accelerometers 

or other sensors.  The torque sensor is shown to be 

capable of detecting faults in the gear train with the 

added benefit of insensitivity to external force input, 

which influences an accelerometer’s translational type 
measurement, and with the benefit of increased 

sensitivity to misalignment.  A double spur gear 

reduction test bench is used to simulate the sub-par 

operating conditions examined in this paper and a 

physics-based analytical model is also developed for 

validation of the experimental results. 

 
Figure 1: Dynamic, cyclic nature of torque in a wind 

turbine gearbox, different than most gearbox operating 

environments. This figure represents the shaft torsion 

experienced during braking. (Burton et al., 2001) 
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2 ANALYTICAL MODEL 

A model was developed to numerically describe and 

simulate the behavior of the gearbox being studied, 

given variations in the gearbox condition. This section 

of the paper discusses the methods used to model the 

gearbox being studied that is described in detail in the 
experimental procedure section.  Once the model was 

fully developed, faults such as shaft misalignment and a 

chipped gear tooth were simulated by varying the 

model parameters.  The methods applied here can be 

easily adapted to a wide range of gearbox applications.   

 The gearbox system was treated as a torsional 

elastic system consisting of a drive unit, couplings, a 

torque sensor, shafts, gears, and a brake. All of these 

components can be described with rotational stiffness 

parameters and lumped mass moments of inertia. Most 

of the system components are basic cylindrical shapes 

and were, therefore, easily modeled. For a cylinder, the 
rotational stiffness K is determined as follows: 

 

 
 

where T is the torque on the cylinder, θ is the rotational 

deflection of the cylinder, L is the cylinder’s length, G 

is the shear modulus, and I is the polar area moment of 

inertia given by πr4/2 where r is the cylinder radius. 

Note that the subscripts o and i denote outer and inner 

radii, respectively, which allow for the calculation to be 

performed for a hollow cylinder (ri is zero for a solid 

cylinder). The mass moment of inertia J was 

determined as follows: 

 
where γ is the density of the cylinder material. 

 Damping in the gearbox system was also accounted 

for in the model using stiffness-proportional damping.  

In most cases of simple rotational systems, stiffness-

proportional damping models suffice to model the 

entire system with reasonable accuracy in terms of 

response amplitudes.  The damping values can then be 

adjusted by correlating the model results with the 

experimental data once all other model parameters 

(inertia and stiffness) are determined. 
 The geared transmission system consisted of a 

series of rotating masses, J1, J2,…,Jn, attached to shafts 

of torsional stiffness, K1, K2,…,Kn-1, geared together 

with the average mean rotational velocities of the 

respective shafts and masses, ω1, ω2,…, ωn-1, and the 

corresponding rpm of the shafts N1, N2,…,Nn-1.  The 

determination of torsional response characteristics are 

much simplified if the actual system is replaced by a 

dynamically equivalent system in which all masses and 

shafts rotate with the same speed with all gear ratios 

being 1/1, as shown in Figure 2. 

 In the equivalent system, each component should 

have the same kinetic energy and strain energy.  These 

two constraints led to the following relationships 

between component i in the original system and its 
corresponding parameters in the dynamically 

equivalent system: 

 
Figure 2: Example of dynamically equivalent torsional 

systems. 

 

 
 

Thus, the inertia Je and stiffness Ke of each component 

in the dynamically equivalent system could be 

determined with reference to the equivalent system’s 
speed, Ne.  For example, referring to Figure 2, the 

equivalent inertias and stiffnesses, with reference to the 

equivalent system’s speed, which was chosen to be 

Ne=N1, are as follows: 

 
 Having modeled the simpler cylindrical components 

and determined their inertias and stiffnesses, the only 

components that remained to be included in the model 

were the gears. The inertia of each gear could be easily 

calculated by assuming the gears were simple cylinders 

and using the previously shown equation. However, in 

order to determine the torsional stiffness of each gear, a 
more complex model was needed. 

 

(2) 

(1) 

(3) 

(4) 
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Figure 3: Gear tooth geometry and approximations. 

(Nestorides, 1958) 

 

 Many approximations of the torsional stiffness of 

spur gearwheels are available in the literature.  Figure 3 
shows the model of the gear tooth stiffness used for the 

system being analyzed (Nestorides, 1958). The linear 

compliance of the tooth was derived from the strain 

energy equation. The end result of the derivation was 

the linear stiffness of a gear tooth pair calculated as: 

 

 
 

where the correction factor C is 1.3 for spur gears.  The 

correction factor is applied to account for the 

depression of the tooth surface at the line of contact and 

for the deformation in the part of the wheel body 

adjacent to the tooth.  Additionally, E is the modulus of 

elasticity of the gear, G is the shear modulus, and h, hp, 

B, and L are the gear geometric properties as shown in 

the figure. The torsional stiffness of the gear tooth pair 
was then calculated as follows: 

 

 

 Using the previously described techniques, the 

inertia and stiffness parameters of every system 

component are modeled. The overall dynamically 

equivalent system has 8 degrees of freedom (DOFs), 

and can be represented with a schematic as in Figure 4 

where n=8. 

 
Figure 4: Simple schematic of modeling approach. 

 

For the modeled system shown in the figure, the inertia 

and stiffness matrices are derived as follows: 

 
 

 
with the overall system of equations of motion (EOM) 

expressed in matrix-vector form being: 

 

 
Here, I is an n by n identity matrix and (1+ jη )[K] is a 

complex stiffness matrix appropriate for use in forced 

torsional response calculations.  As previously 

mentioned, this model consists of a linear discrete 

torsional system with n=8 DOFs, but this technique 

could be applied to a wide range of torsional systems 

and geartrains.  The system components represented by 

each DOF are listed in Table 1. 

 Using modal superposition with the derived system 
EOMs, the torsional vibration natural frequencies 

(TNFs) and mode shapes were determined. The first 

two modal deflection shapes are shown in Figure 5 and 

the TNFs are tabulated in Table 2. 

 

Table 1: System degrees of freedom denoted by node 

numbers and their corresponding system components. 
DOF 

(Node #)

Corresponding System 

Component

1 Motor

2 Coupling 1

3 Torque Sensor

4 Coupling 2

5 Gear Shaft 1 and Gears

6 Gear Shaft 2 and Gears

7 Gear Shaft 3 and Gear

8 Brake  

(5) 

(6) 

(7) 
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Figure 5: First two Torsional Mode Shapes of the Test 

Bench. 

 

Table 2: Torsional Natural Frequencies, calculated 

from the lumped parameter model. 

1
st

0

2
nd

227

3
rd

1343

4
th

4439

5
th

7066

6
th

8142

7
th

12299

8
th

16754

Flexible Mode
Torsional Natural 

Frequency (Hz)

 
 

 The frequency response functions (FRFs) were also 

computed to analyze the behavior of the first two 
modes, which are the only modes within a frequency 

range low enough to be excited by the gearbox system 

under normal operating conditions. The FRFs were 

computed using the following equation and are plotted 

in Figure 6. 
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Figure 6: FRFs of lumped parameter model. 

 

 Having calculated the system’s natural vibration 

characteristics, the operational conditions were then 

simulated. In order to capture the meshing frequency of 

the gear teeth during operation, it was necessary to 

consider the parametric vibration characteristics 

associated with the operation of gears. This analysis 
involved calculation of the contact force between the 

gears, which required use of the dynamic transition 

error (DTE).  Though many complex models exist for 

this purpose (Wang et al., 2003), a single degree of 

freedom model was chosen for modeling purposes in 

this paper.  This model has been tested and proven to 

be adequate (Parker et al., 2000).  The schematic of the 

model that will be used is shown in Figure 7. 

 
Figure 7: Single DOF system used to determine the 

DTE and contact for of the gear tooth mesh contact. 

(Parker et al., 2000) 

 

 The EOM for this system is given below: 

 

 
where x represents the DTE and x=r2θ2+r1θ1.  The 

system mass is m=J1J2/(J1r2
2
+J2r1

2
).  T represents the 

torque transmitted through the system and r is the 

radius of the pitch circle of the gear.  The function k(t) 

is the linear stiffness previously calculated times the 

number of gear tooth pairs in contact.  The contact ratio 

(the average number of teeth in contact throughout a 
tooth mesh cycle) was used to calculate k(t), which 

becomes a square wave as shown in Figure 8. Note that 

the varying width of the 2 teeth portion of the square 

wave was determined by the different contact ratios of 

each gear mesh; gear mesh 2 had a higher contact ratio 

and, thus, had 3 tooth pairs in contact for a larger 

portion of the tooth mesh cycle. The varying mesh 

stiffness, modeled here as a square wave, is a cause of 

(8) 

(9a) 

(9b) 
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the time varying nature of the operational dynamics of 

geared systems. 
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Figure 8: Rectangular wave approximation for the tooth 

mesh stiffness, k(t), of both gear meshes in gearbox 

system being modeled. 

 

 The EOM for the single DOF tooth mesh model was 

solved using an ordinary differential equation solver in 

MATLAB that utilizes a fourth-order Runge-Kutta 

algorithm. Once the EOM was solved, the tooth mesh 

force was determined with the following equation 

where f is the tooth mesh force. 
 

 

These tooth mesh forces cause torsional vibrations in 

the system demonstrated in a DTE sample that is shown 

in Figure 9. 
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Figure 9: Sample of a gear mesh’s Dynamic 

Transmission Error. 

 

Finally, having modeled the free and forced 

response of the gearbox, faults could be simulated. 

Thus, the torque measured by the sensor during 

operation was simulated, including misalignment 

simulated at the motor DOF. The resulting spectrum of 

the simulated torque can be seen in Figure 10. Several 

important peaks were observed in the plotted simulated 

spectrum of the torque measured by the sensor. The 

100Hz peak is at 2x the operating speed - typical in 
rotational systems and due to the simulated motor 

misalignment.  Next, at 720Hz, a peak relating to the 

14.4x meshing frequency of the second gear pair can be 

seen followed by a peak at 1200Hz which is the peak 

corresponding to the 24x meshing frequency of the first 

gear pair.  The remaining peaks are harmonics of the 

aforementioned peaks.  There also exist very small 

amplitude side bands around the peaks at +/- 100Hz 
intervals due to the misalignment, but they cannot be 

seen in the linear amplitude plot. These peaks should be 

visible in the experimental data, and they are, as can be 

seen in Figure 14. 
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Figure 10: Forced response simulation of analytical 

model with misalignment. 

 

     It was also of interest to simulate the driveline 

response for a chipped tooth condition.  Figure 11 

represents the chipped tooth condition on the first gear 

(nearest the torque sensor in the drivetrain) in 

conjunction with misalignment.  The chipped tooth was 

modeled as a 1 per rev decrease in stiffness, because a 

gear’s tooth will become less stiff as a portion of its 

material is removed.  This 1 per rev change excited the 

system’s dynamics, particularly noted near the first 
TNF at 227Hz.  These peaks are located at 50Hz, or 1x, 

increments. 
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Figure 11: Forced response simulation of analytical 
model with misalignment and with a chipped tooth. 

 

(10) 
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     Several key results should be emphasized from the 

modeling. First of all, the location of the natural 

frequencies of the gearbox that were calculated will 

certainly play a role in the sensing the vibrations of the 

gearbox during testing. The resonances and anti-

resonances as shown in Figure 6 will amplify and 
attenuate responses of the gearbox within certain 

frequency ranges. Second, the mesh frequencies should 

be observable in the experimental data as shown in the 

model. It is expected that these mesh frequencies will 

be significantly affected by faults in the gears 

corresponding to a particular mesh frequency, and thus 

these mesh frequency peaks will play a key role in fault 

identification. Finally, as shown in the model, the 2x 

frequency peak and its harmonics will be an important 

indication of misalignment in the gearbox. Overall, the 

simulation indicated that the torque sensor has the 

potential to measure the vibrations of the gearbox 
effectively. All of these key analytical results will be 

validated in the following sections. 

3 EXPERIMENTAL APPARATUS AND DATA 

ACQUISITION 

To investigate the prospect of identifying precursors to 

gear failure using a torque transducer, a test bench was 

purchased from Spectraquest® termed the Gearbox 

Dynamics System (GDS).  While this test bench is 

different in size and gear arrangement from a wind 

turbine gearbox, it can be used to test and validate the 

modeling techniques already shown and the fault 
detection techniques which will be discussed. The 

system is shown in Figure 12, consisting of (L to R): 

Marathon® Electric D396 electric motor, a NCTE 

model Q4-50 torque sensor (±50 N·m), a two stage, 

parallel spur gear gearbox consisting of Martin 

Sprocket 14½° pressure angle gears of 2, 5, 3, and 4 

inch pitch diameter (in drive order for a 5:1 speed 

reduction, input to output), and a Placid Industries 

magnetic particle brake B220.  The GDS is additionally 

outfitted with two tri-axial PCB accelerometers, model 

256A16 (100 mV/g nominal sensitivity).  The 

accelerometers are placed on the outside of the gearbox 
housing with one near the input shaft and the other near 

the output shaft.  Data was acquired through an 

Agilient E8401A VXI mainframe paired with an 

E1432A module sampling at 32.768 kHz.  For 

measurement of shaft rotational speed, an optical 

sensor was placed on the input shaft between the motor 

and the first coupling. 

 The first data acquired consisted of motor run-up to 

provide a good overview of the drivetrain and its 

inherent dynamics.  Multiple gear conditions were then 

introduced to the system for simulating either a faulted 
condition or a precursor or cause of geartrain failure.  

Faulted conditions considered were a chipped tooth and 

a missing tooth and the precursors considered were 

misalignment (inherent in the test bench set-up) and 

lack of lubrication.  The gear faults were introduced on 

the first gear in the drive order (closest to the torque 

sensor).  Additionally, a data set was acquired with the 

simulation of external noise input through the use of a 
piezo-electric actuator, which was mounted to the 

gearbox casing.  Except for the run-up measurement, 

steady-state data was collected at 5Hz motor speed 

increments, from 5-55Hz.   

 

 
Figure 12: Double spur gear reduction test bench 

assembled by Spectraquest®. 

4 EXPERIMENTAL DATA –VALIDATIONS 

First, some validation of the numerical model was 

sought from the experimentally acquired data.  The 

ramp-up data set was examined to reveal the principle 

dynamics of the system and to investigate their 
variation with speed.  The spectrogram of this data is 

shown in Figure 13.  This process revealed the 

analytical model’s accuracy in predicting the TNFs of 

the system and confirms the presence of the first (24x) 

and second (14.4x) gear mesh frequencies as well as 

the first harmonic of the first mesh frequency (48x).  

Unbalance and misalignment (1-2x) are also 

demonstrated in the experimental data. 

 

 
Figure 13: Spectrogram of speed sweep of the GDS.  

Torque 

Sensor 

Gearbox 

Brake 

Motor 

Couplings 
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 Comparison between the accelerometer and torque 

measurements was also sought to investigate the 

suitability of the torque transducer in fault detection.  

Table 3 highlights the lesser variance in the torque data, 

as compared to the accelerometer, meaning a higher 

probability of fault detection due to the increased 
sensitivity to smaller changes.  As previously 

mentioned, the torque data also reveals misalignment in 

the system, while the accelerometers were not observed 

to be as capable; this is shown in Figure 14.  Also, the 

effect of external gearbox noise on the measurements is  

demonstrated in Figure 15.  For this data set, the 

measurement is presented at a motor speed of 5Hz 

because higher operating speeds produce larger 

amplitudes of response, overshadowing the excitations 

due to the piezo-electric actuator.  This data set makes 

it clear that excitations outside of the torsional system 

have little to no effect on the measured torsional 
dynamics, while the accelerometers are greatly affected 

in their measurement.  The effect of external noise on 

the torque sensor and accelerometer measurements over 

all tested operating speeds is summarized in Figure 16. 

As can be seen in Figure 16, the mean value of the 

amplitude of the spectrum of the torque measurements 

(calculated using the Fast Fourier Transform with 

synchronously averaged data) is not increased by the 

added external noise. However, the accelerometer 

measurements are clearly impacted by the added noise, 

as the mean amplitude of the frequency content of the 
accelerometer signals increases due to the added energy 

input from the piezo-electric actuator. This property is 

something of consideration when choosing a transducer 

for an application like a wind turbine gearbox, where 

many other excitations (e.g. the wind, pitch/yaw 

actuators) are exciting the dynamics of the nacelle and 

surrounding components. Thus, a torque transducer 

appears to have an advantage over an accelerometer 

when measuring the dynamics of a rotational system in 

that the torque transducer is more sensitive to changes 

in the system (i.e. faults) as well as misalignment, and 

it appears to be insensitive to structure-born noise. 
However, in rotational systems sources of torsional 

noise also exist, such as variations in wind speed on the 

rotor of a wind turbine. The torque transducer will be 

affected by this torsional noise but will remain 

unaffected by translational structure-born noise 

occurring outside of the rotational system of interest, 

such as varying wind conditions creating vibrations in 

the nacelle of a wind turbine. 

 

 

 
 

 

 

Table 3: Comparison of std. dev. of torque and 

accelerometer data at 55Hz. 
55 Hz (Healthy vs. Faulty) Torque Accel-X Accel-Y Accel-Z

Shift in Mean 0.5624

(-85.4%)

-0.0072

(-11.0%) 

0.0064

(-12.9%)

0.0988

(-60.7%)

St. dev., σ  (Healthy) 3.7% of   36.2% of    10.6% of    19.2% of    

St. dev., σ  (Faulty) 21.6% of    47.7% of    36.1% of    50.9% of    

( )Healthy Damagedx x

x

x

x

x

x

x

x

x  
 

 
Figure 14: Spectrum of torque sensor and 

accelerometer signals highlighting the torque sensor’s 

high sensitivity to misalignment. 
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Figure 15: (a,b) Demonstration of the affect of external 

excitation on the measurement levels. 
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Figure 16: Mean amplitude of the frequency spectrum 

of the data plotted against operating speed for normal 

operation and operation with added external noise. 

5 EXPERIMENTAL DATA ANALYSIS – 

STATISTICAL METHODS 

The analysis of the steady-state operational data, to 

identify anomalies in the data, began with time 
synchronous averaging (TSA), which was performed to 

isolate the gear of interest and reduce noise.  However, 

during this process it was determined that based upon 

the tachometer signal, the length of each duration 

drifted because of slight motor fluctuations.  Typically, 

these variations are accounted for by interpolating the 

time histories so that they are all of the same length in 

an attempt to obtain samples that are at a consistent 

shaft angle.  However, this process inherently assumes 

a piecewise constant shaft speed every rotation which 

results in shaft speed discontinuities.  The shaft angle 
was consequently interpolated using cubic splines in 

order to obtain physically realizable shaft speed 

variations.  Samples were then taken at constant shaft 

angles by interpolating the time history with cubic 

spline functions as well.   

 Using this interpolation methodology, TSA was 

performed based on 24 averages of a single input shaft 

rotation. To focus the following analyses on the 24 

tooth gear on the input shaft, the magnitude of the 

frequency content of the TSA results at the 24x gear 

mesh frequency and the next 8 spectral points on either 
side were used to detect the presence of damage, 

resulting in a 17 dimensional damage feature vector. As 

mentioned in the analytical model section, the gear 

mesh frequency is expected to be significantly affected 

by faults in the gear corresponding to that particular 

mesh frequency (in this case the 24 tooth gear) and the 

surrounding 8 spectral points on either side will capture 

modulation of the fault in the surrounding frequencies. 

The mean 17 dimensional damage feature for each gear 

condition tested at an operating speed of 50Hz can be 

seen in Figure 17. As expected, the main peak occurs at 

the center spectral component, which corresponds to 

the 24x gear mesh frequency. However, this peak shifts 

for the missing tooth condition due to the gear mesh 

being interrupted once per gear revolution by the 

missing tooth. The no lube condition results in 
increased noise in the torque signal, so the gear mesh 

frequency is not as defined and more modulation 

occurs. The baseline and chipped conditions are very 

similar with the exception that the baseline, or healthy, 

condition has higher amplitudes in the spectral 

components surrounding the gear mesh frequency. 

Similar patterns were seen in the damage features at 

other operating speeds. 

 
Figure 17: Mean 17 dimensional damage feature for 

each gear condition tested. 

 

 Each 17 dimensional damage feature vector was 

standardized by subtracting the mean and dividing by 

the standard deviation of the training data across each 

dimension. After calculating the standardized damage 

feature, an initial statistical analysis was conducted to 

investigate the feasibility of using the torque signal to 

detect when the system was no longer operating in the 

normal condition.  To accomplish this task without the 
use of data from the damaged conditions, the 

Mahalanobis distance was used (Staszewski et al., 

1997).  The Mahalanobis distance for a point xk is 

calculated using the equation:   
 

 

where μ is the sample mean and Σ is the sample 
covariance matrix both of which are calculated using 

only the baseline data.  Essentially, the Mahalanobis 

distance is a weighted measure of similarity that takes 

the correlations between variables in the baseline data 

set into account by using the first and second sample 

moments. 

 To set a detection threshold without the use of 

testing data, the mean and standard deviation of the 

Mahalanobis distances for the baseline data set were 

calculated.  Because the distribution of the variables is 

very likely non-normal, the threshold was set at the 
mean of the Mahalanobis distances plus ten standard 

(11) 
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deviations.  By Chebyshev’s inequality (Papoulis and 

Pillai, 2002), this means that regardless of the 

distribution from which this data comes, there is less 

than a 1% chance of data from this distribution being 

larger than the threshold. 

 In order to train the model, half of the healthy data 
was used for the baseline data while the other half was 

used to validate the model and determine if any number 

of false indications of damage occurred. As can be seen 

from the plots of the Mahalanobis distances at each of 

the investigated frequencies shown in Figure 18, no 

false indications of damage occurred and all of the 

other operational conditions could be distinguished 

from the healthy data. The data is plotted on a log scale 

because of the large separation between the healthy 

data and the data from any of the other conditions. 

 It is important to note the effects of the external 

noise (as previously discussed in section 4) on the 
Mahalanobis distance calculation. The resulting 

Mahalanobis distance from data for the baseline and 

missing tooth conditions with added external noise are 

presented in Figure 18. Ideally, the baseline, or healthy, 

data with the external noise would fall within the 

threshold set by the healthy data – or at least this should 

be true for torque sensor which should not be 

significantly affected by external translational vibration 

on the gearbox housing. As can be seen in Figure 18, 

this is not true, however the baseline data with noise is 

closer to the threshold relative to the other data sets for 
the torque measurements than for the accelerometer 

measurements. This indicates the torque sensor’s lower 

sensitivity to translational structure born noise 

compared to the use of an accelerometer on the gearbox 

housing. 

 Overall, the Mahalanobis distance analysis 

successfully separated the healthy and damaged data, 

except for at 25 and 30Hz shaft speed. It is proposed 

that this is because the gear mesh frequency for input 

shafts speeds between 25 and 30Hz is between the first 

two calculated TNFs and therefore has a decreased 

signal to noise ratio.  As previously described, a small 
test bench gearbox was used for the purposes of testing 

the methods presented in this paper; therefore, because 

of the importance of the TNFs to the response and the 

fact that both the TNFs and input shaft speeds of 

interest will decrease for larger gearboxes (e.g. wind 

turbine gearboxes), the data is labeled with the input 

shaft speed indicated as a percentage of the first 

torsional natural frequency in Figures 17, 18, and 19. 

 

 

 

 

 
 Figure 18: (a,b,c,d) Mahalanobis distance plots 

generated using half of the healthy data as the baseline 

case.  The significant difference threshold is indicated 
with a black horizontal line. (a) and (c) are generated 

from torque sensor data, and (b) and (d) are generated 

from accelerometer data. 

 

 While this process enabled the healthy condition to 

be distinguished from the unhealthy conditions, it is 

unable to classify the type of damage.  In order to 

facilitate this process, a two-step procedure was 

performed on the same data feature that was used for 

the previously described Mahalanobis distance 

procedure.  Because this was a supervised learning 
process, half of the data from each condition was used 

as training data.  Parzen discriminant analysis (Fang et 

al., 2008) was then applied to the data.  This analysis is 

a subspace projection method that makes no 

(12a) 

(a) 

(b) 

(c) 

(d) 
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assumptions about the underlying distributions of the 

data.  Instead, it investigates local regions around each 

data point and attempts to maximize the ratio of the 

average local scatter across dissimilar groups (SD) to 

the average local scatter within each group (SS).  This is 

achieved by solving the generalized eigenvalue 
problem: 

  
where N is the total number of data points, R(xi) is the 

local region around xi, NRx
D is the number of dissimilar 

samples in the region, and NRx
S is the number of 

samples in the region that are of the same class as xi as 

indicated by c(xi)=c(xj).  The rows of the optimal 

projection matrix for a selected number of dimensions 

is then composed of the eigenvectors corresponding the 

largest eigenvalues.  For this investigation, the data was 

projected down to two dimensions to ease visualization 

and the local region around each point, R(xi), was 

defined as a hypersphere around each point whose 
radius was equal to five times the average distance to 

the nearest neighbor. 

 After the training data had been used to formulate 

the projection matrix described above, this matrix was 

then applied to the training data after which linear 

discriminant analysis (Johnson and Wichern, 2007) was 

performed on the projected data including data from the 

baseline and missing tooth condition with added 

external noise. This resulted in the correct classification 

of all testing data sets for the torque measurements 

without added external noise as can be seen in the 

classification scatter plots in Figure 19. The different 
classes (without the added external noise) are well 

clustered and separated at each of the input shaft speeds 

investigated for the torque data. However, the 

accelerometer data did not yield equally successful 

results at all operational speeds. For example, as can be 

seen in Figure 16b and 16d, the chipped tooth and no 

lube groups were not as distinct which led to several 

false classifications and similar results were seen at 

other operating speeds. Finally, it is important to note 

the effects of the external noise on this analysis. The 

baseline data with added noise was successfully 
classified in the baseline group when torque data was 

used (Figures 19a and 19c). However, the 

accelerometer data was not as successful at certain 

speeds (e.g. Figures 19b). The missing tooth condition 

with the added external noise was not successfully 

classified using the torque or the accelerometer data 

which points to the need for further analysis and 

experimentation regarding the classification process 

and the effects of external structure born noise. Finally, 

it should also be noted that simply applying linear 

discriminant analysis to the raw data or the first several 
principal components failed to correctly classify all of 

the data sets which shows the utility of the 

nonparametric discriminant analysis. 

 

 

 
Figure 19: (a,b,c,d) The classification plots and 

boundaries generated using Parzen discriminant 

analysis to project the data into two dimensions and 

linear discriminant analysis to classify the projected 

data. (a) and (c) are generated from torque sensor data, 

and (b) and (d) are generated from accelerometer data. 
 

(12b) 

(12c) 

(a) 

(b) 

(c) 

(d) 
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6 CONCLUSION 

A simple two-stage spur gear bench test was used for 

validation of a hypothesis endorsing the adeptness of 

torque transducer measurements in detecting drivetrain 

component faults.  The numerical model was first 

shown to be capable of simulating the operational 
response measured by the torque transducer, and could 

be updated for simulation of drivetrain conditions of 

interest, knowing the condition’s effect on the system 

properties.  It has been shown through statistical 

methods and experimentation that a torque transducer is 

capable of detecting both drivetrain faults, namely 

chipped and missing teeth, and precursors to faults, 

namely misalignment and lack of lubrication.  This 

could be useful in applications (such as a wind turbine 

geartrain) plagued with frequent gear failures, where 

detection of fault precursors is necessary to 

circumnavigate absolute failure.  Through the 
application to multiple data sets of known conditions or 

faults, this method could be trained for use in any 

application.  The torque sensor was additionally shown 

to be highly sensitive to low frequency vibrations due 

to misalignment and insensitive to ambient noise 

introduced to the gearbox housing – a noted advantage 

over accelerometers for use in gear trains, which 

operate in dynamic environments. The findings in this 

paper certainly seem to point to several advantages of 

the utilization of a torque sensor mounted to the 

driveline over accelerometers mounted to the gearbox 
housing in gearbox fault diagnostics, but further 

experimentation is necessary, as can be seen in the 

misclassification of the missing tooth condition when 

external noise was introduced (Figure 19). It is also 

important to remember that torque sensors are often 

difficult to install. Because of this drawback, future 

work involves exploring the possibility of a noncontact 

magnetic torque sensor, which would significantly 

improve ease of installation. 
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NOMENCLATURE 

DTE Dynamic Transmission Error  

DOF Degree of Freedom 

EOM Equation of Motion 

TNF Torsional Natural Frequency 

 
 

G Shear Modulus 

I Polar Area Moment of Inertia 

J Mass Moment of Inertia 

K Torsional Stiffness 

L Length 

NRx
D # of Dissimilar Samples 

NRx
S # of Samples in Class 

R(x) Local Region 

SD Dissimilar Groups 

Ss Average Local Scatter 

T Torque 

θ Rotational Deflection 

k(t) Gear Mesh Stiffness 

m Gear Mesh Mass 

μ Sample Mean 

r Radius 

Σ Sample Covariance Matrix 

xk Sample Point 
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