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ABSTRACT
The majority of the approaches to the fault detection in

rotational machines assume constant and known operat-
ing conditions. These assumptions are often violated in
practice. Therefore, in this paper we propose a set of
features that can be utilized to reveal faults in gearboxes
while being robust to fluctuations in operating speed and
load. The proposed feature set comprises values of two
information cost functions calculated from the coeffi-
cients of the wavelet packet transform accompanied by
the maximal value of the spectral kurtosis. The fault de-
tection capabilities of the proposed feature set were eval-
uated on a two–stage gearbox operating under different
rotational speeds and loads with different types of me-
chanical faults.

1. INTRODUCTION
The traditional vibration based fault detection ap-
proaches rely on the assumption that the changes in the
features’ values are directly related with the changes in
the condition of the monitored machine. This assump-
tion, provided the monitored machine operates under
constant load and constant rotational speed, is valid since
any fluctuations in the operating conditions might affect
either the amplitude or the frequency signatures of the
vibrational patterns. Therefore, under variable operating
conditions the deterioration in the machine health can
not be unambiguously addressed as the unique cause for
the observed changes in the feature values. The idea of
this paper is to investigate a set of features that react to
the faults in mechanical drives while being robust to the
changes in operating conditions.

The problem of fault detection under fluctuating load
and speed has received commendable attention in the
area of rotational machines. Most of the proposed so-
lutions employ information about the current operating
condition in order to properly handle the underlying fea-
ture values. In that manner, fault detection under vari-
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able operating speed is usually performed by applying
time–synchronous average (TSA) (Zhan, Makis, & Jar-
dine, 2006). Similarly, information about the instan-
taneous speed is often used in the process of monitor-
ing gears subjected to fluctuating conditions (Stander &
Heyns, 2005). There are examples of using higher or-
der spectra analysis for the detection of various bear-
ing faults under different load conditions (Parker et al.,
2000). Taking into account the information about both
variations in speed and load, a specific feature set was
defined by Bartelmus and Zimroz for fault detection in
multi–stage gearboxes (Bartelmus & Zimroz, 2009). Al-
though the proposed approaches give satisfactory results
they heavily depend on accurate measurements of the
current speed and load of the monitored gearbox.

Need for precise information about current operating
conditions can be evaded by exploiting the specific struc-
ture of the vibrational patterns produced by bearings’
and gears’ surface faults. These faults are characterized
by specific amplitude modulations in the vibrations as
well as by the occurrence of broad–band spectral com-
ponents. By observing how these artifacts influence the
statistical behavior of the vibration signals in time and
in frequency domain we can extract a specific set of fea-
tures that can be used to characterize the current machine
state without precise knowledge of the operating condi-
tions.

In the process of estimating the statistical character-
istics of the underlying vibrations, one has to consider
the fact that vibrations produced by a rotational machine
under varying operating conditions are in essence non-
stationary signals. One of the main pillars in the analy-
sis of such signals is the concept of evolutionary spectra
(Priestley & Gabr, 1993), i.e. the evolution of the power
spectrum in time. Based on this concept Baydar and
Ball have performed detection of gear deterioration un-
der different loads using instantaneous power spectrum
by employing Wigner–Ville distribution (WVD) (Baydar
& Ball, 2000). However, the proposed approach is com-
putationally expensive and the analysis requires visual
inspection of the WVD maps.

These problems can be overcome by the application
of the wavelet transform as a tool for analysis of non-
stationary signals (Spanos & Failla, 2004). The analy-
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sis of non-stationary signals using wavelet transform has
proved to be effective in the field of neuroscience for the
analysis of brainwave signals (Rosso et al., 2001). Based
on the wavelet coefficients one can calculate the so called
information cost functions (ICFs) that can be associated
with the distribution of the signal’s energy in both time
and frequency domain. These functions have basic form
of an entropy–like function, thus they give an estima-
tion about the disorder in the system (Figliola & Ser-
rano, 1997). Based on the features extracted from such
entropy–like functions Feng and Schlindwein have de-
vised a fault detection system for surface bearing faults
(Feng & Schlindwein, 2009). They have shown that
both fault detection and fault isolation of different bear-
ing faults can be successfully conducted by applying fea-
tures extracted from the ICFs. In our approach we extend
this concept by calculating the ICFs for the vibration sig-
nals produced by two–stage gearbox running under dif-
ferent operating conditions with different kind of gear
and bearing faults. For the sake of better diagnostic res-
olution, the feature set was enriched by adding an addi-
tional feature defined as a maximal value of the spectral
kurtosis (SK) (Antoni & Randall, 2006). The obtained
feature set was afterwards used to perform the fault de-
tection task. The obtained results support the hypothesis
that a faulty case can be distinguished from the fault–
free case just by observing the values of the ICFs and
the maximal value of SK, without any knowledge of the
current operating conditions.

The paper is organized in the following manner. A
brief overview of the specific vibrational patterns pro-
duced by gears and bearings is presented in Section 2..
The concepts behind the calculation of the ICFs and SK
are given in Section 3.. Finally, in Section 4. we will
present the results of the fault detection performed using
the defined feature set.

2. MECHANICAL FAULTS SIGNATURES

Accurate fault detection of a running gearbox depends
on the ability of inferring about the state of each me-
chanical element only by observing the produced vibra-
tions. These vibrations comprise the vibrations produced
by each rotating element together with their mutual inter-
actions. Therefore, it is crucial to be able to distinguish
the changes in the vibrational patterns emanated from a
particular element.

2.1 Vibrations produced by running gears

The vibrations produced by a healthy gearbox are dom-
inated by the vibration components produced by mesh-
ing gears. In the cases of spur gears, these vibrations
are product of the mesh stiffness variation that occurs
as the number of teeth in contact oscillates between one
and two teeth (Howard, Jia, & Wang, 2001). Con-
sequently the resulting vibrations are characterized by
prominent spectral components located at the harmon-
ics of mesh frequency (Kuang & Li, 2003). Addition-
ally, these components are accompanied by modulation
components originating from the assembly errors and the
fluctuation in the gears speed and load. Thus, the vibra-
tions x(t) produced by a meshing gears can be written as

follows (Wang, 2001):

x(t) =

M∑
m=0

Am

(
1+am(t)

)
cos
(
2πfmt+βm+bm(t)

)
,

(1)
where m is the meshing harmonic, Am and fm the
amplitude and the frequency of the mth harmonic of
the gear mesh frequency respectively. The components
am(t) and bm(t) are the amplitude and phase modula-
tions respectively, and βm is the initial phase. In should
be noted that the amplitudes Am depend on the applied
load on the gears.

In cases of localized faults the vibration model (1)
should be expanded in order to accommodate the im-
pacts occurring in damaged areas. These impacts, over a
course of one revolution, can be modeled as:

z(t) = d(t) cos
(
2πfrt+ θr

)
, (2)

where d(t) is the envelope marking the impact moments
that excite resonant oscillations with frequency fr and
phase θr.

2.2 Vibrations produced by localized bearing faults
Unlike gears, healthy bearings produce no or negligible
vibrations. However in case of bearing’s surface damage
they produce a vibrational patterns similar to the impacts
(2) produced by the damaged gears. These vibrations are
generated by the bearing balls passing through the dam-
aged surface. Each time this happens the impact between
the passing ball and the damaged surface excites the sys-
tem’s impulse response s(t). Under constant operating
conditions these impacts may be approximated as truly
periodic, with a period directly connected to the type
and the location of the surface fault. However, under
variable operating conditions the occurrence of these im-
pacts should be treated as purely random events. Further-
more, the amplitude of each impulse response also dif-
fers, due to changes in the surfaces and the microscopic
variation how each roller element enters the load zone.
These fluctuations in the amplitudes and period of oc-
currence of impulse response were modeled by Randall,
Antoni, and Chobsaard (Randall et al., 2001) as:

x(t) =

+∞∑
i=−∞

Ais(t− τi) + n(t), (3)

where Ai is the random amplitude of the ith impulse re-
sponse, τi is the time its occurrence. The final compo-
nent, n(t), defines an additive random component that
contains all non–modeled vibrations as well as environ-
mental disturbances.

3. OVERVIEW OF THE SIGNAL PROCESSING
METHODS

Regarding the both conceptual models, presented in Sec-
tion 2., the vibrations produced by a healthy gearbox
are dominated by strong components at the gear mesh
frequency and its sidebands. Despite the possible fluc-
tuations in the operating conditions, in short term the
produced vibrations can be characterized by a specific
time varying patters which are result from the modula-
tion generated by the meshing gears. The occurrence of
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a fault causes two significant changes in the overall vi-
brational signal: occurrence of new modulation and ap-
pearance of new spectral components as a result of the
excitation of additional eigenmodes. Therefore, the ef-
fectiveness of the fault detection process lies in the abil-
ity to detect these changes.

In cases of constant operating conditions, the analysis
of the vibration signals is usually performed under as-
sumption that signals are stationary, at least in a given
time window. However, under variable operating condi-
tions this assumption is invalid and the signals have to
be treated as non–stationary. Consequently, the analysis
of the signals was performed using two signal process-
ing techniques suitable for non-stationary signal analy-
sis: wavelet transform and spectral kurtosis.

3.1 Wavelet analysis
The wavelet analysis is based on a smooth and quickly
vanishing oscillating functions called the wavelets. Such
functions offer good localization in both time and fre-
quency domain. Typically the wavelet transform is based
on a family of wavelets created by dilatation s and trans-
lation u of a mother wavelet ψu,s(t) (Mallat, 1999):

ψu,s(t) =
1√
s
ψ

(
t− u
s

)
(4)

Consequently the wavelet transform of a function f(t) is
defined as:

Wf(s, u) =

∫ +∞

−∞
f(t)

1√
s
ψ∗
(
t− u
s

)
dt, (5)

where ψ∗(t) represents the complex conjugate of the un-
derlying wavelet function.

Calculation of the wavelet transform (5) can be limited
to a set of discrete values for the parameters s and u,
namely sj = 2−j and uj,k = 2−jk, where j, k ∈ Z.
Hence the mother wavelet (4) becomes:

ψj,k(t) = 2j/2ψ
(
2jt− k

)
, j, k ∈ Z. (6)

The wavelet transform (5) with the restriction (6) is re-
ferred to as discrete wavelet transform (DWT) (Figliola
& Serrano, 1997). The wavelet coefficients cj,k can be
calculated using the inner product

cj,k =Wf(sj , uj,k) = 〈f(t), ψj,k(t)〉 . (7)

Finally a given function f(t) can be decomposed using
DWT as

f(t) =
∑
j

∑
k

cj,kψj,k(t). (8)

The classical DWT results in a logarithmic frequency
resolution (Burrus, Gopinath, & Guo, 1994). An up-
grade to this approach is the finer adjustment of the
frequency resolution for both high and low frequency
bands. This results into the so called wavelet packet
transform (WPT) in which the selection of the time–
frequency resolution can be adjusted in both high and
low frequencies. Consequently, WPT produces a wavelet
packet tree with depth D0 with nodes (d, n), where
d = {1, · · · , D0} represents the depth of the tree, and
n = 0, · · · , 2d − 1 represents the number of the node at
depth d (cf. Figure 1). Each of the n nodes at level d con-
tainsNd wavelet coefficients Wd,n,t, t = 0, · · · , Nd−1
(Percival & Walden, 2000).

f(t)

(2,1)

(1,0)

(2,0)

(3,2)(3,1)(3,0) (3,3)

(2,3)

(1,1)

(2,2)

(3,6)(3,5)(3,4) (3,7)

Figure 1: Structure of WPT tree with depth D0 = 3

Information cost functions
Wavelet transforms including WPT is performed using
family of wavelets ψj,k(t) that build orthonormal basis.
Under such condition the energy of the original signal
f(t) is related to the wavelet coefficients (7), similarly
like in the case of Fourier transform. Consequently, the
wavelet transform enables localization of the signal’s en-
ergy in both time and frequency with resolution guided
by the uncertainty principle. For the case of WPT the sig-
nal’s energy can be obtained only by observing the coef-
ficients in the terminal nodes (Blanco, Figliola, Quiroga,
Rosso, & Serrano, 1998):

Etot =

Nd−1∑
t=0

d,n∈Ct

‖Wd,n,t‖2 , (9)

where Ct represents the set of terminal nodes. Equiva-
lently, the energy contained within one node (d, n) can
be calculated as:

Ed,n =

Nd−1∑
t=0

‖Wd,n,t‖2 (10)

Using the equations (9) and (10) we can obtain the dis-
tribution of the signal’s energy over the terminal nodes
Ct as follows:

pd,n(f) =
Ed,n

Etot
(11)

Since each terminal node covers a specific frequency in-
terval the relation (11) in essence gives the signal’s en-
ergy distribution over frequency.

Similarly we can define the distribution of the signal’s
energy in time. This distribution can be given for each
node (d, n) as:

pd,n(t) =
|Wd,n,t|2

Ed,n
, t = 0, · · · , Nd − 1, (12)

where Ed,n is the energy contained within the (d, n)
node, as defined with (10).

Based on these two distributions the entropy–like
Information Cost Functions (ICFs) can be defined as
(Rosso et al., 2001; Zunino, Pérez, Garavaglia, & Rosso,
2007):

Ct = −
Nd−1∑
t=0

pd,n(t) log2
(
pd,n(t)

)
, (13)

and

Cf = −
∑

d,n∈Ct

pd,n(f) log2
(
pd,n(f)

)
. (14)
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The first function (13) shows whether time waveform
exhibits some repetitive pattern. In such a case, the
wavelet pattern in the specific node (d, n) will corre-
spond to the repetitive signal’s pattern. Therefore, the
corresponding wavelet coefficients Wd,n,t will acquire
high value, according to (7), where as all the other
wavelet coefficients will have significantly lower val-
ues. Consequently, the entropy–like function (13) will
acquire very low value. Conversely, if the correspond-
ing signal shows erratic or random behavior none of the
wavelet coefficients will have high value since every sig-
nal part will significantly differ from the used wavelet
function. Consequently, most of the coefficients will
have similar values hence Ct will acquire high value.

The second function (14), on the other hand, can be
employed to describe the signals frequency signature. If
the observed signal is narrow–band, the majority of the
energy will be concentrated within a limited number of
terminal nodes. However, if the signal exhibits broad-
band components the energy will be spread over sev-
eral terminal nodes, which consequently will lead to the
higher values for Cf .

3.2 Spectral kurtosis

The spectral kurtosis (SK) was firstly introduced by
Dwyer, as a method that is able to distinguish be-
tween transients (impulses and unsteady harmonic com-
ponents) and stationary sinusoidal signals in background
Gaussian noise (Dwyer, 1983). The method was intro-
duced in the field of fault detection by Antoni and Ran-
dall, and has proved effective in detecting faults in gears
and bearings (Antoni & Randall, 2006).

The underlying value gives an estimate of the fraction
of the overall signal energy caused by strong and spo-
radic impulses relative to the energy of mild and frequent
oscillations. Applying this concept to the amplitudes of
the signal’s spectral components, we obtain information
about the frequency band in which such sudden bursts of
energy are mostly expressed. Considering that both sur-
face gear (2) and bearing faults (3) are characterized by
a sporadic excitations of system’s eigenmodes, the SK
method turns to be a suitable approach for the detection
of these excitations.

The value of SK can be roughly estimated from the
short–time Fourier transform (STFT). Applying STFT
with an arbitrary window to a non–stationary signal we
obtain a series of amplitude spectra S(t, f) for each time
position of the chosen window. The standard power
spectral density can be obtained as a time average of
these spectra. The spectral kurtosis on the other hand is
obtained by calculating the fourth order moment of these
complex spectra:

SK(f) =

〈
S(t, f)4

〉
〈S(t, f)2〉2

− 2. (15)

The equation (15) differs from the standard relation for
kurtosis in the subtraction factor, which in this case is
2 instead of the standard 3. This change is due to the
fact that the spectra S(f, t) can be treated as a complex
random variables that have circular nature.

4. RESULTS
4.1 Experimental runs
The experimental data was acquired on a laboratory two–
stage gearbox (PHM, 2009) (cf. Figure 2). The test runs
include 7 different fault combinations and one fault–free
reference run. Each set–up was tested under 5 different
rotational speeds of the input shaft: 30, 35, 40, 45 and
50 Hz. Additionally two different load levels were ap-
plied. Furthermore, each combination of different fault,
speed and load was measured in two different measure-
ments. As a result of this configuration we have 160 dif-
ferent measurements.

The detailed list of the introduced faults is listed in
Table 1. It should be noted that bearing faults were in-
troduced only on the bearings 1–3, and all the remaining
bearings were kept fault–free during the whole experi-
mental runs. Additionally, the shaft imbalance was in-
troduced on the Input shaft, whereas the sheared keyway
fault was located on the Output shaft.
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Figure 2: Schematic description of the used two–stage
gearbox

4.2 Evaluation of the feature set
In the presence of mechanical faults, two major changes
occur in vibrations produced by the observed gearbox:
• the appearance of new patterns in the signal’s time

waveform, and
• the changes in the energy distribution over the ob-

served frequency range.
These changes can be detected from variations of the
value of SK and the values of the wavelet packet’s ICFs.

Spectral Kurtosis For the purpose of fault detection
we have calculated SK for each experimental run. The
distributions of the maximal SK values for each experi-
mental run, for both load levels are shown in Figure 3.

By comparing the SK values for the experimental runs
under low and high load, shown in Figures 3a and 3b
respectively, we can observe the following:

1. The SK for the fault–free run (#1) in both cases has
median value around 9.5 and small interquartile dis-
persion. Therefore, we can regard this value to be
invariant to the changes of the speed and load;

2. The experimental runs #4, #6–8 have significantly
higher value for SK than the fault–free run regard-
less of the operating conditions;
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Table 1: Fault details for each experimental run

Run Number Gear Bearing1
Shaft fault1 2 3 4 1 2 3

#1 Fault Free (FF)
#2 Chipped FF Eccentric FF Fault Free (FF)
#3 FF FF Eccentric FF Fault Free (FF)
#4 FF FF Eccentric Broken Inner Ball FF FF
#5 Chipped FF Eccentric Broken Inner Ball Outer FF
#6 FF FF FF Broken Inner Ball Outer Imbalance
#7 FF FF FF FF Inner FF FF Keyway Sheared
#8 FF FF FF FF FF Ball Outer Imbalance

1 Faults were introduced only on Bearings 1–3 (cf. Figure 2). The other three bearings were kept
fault–free during all experimental runs.
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Figure 3: Spread of the maximal spectral kurtosis value
for each experimental run over different speeds

3. The experimental run #5 in both cases has values
near the fault–free run. In particular, the median of
the SK for low load is 13 and for the high load is
21; and

4. Finally the experimental runs #2 and #3 show sig-
nificant variation between the low load and high
load runs. In case of high load the SK value is
higher than the fault–free run and in the low–load
it is lower than the fault–free run.

The high values of SK for experimental runs #4, #6–8
can be attributed to the bearing’s surface damages. Ac-
cording to the bearing vibration model (3) vibrations of
the damaged bearings are rich with randomly occurring

impulses. As a result of this effect, the underlying exper-
imental runs exhibit significantly higher SK values than
the fault–free run, regardless of the operating conditions.

The experimental run #5 includes a combination of a
severe gear fault and bearing damage. Despite the pres-
ence of the bearing faults, the most dominant source of
vibrations can be found in the severe gear damage. How-
ever, since the damage of the gears were artificially made
only on one gear tooth, the impacts (2) have occurred
only once per rotation. As a result of this, the influence
of these impacts on the overall signals energy is not so
significant. Thus, the value of the SK is lower despite
the presence of a bearing fault.

Significant difference in the value of SK between the
low and high load runs can be noticed for the experi-
mental runs #2 and #3. The explanation follows from
the mechanism behind the gear vibrations. According to
the gear vibration model (1) and (2), the amplitude of
the produced vibrations for the dominant spectral com-
ponents Am depend on the applied load. As a result of
this effect, the SK values significantly differs between
the runs conducted under high and low load. Further-
more, the absence of bearing faults removes random
impulses that were present in the experimental run #5,
which proves to be a crucial difference.

From the performed experimental runs we can con-
clude that the maximal value of the spectral kurtosis is
capable of detecting faults that are characterized by a
repetitive impulse bursts. Most commonly, such bursts
occur in cases of bearing surface damage. Therefore, the
experimental runs containing bearing faults show signif-
icant changes in the SK values (#4,6–8).

However, the experimental run #5 is an exception to
this observation. Despite the presence of bearing fault
the value of SK is similar to the fault–free run. Further-
more, in cases of pure gear faults (#2 and #3) the load
level significantly influences the value of SK. Therefore,
in order to overcome these shortcomings we have ex-
panded the candidate feature set by adding two more
features extracted from the wavelet packet coefficients
as described in the next section.

Wavelet packet ICFs Both load cases were analyzed
using WPT with db10 mother wavelet. Each experimen-
tal run was analyzed using 4–levels WPT tree, which
produces 16 terminal leaves. Signals were divided into
segments each covering approximately 3 rotations at the
lowest speed.
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(a) Experimental runs with mixed gear and bearing faults
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Figure 4: Values of the ICFs for the experimental runs
conducted under high load. The dashed lines represent
the dispersion of the feature values for each experimental
run

Values of both ICFs (11) and (12) for the high load
experimental runs are shown in Figure 4. The values of
ICFs from experimental runs with the same faults tend
to group into “clusters”. The cluster from the reference
fault–free run (#1) is located in the upper left corner of
the plots. In respect to the fault–free cluster, clusters
from other faults have two distinct characteristics: higher
value for Cf (x–axis) and lower value for Ct (y–axis).

The increase in the value of Cf is an indicator that
vibration spectrum is spread over a broader range of fre-
quencies compared to the fault–free run. This is a con-
sequence of an additionally excited system’s eigenmode
which contributes to a “richer” frequency signature.

The lower value for Ct can be treated as an indicator
that the signal contains a specific patterns in the time do-
main that distinguish it from an unordered noise. In cases
of the observed mechanical faults these effects are a re-
sult of an additional modulation components produced
by the underlying fault.

The dispersion of the values of Cf and Ct can be ana-
lyzed by dividing the results into two segments:

1. dispersion of ICFs for experimental runs contain-
ing combined bearing–shaft and gear–bearing faults
(cf. Figure 4a); and

2. dispersion of ICFs for cases of the experimental
runs conducted only with gear faults (cf. Figure 4b).
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(a) Experimental runs with mixed gear and bearing faults
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Figure 5: Values of the ICFs for the experimental runs
conducted under low load. The dashed lines represent
the dispersion of the feature values for each experimental
run

The increase of the Cf is most evident in the exper-
imental runs that contain bearing faults (#4–8) (cf. Fig-
ure 4a). The centers of the these clusters have higher
value of the x coordinate than the fault–free experimen-
tal run #1. This is in accordance with the model (3). A
bearing surface damage is represented by repetitive ex-
citations of bearing’s eigenmode(s), which in essence in-
creases the bandwidth of the produced vibrations.

Although, the runs with bearing faults show some de-
crease of the Ct value, this effect is mostly visible for
cases of pure gear faults (#2 and #3) (cf. Figure 4b) and
the experimental runs #6 and #8. It can be noticed that
unlike the bearing faults, the gear faults retain the spread
in the frequency domain to some extent. Namely, the
interval of the Cf values for the experimental runs #2
and #3 coincides with the interval of the fault–free run.
The decrease of the Ct value can be mainly attributed to
the increase of the amplitude Am of the spectral com-
ponents connected with the meshing gears, according to
the model (1). Consequently, the time domain signal be-
comes dominated by a strong modulation, which results
in decrease of the value of Ct. The same observation
can be performed for the experimental runs #6 and #8
(cf. Figure 4a). Although these two runs include bear-
ing faults, the lower wavelet time entropy is a result of
the presence of shaft imbalance which introduces an ad-
ditional strong periodic pattern in the signal, which is
absent in the fault–free runs.
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The distribution of the same wavelet entropies for low
load is shown in Figure 5. As in the case of high load, the
fault–free runs tend to locate in the upper left corner of
the plots, thus having high values for Ct and low values
for Cf . Although, generally the same observations made
for the case of high load apply here too, the most signif-
icant difference is in the spread of values of Ct (y–axis).

For both mixed bearing (cf. Figure 5a) and pure gear
faults (cf. Figure 5b), the fault clusters are spread over
a narrower interval of Ct than in the case of high load.
This is a direct consequence of the influence of the ap-
plied lower load. The amplitudes of the vibrational pat-
terns produced by a particular fault are correspondingly
lower, and hence insufficient for a significant change in
the time behavior of the wavelet coefficients. This ef-
fect is expressed in the cases of pure gear faults (cf. Fig-
ure 5b), since the values Am in (1) are directly related to
the applied load. If we compare these results with those
from the runs performed under high load (cf. Figure 4b),
we can see that values of Ct are spread in the interval
[4.6–5.2] for low load, whereas for the same faults the
values of Ct are spread in the interval [3.8-4.8] for the
high load cases. Consequently, some fault clusters might
intersect with the fault–free cluster in the cases of lower
load, like the experimental runs #3 and #5. Despite such
overlaps, the centers of the fault clusters are sufficiently
far apart for a rough decision about the presence of a
fault.

Combining SK with wavelet coefficient entropy The
results of each method have shown that in the majority
of the cases the presence of fault can be detected with-
out any knowledge of the operating conditions. However
there were some cases in which the fault clusters inter-
sect with the fault–free cluster and consequently there
was a possibility of improper decision. By incorporat-
ing the SK values with the values of ICFs we expand
the feature space. Such an extension subsequently con-
tributes to better diagnostic resolution. The final feature
space incorporating the three selected features is shown
in Figure 6.

The ellipsoids in Figure 6, represent the dispersion in
the feature space for the particular faults. In the case of
low load (cf. Figure 6a), faults #2, #3 and #5 are grouped
near the fault–free run #1. Despite the closeness, the
fault–clusters are clearly distinguishable. This is most
clearly visible in the cases of high load (cf. Figure 6b),
where the fault–free cluster is completely isolated in the
top right corner of the feature space. Furthermore, the in-
tersection among the fault clusters are directly connected
with the intersections of the faults which were present in
each experimental run (cf. Table 1). Finally, we can con-
clude that based on the proposed feature set a proper fault
detection can be performed without a precise knowledge
of the current operating conditions.

5. CONCLUSION

In this paper we present a method for detecting mechani-
cal faults in rotational machines subjected to variable op-
erating conditions (load and speed). The fault detection
process is based upon features extracted from the dis-
tribution of the wavelet packet coefficients in both time
and frequency domain as well as the highest value of the
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Figure 6: Ellipsoids representing the portion of the fea-
ture space occupied by a particular fault cluster. The
radii of the ellipsoids represent the 3σ spread of particu-
lar feature along the corresponding feature axis.

spectral kurtosis. Using these features a variety of me-
chanical faults were successfully detected using vibra-
tion data acquired from a two–stage gearbox.

The underlying approach has several characteristics
that makes it suitable candidate for the task of fault de-
tection. Firstly, both wavelet transform and spectral kur-
tosis methods can be seamlessly applied for analysis of
non–stationary signals. This characteristic makes these
methods suitable for analysis of vibration signals pro-
duced by a rotational machines operating under variable
conditions. Secondly, the values of the extracted features
are independent of the current rotational speed. This in
essence removes the need of accurate rotational speed
measurements. Finally, both methods can be imple-
mented by using computationally efficient algorithms,
the short–time Fourier transform for the spectral kurtosis
and fast wavelet transform for the wavelet packet decom-
position.

The extracted features have shown to be sensitive to
the two major changes in the vibration signals that occur
as a result of mechanical fault. Firstly, the Information
Cost Function representing the order of the wavelet co-
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efficients in the time domain is capable to detect to the
presence of specific patterns in the signal’s waveform.
Secondly, the presence of new spectral components af-
fects the value of the value of the information cost func-
tion representing the energy distribution in frequency do-
main. Furthermore, the spectral kurtosis serves as an in-
dicator for the frequency band in which the previous two
characteristics are mostly expressed. All these charac-
teristics make the selected feature space an appropriate
choice for the process of fault detection under variable
operating conditions.

The results also show that the selected features tend
to group in distinctive clusters that correspond to a par-
ticular fault. Such a behavior represents a prospect of
upgrading the present fault detection process with a fault
isolation task that will be based upon the location the the
current feature values with regard to a previously deter-
mined clusters of faults.
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