
Annual Conference of the Prognostics and Health Management Society, 2010 

 1  

Bayesian Reliability Prognosis for Systems with 

Heterogeneous Information 

Gregory Bartram
1
, Sankaran Mahadevan

1 

1
 Vanderbilt University, Nashville, TN, 37212, USA 

gregory.w.bartram@vanderbilt.edu   

sankaran.mahadevan@vanderbilt.edu  

 

 

ABSTRACT 

A Bayesian methodology for prognosis of system 

reliability with heterogeneous reliability information is 

presented. Available information may be in the form of 

physics-based or experiment-based mathematical 

models, historical reliability data, or expert opinion. 

Such information typically describes the failure rates of 

individual components of the system and does not 

provide information on dependencies between them.  

The Bayesian methodology presented in this paper 

addresses this concern by learning the conditional 

probabilities in the Bayes network as observations 

about the system are made. First, the component and 

system faults are defined and the failure event tree is 

established. Bayesian priors for probabilities of both 

individual failure events and the conditional 

probabilities between them are established using 

various types of experimental data, expert opinion, or 

simulation data. Both the priors and conditional 

probabilities are updated as new data is collected, 

leading to an updated prognosis of system reliability. 

The methodology is demonstrated on an automobile 

startup system.
1
 

1 INTRODUCTION 

Reliability and prognosis are measures of how likely a 

system will be able to perform a prescribed task and 

may be given in terms of the system's probability of 

failure. Commonly used methods for analyzing system 

reliability are failure modes and effects analysis 

(FMEA) (Høyland & Rausand, 1994), failure modes 

and effects and criticality analysis (FMECA) (Høyland 

& Rausand, 1994), fault and event trees (Høyland & 

Rausand, 1994; Stapelberg, 2009), reliability block 

diagrams (RBD) (Kumar, 2000), Ishikawa diagrams 

(Sallis, 2002), root cause analysis (Andersen & 
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Fagerhaug, 2006), and Bayes networks (Bearfield & 

Marsh, 2005; Marsh & Bearfield, 2007).  

 Bayes networks have a wide array of uses and have 

been applied to many fields including cognitive 

assessment (Martin & VanLehn, 1995), medicine 

(Sierra, Inza, & Larrañaga, 2000), social networking 

(Min, Jang, & Cho, 2009), sensor diagnosis and 

validation (Mengshoel, Darwiche, & Uckun, 2008), and 

crack modeling (Patrick et al., 2007). In a Bayes 

network, an observation at one component in the 

system allows the entire system to be updated. An 

important part of this process for a Bayes network with 

discrete events is populating the conditional probability 

tables with accurate conditional probabilites. Naturally, 

the effect of inaccurate conditional probabilities is to 

decrease the accuracy of the results obtained from the 

Bayes network. The consequences of this can be quite 

severe. 

 Toyota has in the past few years struggled to find 

the cause of potentially lethal unintended acceleration. 

As of 2007, the automaker blamed faulty floormats 

(Whoriskey, 2010).  Finally, in September 2009, 

Toyota issued a massive recall to fix the floormat 

problem only to have to issue another recall in 2010, as 

unintended acceleration was still reported, and finally 

resolved to install brake override systems on all future 

models (Allen & Sturcke, 2010; McCurry, 2010; 

“Toyota Consumer Safety Advisory: Potential Floor 

Mat Interference with Accelerator Pedal,” 2009). The 

initial misdiagnosis has undermined confidence in the 

Toyota brand and had a sharp financial impact on the 

company. 

 To safeguard against such a debacle when a 

Bayesian network is the analytical tool, conditional 

probability tables should be filled with the most 

accurate information possible. Methodologies exist for 

making such estimates using existing data or expert 

opinion. In a six step algorithm for learning Bayes nets, 

Lucas (Lucas, 2002) uses existing data to determine 

conditional probabilities. Heckerman (Heckerman, 

1995) discusses using supervised learning methods 

which utilize existing data to determine the values in 
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the conditional probability tables.  Das (Das, 2004) 

argues that the databases of information for supervised 

learning are few and far between and instead proposes a 

methodology invoking expert opinion.  

 Pearl (Pearl, 1988) states that new evidence will 

change the conditional probabilities in the Bayesian 

network. Conditional probabilities therefore require 

updating as new evidence is obtained. Unfortunately, 

this requires great computational effort. Conditional 

probabilities are assumed constant instead.  

 When using a Bayes net to estimate system 

reliability, data from sources such as the Government-

Industry Data Exchange Program (GIDEP), will often 

be in the form of failure rates for particular components 

and will not have the conditional failure probabilities 

for unique engineering systems. The expert opinion 

alternative is likely to provide uncertain information. It 

is necessary to have an approach which supplements 

the current insufficient information about the system 

with new information to accurately describe system 

behavior and reduce uncertainty. If it is possible to 

collect observations about the complete system, the 

conditional probabilities can be updated using a 

Bayesian approach.  

 In the following sections, a method for updating 

conditional probabilities as data is obtained and 

estimating system reliability is developed. Typical 

implementations of Bayes networks keep the 

conditional probabilities constant, and only update the 

probabilities of the individual nodes. In the proposed 

methodology, as data is collected, the system state is 

noted and conditional probabilities in the Bayes 

network and the system reliability estimate are updated 

via an algorithm little more complex than typical 

propagation through a Bayesian network. The 

methodology works on any Bayesian network whose 

nodes may be described by Bernoulli variables. It is 

demonstrated on a Bayesian Network for estimating the 

reliability of part of an automobile starter and ignition 

system. 

2 SYSTEM RELIABILITY 

The reliability of a system depends on the probability 

of events occurring at the component and subsystem 

levels that lead to the system failure event. The 

collection of events which leads to failure is easily 

represented by a Bayes network, which is described in 

detail by Pearl (Pearl, 1988).  A Bayes network clearly 

displays the dependencies between components in a 

system through conditional probabilities and provides a 

simple method for inferring information about the 

entire system when observations are made in one part 

of the system. 

2.1 Bayes Networks 

A Bayes network is a directed acyclic graph whose 

nodes represent random variables and whose edges 

indicate conditional probabilities between the nodes. 

Conditional probabilities with inputs from parent nodes 

determine the probability of the random variable 

represented by the child node. A simple Bayes network 

is shown in Figure 1. 

 

 
 

 

 For a discrete case, each node has a corresponding  

 

Each node in a Bayes network with discrete events has 

a conditional probability table. Table 1 shows sample 

conditional probabilities at each of the four nodes. 

 Observations about one node may be propagated 

through the network to infer probabilities at other nodes 

using Bayes' theorem. The discrete form of Bayes' 

theorem is shown in Eq. 1, where θ is a discrete random 

variable,    is an observed outcome, and n is the 

number of possible values for θ. 

Table 1: Bayes network probability tables 

P(A|B,C) A=T A=F  P(C|D) C=T C=F 

B=T, 

C=T 

.98 .02 D=T .67 .33 

B=T, 

C=F 

.95 .05 D=F .91 .09 

B=F, 

C=T 

.75 .25  

B=F, 

C=F 

.5 .5 

  

P(B) B=T B=F P(D) D=T D=F 

 .96 .04   .8 .2 

 

 

  (    | )  
 ( |    ) (    )

∑  ( |    ) (    )
 
   

 (1) 

 

Figure 1: A simple Bayes network 
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The continuous formulation of Bayes' Theorem may be 

written similarly as 

 

    ( )  
 ( | )  ( )

∫  ( | )  ( )
 

  

 (2) 

 

where   ( ) is the prior density function of θ,    ( )is 

the posterior density function of θ, and  ( | ) is a 

function of θ describing the probability of observing   

given θ.  ( | ) is also known as the likelihood 

function L(θ). The denominator ∫  ( | )  ( )
 

  
 is a 

constant which ensures that ∫    ( )
 

  
     and is a 

true density function.  

 To demonstrate the calculation in a Bayes network , 

consider the Bayes network in Figure 1. The probability 

of A = T is 

 

 

 (   )   

 (   |       ) (   ) (   ) 

  (   |       ) (   ) (   ) 

  (   |       ) (   ) (   ) 

  (   |       ) (   ) (   ) 

(3) 

 

 The conditional probabilities used in Eq. (3) are 

given in Table 1. However, the probabilities for P(C = 

T) and P(C = F) must be calculated as 

 

 

 (   )   

 (   |   ) (   ) 

  (   |   ) (   ) 

(4) 

 and  (   )     (   )  Substituting into 

Eq. (3), 

 

  (   )           (5) 

 

 This is the prior probability for  (   )  Upon 

observing the evidence    that D = T, the posterior of 

 (   ) is found by substituting P(D = T) = 1 and 

P(D = F) = 0 in Eq. (4) 

 

  (   | )          (6) 

 

 If A = T is observed as    instead, the network may 

be updated using Eq. (1). The posterior probability for 

D = T is 

 

 

 (   | )   
 ( |   ) (   )

 ( |   ) (   )   ( |   ) (   )
 

(7) 

 

Entering the probabilities into Eq. (7) 

 

  (   | )          (8) 

 

 The probabilities for nodes B and C may be updated 

similarly. The updating process gives Bayes networks 

their power, as an observation at any node can be used 

to infer probabilities at other nodes. 

3 UPDATING CONDITIONAL 

PROBABILITIES 

The Bayes network updates the probability of an event 

occurring based on the occurrence of another event 

elsewhere in the network. This works under the 

assumption that the tabulated conditional probabilities 

are correct. However, conditional probabilities are 

difficult to obtain and thus there is uncertainty in their 

value.  

 The information on which conditional probabilities 

are based may be heterogeneous in form and in source. 

It could consist of a simple point estimate from an 

expert source or lower and upper bounds derived from 

experiments. Since the uncertainty in the information 

may provide incorrect conditional probabilities, it is 

preferable to update the conditional probabilities as 

more information is obtained instead of using a 

constant conditional prior probability. 

 If observations are made at a node Ai and at its 

parent nodes in the Bayes network (the normal case is 

an observation at only node Ai), the evidence no longer 

pertains to the total probability of occurrence of the 

event at node Ai. It instead relates to a conditional 

probability at node Ai (or probability of an initiating 

event). Using the example in Section 2, if C = T is 

observed and simultaneously it is known that  D = T, B 

= F, and  A = T, the evidence   does not correspond to 

C = T but to C = T | D = T. Thus, P(C = T | D = T) 

should reflect this new information. In other words, if 

the state of the system is known, this evidence can be 

used to update the conditional probabilities.  

 Thus the process for updating conditional 

probabilities has two major steps. First, the prior 

distributions of the conditional probabilities of failure 

are established based on existing information. Next, the 

entire system is observed, resulting in evidence which 

is used to update the conditional probability 

distributions. 

3.1 Framework for Updating Conditional 

Probabilities  

Observations of discrete events in a Bayes network 

may be thought of as observations of Bernoulli trials. 

This is true under the assumption that the trials are not 
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correlated. In a Bayes network with k discrete events 

A1, A2,…, Ak, each event is treated as a discrete variable 

which takes on a value of either true or false (occurs or 

does not occur). The observation of true occurs with 

probability p. Thus, for an event Ai in a Bayes network, 

a binomial distribution describes the number of 

occurrences of Ai = true in n Bernoulli trials.  When the 

state of the system is known, p is one of the j 

conditional probabilities for Ai (j ≥ 1), here denoted   
 
,  

and is listed in the conditional probability table for Ai.  

 The probability of failure p used in the binomial 

distribution may be described by the beta distribution. 

Schlaifer (Schlaifer, 1978) has shown that the beta 

distribution is a reasonable prior distribution for a 

probability p. For added convenience, it can be 

bounded between zero and one by letting a = 0 and b = 

1. The beta distribution is 

 

  ( )  
 

 (   )

(   )   (   )   

(   )     
 (9) 

 

where a ≤ x ≤ b are the bounds of the distribution, q 

and r are shape parameters, and B is the beta function. 

 (   )  may be taken as 

 

  (   )  ∫     (   )     
 

 

 (10) 

 

The expected value of the beta distribution is 

 

  ( )    
 

   
(   ) (11) 

 

and the variance is 

 

    ( )  
  

(   ) (     )
(   )  (12) 

 

 For each Bernoulli trial, observations are made 

about every event in the Bayes network and its parent 

nodes. The beta distribution parameters are updated to 

reflect the observations. Schlaifer (Schlaifer, 1978) 

shows that q and r with a uniform prior distribution (i.e. 

q = r = 1) may be taken as 

 

 
      

        
(13) 

 

where m is the number of occurrences in n trials. 

 Each time the set of observations O for the entire 

Bayes network is collected, the parameters q and r are 

subsequently updated as shown in Eq. (13). Every   
 
 

has a corresponding m and n, which are initially taken 

as zero and denoted   
 
 and   

 
 as well as a 

corresponding q and r, denoted as   
 
 and   

 
. 

 

 The algorithm for conditional probability updating 

at a node Ai may be summarized as follows. For each 

discrete point in time, 

1. Observe whether parents of Ai are true or false. 

If no parents exist, move to 3. 

2. Locate corresponding conditional probability, 

identified by j. 

3. Update number of trials 

   
 ( )  =   

 (   )  + 1 

4. Observe if Ai is true 

5. Update number of success  

  
 ( ) =   

 (   )+1 if Ai = true  

6. Update   
 
 = 1 +   

 ( ) 

7. Update   
 
= 1 +   

 ( ) -   
 ( ) 

8. Repeat for nodes A1, A2,…, Ak 

 

 Initial values of   
 
 and   

 
 are taken as zero, with 

exception given to instances where prior information is 

available.  

3.2 Establishing Priors with No Information 

Available 

When no information is available for the conditional 

probability   
 
, a uniform prior for   

 
 is appropriate 

because it lets all values of   
 
 be equally likely, 

initially. By setting beta distribution parameters q = 1, r 

= 1, a = 0, and b = 1, a uniform prior bounded by zero 

and one is assumed for   
 
.  

3.3 Establishing Priors with Some Information 

Available 

It may be the case that some information about   
 
 is 

known. This information may come in the form of 

confidence intervals, upper and lower bounds, or a 

point estimate provided by data, simulation, or opinion. 

This may be the case if some in situ testing of a 

component has been performed or if say a seasoned 

operator of particular piece of machinery can describe 

its performance characteristics. The information is used 

to determine the shape parameters of the beta 

distribution (instead of starting with q = r = 1) and is 

akin to estimating initial values for n and m. The better 

the available information is, the stronger the prior will 

be, resulting in faster convergence for   
 
 and the entire 

Bayes network.  

 Translating expert opinion or experimental data into 

priors for the beta distribution is not always simple. 
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The most straightforward situations assume a uniform 

distribution between an upper and lower bound. 

However, if a confidence interval or just a point 

estimate is provided, some decisions must be made 

about how to incorporate this information best into the 

prior.  

 If a beta distributed confidence interval [LB, UB] 

with significance level α is given, it is possible to solve 

for the prior q and r by estimating the mean and 

variance of the data using Eq. (14) and Eq. (15), which 

are derived using the methods of moments. 

 

    ̂ (
 ̂(   ̂)

 ̂ 
  ) (14) 

 

   (   ̂) (
 ̂(   ̂)

 ̂ 
  ) (15) 

 

 Unfortunately, in this case with a confidence 

interval given, the mean and variance are unknown so 

cannot be calculated. Since the beta distribution for p 

may converge to a distribution with relatively normal 

properties, the confidence interval is taken as a normal 

confidence interval.  The estimate for the mean is  

  

  ̂   
     

 
  (16) 

 

The variance may be found by 

 

  ̂  (
(    ̂)

      

)

 

 (17) 

where        is the standard normal variable.  

 When a complete confidence interval is unavailable, 

such as when only upper and lower bounds are given or 

just a point estimate of p is given, it is possible to 

obtain estimates for q and r again by assuming 

normality. A significance level and/or bounds which 

reflect the amount of uncertainty in the information 

must also be assumed. The condition that q and r are 

greater than zero must be enforced.  

 Alternatively, if upper and lower bounds are 

available, instead of assuming a significance level, the 

a and b bounds of the beta distribution may be set, still 

assuming a uniform prior. 

3.4 Extensions Beyond the Instantaneous Case 

The methodology can be extended from the case of an 

instantaneous event which is repeated over and over to 

a mission lasting a particular amount of time. In the 

case of a mission, the future state of the system is 

correlated to the current state. To capture this 

correlation, a dynamic Bayesian network is used and 

the system evaluated at each discrete point in time. The 

number of successes and failures is tracked and used to 

update the conditional probabilities.  

 The correlation between times t-1 and t is accounted 

for in the structure of the dynamic Bayes net and does 

not undermine any of the independent trial assumptions 

required for updating conditional probabilities. When a 

particular state such as   
      ,      occurs,    

may be true with probability p or false with probability 

1 – p. This is the case every time the state   
      , 

     occurs. An observation about whether    is 

true or false when the system state is   
      , 

      is independent of previous observations under 

this system state because correlation is considered only 

between the current and past values of a specific node 

(which is handled by the Bayes net structure) and not 

between system states. Being a discrete variable which 

can be true or false and whose observations are 

independent of one another, the conditional probability 

is thus a binomial random variable. The probability p 

associated with this binomial distribution may be taken 

as a beta distribution and updated as more observations 

are made about the value of    when the state   
    

  ,      occurs. 

 Due to the amounts of data required, the extension 

of the methodology to a mission is best suited for 

applications where the mission is repeated. The more 

data that is collected, the more accurate the conditional 

probabilities will be. 

 A further extension of the methodology is the ability 

to include incipient faults. This is currently achieved by 

using a damage index comprised of several discrete 

values to rate the severity of the incipient fault. 

4 EXAMPLE PROBLEM 

For illustration of the methodology, the event where a 

car starter fails to crank the engine is considered. 

Rosenthal (Rosenthal, 2010) shows a decision tree for 

diagnosing and repairing a car that refuses to start. This 

tree shows qualitative causal relationships between 

events, allowing for adaptation into a Bayes network, 

which may be used to calculate the total probability of 

the car not starting. The events Ai in the Bayes network 

(see Appendix) are discrete and are described by 

variables which may assume values of either true or 

false. Each node has a corresponding probability table. 

  

 The updating of probability tables began with 

observing the true or false values of the initiating 
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events. The distributions which describe the probability 

of occurrence of the initiating events were then 

updated. A value was sampled from each updated 

distribution and used in updating distributions of any 

child nodes. The process is repeated until the 

distributions at all nodes have been updated. This 

required having an observation for every node telling 

whether that node was true or false. These observations 

formed the entire set of observations O for the network. 

Once all distributions in the network had been updated, 

the system prognosis was updated via forward 

propagation through the Bayes network and the entire 

process was repeated with a new set of observations. 

The data was assumed to be collected by testing many 

independent realizations of the same type of car 

without replacement.  

4.1 Results 

Conditional probabilities were assumed to have 

uniform priors, except for the probabilities given in  

Table 2, which have heterogeneous initial data from 

experiments and expert opinion. Several values of   
 
 

have complete confidence intervals given, which are 

assumed to have normal properties. Others have only 

bounds or just the mean given and missing information 

is marked as a "Guess."  The corresponding initial   
 
 

and   
 
 values for the prior beta distributions are shown 

in Table 3 - Table 5 along with the results after 20,000 

observations of the entire state of the system. 

 After 20,000 complete observations of the system, 

the total probability of the system had a mean of 0.3655 

and standard deviation of 0.0108. A histogram of the 

probability of failure of the system is shown in Figure 

2. Figure 3 shows the evolution of the mean probability 

of system failure event (A0 = T) as more observations 

are made. The values in Figure 3 were obtained by 

using Eq. (11) to estimate the mean value of each beta 

distribution and propagating these mean values through 

the Bayes network. 

 

Figure 2: Histogram of Probability of System Failure 

After 20,000 Sets of Observations, O 

Table 2: Initial Data 

 α LB UB MEAN 

P(A3|A4=T, 

A5=F, A6 = F) 

Guess 

.4 
- 

Guess 

.7 
.5 

P(A3|A4=T, 

A5=T,A6=F) 

Guess 

.15 
.5 .7 .6 

P(A3|A4=F, 

A5=T, A6=F) 
.05 .6 .8 .7 

P(A0|A1=T,A2=

F,A3=F) 
.01 .95 .97 .99 

P(A1) .01 .1 .18 .14 

P(A2) .01 .07 .14 .105 

P(A4) .01 .02 .07 .045 

P(A5) .01 .03 .1 .065 

P(A6) .01 .04 .11 .075 

 

 

 

 

 

 

 

 

 

Table 3: Results for Initiating Causes 

 Prior Posterior  

  E(p)  E(p) True p 

A1=T  

 

q = 

40.3 

r = 

247.7 

.1400 

 

q = 3130 

r = 17158 
.1543 .15 

A2=T 

 

q = 

30.8 

r = 

262.9 

.1050 

 

q = 2000 

r = 18294 
.0985 .10 

A4=T  

 

q = 

11.8 

r = 

251.3 

.0450 

 

q = 1017 

r = 19246 
.0502 .05 

A5=T  

 

q = 

12.3 

r = 

177.3 

.0650 

 

q = 1243 

r = 18946 
.0616 .06 

A6=T  

 

q = 

16.2 

r = 

200.3 

.0750 

 

q = 1407 

r = 18809 
.0696 .07 
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Table 4: Results for Node A3 

 Prior Posterior  

 A3 = T E(p) A3 = T E(p) True p 

A4=T 

A5=T 

A6=T 

q = 1 

r = 1 
.5 

q = 2 

r = 1 

 

.6667 .9 

A4=T 

A5=F 

A6=T 

q = 1 

r = 1 

.5 

 

q = 47 

r = 13 
.7833 .8 

A4=T 

A5=F 

A6=F 

q = 1.7 

r = 1.7 
.5 

q = 

513.7 

r = 

343.7 

.5991 .6 

A4=T 

A5=T 

A6=F 

q = 1 

r = 1 
.5 

q = 44 

r = 15 
.7458 .7 

A4=F 

A5=T 

A6=T 

q = 1 

r = 1 
.5 

q = 56 

r = 25 
.6914 .65 

A4=F 

A5=F 

A6=T 

q = 29.2 

r = 19.5 
.6 

q = 

835.2 

r = 

462.5 

.6436 .65 

A4=F 

A5=F 

A6=F 

q = 1 

r = 1 
.5 

q = 830 

r = 

15814 

.0499 .05 

A4=F 

A5=T 

A6=F 

q = 

55.7715 

r = 23.9 

.7 

q = 

854.8 

r = 

284.9 

.7500 .75 

 

 

 

 

 

 
Figure 3: Evolution of the Mean of System Failure with 

Number of Observation Sets 

 

Table 5: Results for Node A0 

 Prior Posterior  

 A0 = T E(p) A0 = T E(p) True p 

A1=T 

A2=T 

A3=T 

q = 1 

r = 1 

.5 

 

q = 51 

r = 1 
.9808 .99 

A1=T 

A2=F 

A3=T 

q = 1 

r = 1 

.5 

 

q = 425 

r = 8 
.9815 .98 

A1=T 

A2=F 

A3=F 

q = 

270.1 

r = 8.4 

.97 

 

q = 2520 

r = 86.4 
.9669 .97 

A1=T 

A2=T 

A3=F 

q = 1 

r = 1 

.5 

 

q = 240 

r = 8 
.9677 .975 

A1=F 

A2=T 

A3=T 

q = 1 

r = 1 

.5 

 

q = 278 

r = 8 
.9720 .975 

A1=F 

A2=F 

A3=T 

q = 1 

r = 1 

.5 

 

q = 2296 

r = 73 
.9692 .97 

A1=F 

A2=F 

A3=F 

q = 1 

r = 1 

.5 

 

q = 513 

r = 

12328 

.0400 .04 

A1=F 

A2=T 

A3=F 

q = 1 

r = 1 

.5 

 

q = 941 

r = 516 
.6458 .65 

 

 The results show that reasonable estimates of the 

conditional probabilities within a Bayes network of 

discrete events may be obtained if enough observations 

about the system can be made. The quality of each   
 
 

estimate depends on the number of parent nodes Ai has 

and its distance from initiating events, and the amount 

of data collected.  

5 CONCLUSION 

A Bayesian reliability prognosis methodology has been 

presented. To correctly model dependencies, the events 

in the Bayes network were treated as Bernoulli random 

variables. The distributions of these variables were 

assumed to be binomial and the beta distribution was 

used to describe the probability   associated with each 

Bernoulli trial. The probability p was equivalent to one 

of the conditional probabilities   
 
 associated with the 

event Ai, as determined by the state of the system. 

Heterogeneous data including confidence intervals, 

upper and lower bounds, and a point estimate was used 

to inform the priors for the conditional probabilities   
 
. 

The system prognosis given by the Bayes network was 
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then updated to account for the latest observation. The 

methodology has been demonstrated on an example of 

a car starter. Future work will extend the methodology 

to include continuous time missions. 
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APPENDIX 

Figure 4: Bayes network for car starter failing to crank engine. 

 


