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ABSTRACT 

Time Synchronous Average (TSA) is an essential 
algorithmic tool for determining the condition of 
rotating equipment. Given its significance to 
diagnostics, it is important to understand the algorithms 
performance characteristics. This paper addresses four 
topics in relation to the TSA performance 
characteristics. The first topic is the evaluation of the 
performance (measured against gear fault detection) of 
6 different TSA algorithms. The second topic is 
quantifying the ergodicity/noise reduction as a function 
of the number of revolutions in the TSA and show that 
noise reduction is 1/sqrt(number of revolutions).  The 
third topic examines TSA techniques when no 
tachometer signal is available.The final topic shown is 
the distribution of the magnitude of TSA orders 
associated with fault and nominal components are Rice 
and Rayleigh distributed. 

1 INTRODUCTION   

Mechanical diagnostics of drivetrain systems attempts to 
reduce maintenance cost and improve reliability/safety 
through monitoring. Vibration data is processed to determine 
the condition of components in the drivetrain. One of the 
most powerful algorithmic tools for vibration analysis is the 
time synchronous average (TSA). Time synchronous 
average resamples the vibration data synchronously with a 
shaft, and is the basis of numerous gear and shaft condition 
indicator (CI) algorithms.  

Given the importance of TSA to gearbox analysis, a number 
of questions arise: 

• What is the best TSA algorithm for fault detection?  

• Noise reduction is modeled as an average: 
1/sqrt(rev), where rev is the number of average 
revolutions. Is this a good model? 

• Many shaft and gear CIs are based on the 
magnitude of the TSA spectrum. What is the 
distribution under nominal or faulted cases? 
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• How is a TSA performed without phase 
information normally provided by a tachometer 
signal?  

This paper we address these questions by investigating the 
performance of six TSA algorithms on test stand data and 
resolves experimentally some of these fundamental TSA 
performance questions. Both time domain and frequency 
domain TSA are explored. 

2 TIME SYNCHRONOUS AVERAGING 

Time synchronous averaging is a signal processing 
technique that extracts periodic waveforms from noisy data. 
The TSA is well suited for gearbox analysis, where it allows 
the vibration signature of the gear under analysis to be 
separated from other gears and noise sources in the gearbox 
that are not synchronous with that gear. Additionally, 
variations in shaft speed can be corrected, such that the 
spreading of spectral energy into an adjacent gear mesh bin. 
In order to do this, a signal phased-locked with the angular 
position of a shaft within the system is needed.  

This phase information can be provided through a n per 
revolution tachometer signal (such as a Hall sensor or optical 
encoder, where the time at which the tachometer signal 
crosses from low to high is called the zero crossing) or 
though demodulation of gear mesh signatures ((Comber, 
2007)). If n is 1 for the shaft under analysis, a balance 
solution can be achieved. If n is greater than one, or  the 
shaft/gear under analysis is not the shaft generating the 
tachometer signal, then no balance solution is available 
(phase relative to the imbalance vector is ambiguous).   

 2.1 Vibration Model 

The model for vibration in a shaft in a gear box was given in 
[3] as: 

( ) ( )( ) ( ) ( )( ) ( )∑ =
+Φ+++=

K

k kkmkk tbttkftaXtx
1

2cos1 φπ
eq(1) 

where: 

Xk is the amplitude of the kth mesh harmonic 

fm(t) is the average mesh frequency 

ak(t) is the amplitude modulation function of the kth 
mesh harmonic. 
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φk(t) is the phase modulation function of the kth 
mesh harmonic. 

Φk is the initial phase of harmonic k, and 

b(t) is additive background noise.  

The mesh frequency is a function of the shaft rotational 
speed: fm = Nf, where N is the number of teeth on the gear 
and f is the shaft speed.  

This vibration model assumes that f is constant. In most 
systems, there is some wander in the shaft speed due to 
changes in load or feedback delay in the control system. This 
change in speed will result in smearing of amplitude energy 
in the frequency domain. The smearing effect, and non 
synchronous noise, is reduced by resampling the time 
domain signal into the angular domain: 

mx θ( )= E x θ( )[ ]= mx θ + Θ( )              eq 2 

here Θ is the period of the cycle to which the gearbox 
operation is periodic, and E[] is the expectation (e.g. 
ensemble mean). Equation 2 makes the assumption that 
mx(θ) is stationary and ergodic. If this assumption is true, 
than non-synchronous noise is reduce by 1/sqrt(n), where n 
is the number of cycles measured for the TSA. This 
assumption will be tested. 

2.2 TSA Techniques 

Two basic techniques for resample are presented. In the 
Angular resampling technique (ref [1,2,3]), the number of 
data points in one shaft revolution (rn) are interpolated into 
m number of data points, such that: 

• For all shaft revolutions n, m is larger than r, 

• And m = 2 to of the ceiling (log2 (r)) (typical for 
radix 2 Fast Fourier Transform). 

A number of interpolation techniques could be used. Linear, 
bandwidth linear, and spline interpolation techniques are 
tested in the paper. Additionally, for linear and spline 
interpolation, two different zero crossing techniques are 
evaluated (interpolated zero cross time and bandwidth 
limited zero cross time (to remove jitter)). 

In spline interpolation, a curve is fitted to a cubic equation 
through the sampled data points, and an interpolated point is 
found that has a smooth first derivative and a continuous 
second derivative (ref[5]).  

In the Frequency Domain TSA (Vachtsevanos 2006), the 
discrete Fourier Transform (DFT) is taken for r data points 
between each tachometer zero crossing, then m data of each 
of n DFT are taken, where 

• For all shaft revolutions, m is he minimum of the 
floor(r/2)-1. 

Table 1 gives the TSA techniques used for each of the Six 
cases.  

Table 1 TSA Cases Tested 

Case 
Zero Cross 
Technique TSA Technique 

1 
Interpolated ZC 
Time Spline Interpolation 

2 
Bandwidth Limited 
Interpolation Spline Interpolation 

3 
Interpolated ZC 
Time Linear Interpolation 

4 
Bandwidth Limited 
Interpolation Linear Interpolation 

5 
Interpolated ZC 
Time 

Frequency Domain 
TSA 

6 
Bandwidth Limited 
Interpolation 

Bandwidth Limited 
Interpolation 

 

2.3 TSA Psuedo Code 

In this study, both time and frequency domain TSA 
algorithms where explored. Example Matlab(c) code is 
given in the Appendix. For the resample TSA method, the 
difference is in the interpolation method: Linear, Bandwidth 
Limited Linear, or Spline. The example code presents a 
linear or polynomial interpolation. For additional details on 
spline interpolation sea (Press 1992). For the bandwidth 
limited case the optimal interpolation filter was chosen: a 
linear-phase FIR filter is constructed that minimizes the 
weighted, integrated squared error between an ideal 
piecewise linear function and the magnitude response of the 
filter over a set of desired frequency bands. The generalized 
filter is (eq (3)): 

h(t) = sin πt /T( )
πt /T( )× cos Rt /T( )

1− 4R2t 2 /T 2( )
 eq (3) 

where R is the roll off factor and T is the symbol period.   

The number of points per revolutions N, is derived form 
equation 4, where max(n), where n is the number of points 
between two subsiquent zero crossing indexes is  

N = 2ceiling(log2 (max(n )))      eq(4) 

Ceiling is a round up function. Equation 4 assumes a radix 2 
FFT. 

The pseudo code for the TSA is: 
1. Calculate the Zero Cross Times (ZCT) 
2. For the Shaft of Interest, Interpolate the current ZCTi 

and ZCTi+1 based on the Gear Ratio 
3. Calculate the time between ZCTi and ZCTi+1, dZCT 
4. Calculate the resample times: dZCT/N, where N is from 

eq 4. 
5. Interpolate, 
6. Accumulate the resample time domain data 
7. Repeat 2 through 6 for M number of revolutions, 
8. Divided the accumulated N point vector by M  
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Figure 1 plots the 6 TSA techniques. 

 
Figure 1 Plot of the 6 TSA Techniques 

Both time and frequency domain representation of the TSA 
techniques are very similar. In fact, under casual scrutiny it 
is difficult to tell one technique from the other: the main 
difference being processing time. This makes selection of 
the best TSA algorithm difficult, as was noted in ref[3]. 
Since gear fault data was available, this allows selection of 
TSA technique based on fault detection. 

2.4 The Evaluation of TSA Performance 

The performance metric for TSA was the ability to detect a 
known gear fault, where statistically one can measure the 
ability to distinguish between a good and bad gear. Because 
the initial results were so close, the performance was 
measured over a sample of CIs and gear conditions. A total 
of 32 experiments where conducted: 16 with no gear fault, 
and 16 with a chipped gear tooth.  

For each experiment, 30 condition indicators (CI) where 
collected. A condition indicator is an algorithm that extracts 
a feature that may be sensitive to gear damage. Of the 30 CI, 
the 5 most responsive CIs where chosen: Narrowband Peak 
to Peak, Narrowband Kurtosis, Narrowband RMS, Residual 
RMS and Signal Average RMS. For a complete description 
of the CI algorithms see (Vecer 2005). 

The acquisition system sampled at 66.667 KHz with a 10 
point per revolution tachometer. The test stand was a 
SpectraQuest Gearbox Dynamic simulator (see figure 1) 

 

Figure 2 SpectraQuest Gearbox Dynamics Simulator: 
Chipped Gear 

The 32 acquisitions, and subsequent CIs, where taken over a 
variety of input shaft RPM, load (brake on or off) and 
known fault. To remove the effects of rpm and load and 
reveal the fault, each CI, for each TSA method was modeled 
as a least square fit regression: 

X = 1 rpmi torquei faulti[ ]
b = XT X( )−1

XT Y
         eq(5) 

where X is a matrix coding the rpm for trail i, the torque  (1 
if brake on, else 0) for trail i, and the fault (1 if chipped, else 
zero) for trail i,, and Y is a vector of the CI for trail i. The 
vector b is then the least squares fit measure of the effect of 
X. Thus, b4 (forth element in the vector b) is the least 
squares estimator of the change in a CI because of the 
chipped gear. To normalize b4 for model noise, one can 
divide by the mean square error between the actual and 
estimated model: 

 

) 
Y = bX

r = Y −
) 
Y 

mse =1 n ri
2

i=1

n∑
                         eq(6) 

The raw b4 and normalized b4 

Table 2. CI values for Different TSA Techniques 

 
NB 
P2P 

NB 
Kurt 

NB 
RMS 

Res 
RMS 

SA 
RMS 

Case 1 3.347 2.182 0.466 0.323 0.622 

Case 2 3.347 2.181 0.466 0.323 0.622 

Case 3 3.346 2.177 0.466 0.323 0.619 

Case 4 3.346 2.181 0.466 0.323 0.620 

Case 5 3.426 2.180 0.477 0.331 0.636 
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Case 6 3.345 2.181 0.466 0.324 0.622 

Table 3. Normalized CI values for Different TSA 
Techniques 

 
NB 
P2P 

NB 
Kurt 

NB 
RMS 

Res 
RMS 

SA 
RMS 

Case 1 2.616 3.197 2.436 2.467 2.962 

Case 2 2.616 3.196 2.437 2.468 2.964 

Case 3 2.619 3.212 2.432 2.463 2.969 

Case 4 2.617 3.196 2.437 2.468 2.974 

Case 5 2.619 3.196 2.440 2.477 2.989 

Case 6 2.611 3.192 2.433 2.475 2.964 

From table 2 and 3, it is apparent that all 6 methods are 
relatively close in performance. A non-parametric 
comparison (scoring the TSA techniques by their rank order 
over all CIs) of the CIs and Normalized CIs clearly shows 
that one algorithm consistently performs the best (table 4) 

Table 4. Non Parametric Rank Score 

 CI 
Normalized 
CI 

Case 1 20 12 

Case 2 23 16 

Case 3 7 17 

Case 4 13 20 

Case 5 26 27 

Case 6 16 16 

Surprisingly, this indicates Case 5 (Fourier Domain TSA) 
gave the best discrimination in the detection of fault. A 
general observation is that bandwidth limiting the 
tachometer/zero crossing signal improved the performance 
of both the linear and spline interpolation TSA. In any case, 
the TSA algorithms worked well. Selection of TSA can be 
based on processing capability, in which case the linear 
interpolation is superior. The Fourier domain based TSA 
would be attractive if a DFT routine such as FFTW (Fastest 
Fourier Transform in the West) is available. A similar 
conclusion was reached in (Decker 1999). 

3 TACHOMETER LESS TSA 

A tachometer signal is used to define a shaft zero crossing 
times. The zero crossings times are needed for calculation of 
a TSA. TSA is an effective way to isolate the vibration 
signals associated with components on a given shaft.  In 
general, a TSA resamples the time domain data into angular 
domain (e.g. once per revolution). As an example, the time 
between one shaft revolution might have 843 time domain 
samples. This, and subsequent data points between the zero 
crossing times, is then resampled into 1024 samples per 
revolution. For example, a two second acquisition on a 100 

Hz shaft, includes 200 revolutions. The 200 resampled 1024 
segments are averaged together.  This reduces non 
synchronous noise by 1/sqrt(Number of Revolutions). 

Without a tachometer signal, an angular reference is needed 
to estimate the one per revolution.  A time domain feature, 
such as a gear mesh, can be used. A bound on the phase 
error included in using a vibration base reference is given in 
ref[3]: that standard deviation of the phase error of a band 
passed signal is: 

 [ ] 20/1021 SNR−∗=θσ                    eq(7) 

This gives a phase error of shaft angular position of:  

[ ] [ ]
GearTeeth

shaft N
θσθσ =

                       eq(8) 

One algorithmic method for calculating phase is: 

• Demodulate the vibration signal using the 
complex analytic signal with a frequency of 
operating shaft RPM times the number of teeth on 
the gear meshes of interest. In some instances the 
2nd or 3rd harmonic has a larger SNR then the 
base gear mesh rate. If so, multiply by the 
appropriate harmonic value. 

• Low pass filter the demodulated signal with a 
bandwidth which is the RPM error (e.g. 1%). 

• Calculate the angle of the low pass filter with the 
quadrant corrected arctan function (such at atan2 
in C++, matlab© or Fortan 77). 

• Unwrap the angle (change angles greater than 
2*pi to their 2*pi complement) and add in the 
nominal shaft angle: new angle = unwrap(angle) + 
rpm/grT*(1:n) 

• Normalize to radian by dividing the low pass 
signal by the number of teeth on the gear. 

• Take the Modulo of the normalized angle by 2*pi; 

The zero crossing time is the interpolated point at π radians. 
In the given example, a 32 T Gear is used to calculate the 
instantaneous frequency. The input shaft speed was 109 Hz 
and the sample rate was 100 KHz. Figure 3 shows 
approximately 10dB SNR. This gives a theoretical error of 
0.4% (see figure 4). 
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Figure 3: Spectrum of 32T Gear with 10dB SNR 

Figure 4 shows that there are some outliers that are greater 
than the theoretical error. 

 

Figure 4: Histogram of Phase Error 

On investigation, it was found that the error was periodic. 
This is easily seen in the auto correlation of the error (figure 
5). Notice that the period of the error is every 15 revolutions.  

 

Figure 5: Plot of error vs. time and the autocorrelation of 
error 

This corresponds to the product of the first shaft reduction 
(1/3) and the total gearbox reduction (1/5). Every 15 
revolutions the phase noise is reinforced. This results in a 
poor TSA as measured in a comparison between the 
spectrum of a TSA with and without the tachometer signal.  

In order to improve the performance, we reduced the phase 
noise using a polynomial smoothing technique (see Press 
1992). This is not a low pass filter – it is non-causal and 
introduces no delay. In this example, it reduced the jitter 
error to 4.6e-7 seconds (figure 5.). 

 
Figure 6: Histogram of the error after polynomial 

(Golay) smoothing. 
Note that percent error is 10-4 percent scale – 10,000 times 
better than without polynomial smoothing.  

 
Figure 7: Comparison of tach-less to tach zero crossing 

Essentially, the tachometer-less zero crossing is 
indistinguishable from the tachometer zero crossing (figure 8 
and 9). 
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Figure 8 Comparison of TSA, No Tach to Tach ZC 

 
Figure 9 Spectrum of No Tach and Tach TSA 

4 A TEST OF THE ASSUMPTION OF ERGODICITY  

Under the assumptions of equation 2, the non synchronous 
noise of the TSA should be consistent and ergodic. If true, as 
the number of revolutions used in the TSA increases, the 
ensemble mean value should approach the actual 
synchronous waveform. Additionally, the standard deviation 
of the TSA should (and any measured frequency content) 
decrease as: 

σ k = σ 1
rev

                eq(9) 

where rev is the number of revolutions. 

This can easily be tested experimentally on a gearbox test 
stand. One hundred acquisitions were taken for 1 second 
(sample at 66.667 KHz) with an input shaft speed of 100 Hz. 
Then the standard deviation of the input pinion gear mesh 
amplitude was calculated for 2 to 96 shaft revolutions. This 
was done using the spline interpolated TSA and the 
frequency domain TSA (see Figure 10) 

 
Figure 10: Measured Relationships between Noise and 

Number of Revolutions 

It should be noted that estimating standard devation is much 
more difficult than estimating mean. While one can not 
prove the standard devation is the same as the model, one 
can test the hypothsis that the TSA standared devation is 
equal to the ergodic model using using an F test. 

H0: σ2
tsa =   σ2

model  

Ha: σ2
tsa >   σ2

model  

The test statistic: F = S2
tsa/S2

model 

The null hypothisis is rejected if F > Fα. If α is .025 (a 
typical value), with 99 degrees of freedom in the numerator 
and denominator, the rejection region is: 1.49. The measured 
F statistics for 96 revs is 1.09e-4^2/9.2e-5^2, or 1.28. The 
null hypothesis cannot be rejected and it must be assumed 
that the TSA is ergodic and that the noise is reduced by 
1/sqrt(revs). 

5 MODELED AND ACTUAL DISTRIBUTION OF TSA 
VALUES 

For thresholding and/or anomaly detection of shaft 
conditions, it is important that the distribution of the shaft is 
known. Defining a threshold with a probability of false 
alarm of 10-6 is very different between a Gaussian model, 
and some other non-Gaussian distribution.  

Consider a large population of shafts in nominal condition.  
Each shaft would have some variation in stiffness and center 
of mass.  If we measured shaft order 1 for each shaft, we 
would expect that the phase of the vibration would be 
uniformly distributed between 0 and 2π, while the 
magnitude would be some positive value.  Now imagine that 
if the vibration vectors where plotted in Cartesian 
coordinates, there would be points clustered on the X (real) 
and Y (imaginary) coordinates, the magnitude is then: 

22 YXCI +=                            eq(10) 

Assuming the distribution around the X and Y axis where 
Normal with zero mean, then,  
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( ) ( ) ( )222 2exp21 σπσ XXf −=             eq(11) 

and 

( ) ( ) ( )222 2exp21 σπσ YYf −=                     eq(12) 

In the nominally healthy case (no imbalance), X(t) and Y(t) 
are independent, such that P(X,Y) = P(X)P(Y). Then the 
joint probability function is: 

( ) ( ) ( )( )2222 2exp21, σπσ YXYXf +−=          eq (13) 

This is function of a distribution in which SO1 is a function 
of X and Y.  Define a change in variables of SO1 as a 
function of magnitude, M, instead of P(X,Y). If Φ as phase, 
then X = M*Cos(Φ) and Y = M*sin(Φ).  Transforming 
differential areas using dXdY = M dM dΦ gives the joint 
probability function: 

( ) ( )222 2exp2, σπσ MMMf −Φ=Φ              eq(14) 

which is independent of phase: 

 f(M,Φ ) = P(M)P(Φ)                                 eq(15)  

The probability distribution function (PDF) for shaft 
magnitude is then: 

( ) ( ) ( )2222

0
2exp, σσ

π
MMdMfMf −=ΦΦ= ∫  eq(16) 

The expected value, E[M] of this continuous random 
variable can then be shown to be: 

[ ] ( )∫
∞

==
0

2πσdMMMfME              eq  (16) 

The variance is then calculated as: 

[ ] [ ] ( )
( )22

2
2

0

2222

πσ

πσ

−=

−=− ∫
∞

dMMfMMEME    eq(17) 

This is the definition of a Rayleigh distribution. 

If we assume that the distribution around the X and Y axis 
where Gaussian with non zero means, such as an imbalance: 

X~N(m1,s)                                       eq(18) 

Y~N(m2,s)                                       eq(19) 

The real non-centrality is: 

s = m 1 
2 + m 2 

2 

                                    eq(20) 

This is a non-central Rayleigh, or more correctly a Rice 
Distribution.  The PDF is (see Proakis 1995) 

( ) ( )2
2

22

2 2exp)( βββ MsIsMMMP o⎟
⎠
⎞

⎜
⎝
⎛ +−=  eq(21) 

where I0 is the 0-th order Bessel function of the first kind.  
The CDF is: 

( ) ⎟
⎠
⎞⎜

⎝
⎛−= ββ

MsQMF ,1 1                     eq  (22) 

where Q1 is Marcum’s Q function. 

We can test the validity of these models by taking a large 
sample (100 acquisitions used in the previous example) of a 
shaft, take the TSA and calculate the magnitude of the shaft 
order. Now we can test the hypothesis on the distribution of 
the magnitude.  In the first case, a small imbalance was 
generated by placing a bolt offset on the shaft, spun at 100 
Hz. The hypothesis is that the distribution of SO1 would be 
Rician (see figure 11) 

 

Figure 11 Distribution of Imbalance in SO1 

Using the Komogorov-Smirnov test for Goodness of fit, the 
null hypothesis is that the distribution is Rician, vs. the 
alternative hypothesis that the distribution is not Rician. For 
the 100 samples, the KS statistic is 0.1245. For an α = .05 
rejection region, the cut off value is 0.134. Therefore we can 
not reject the null hypothesis.  

If we measure SO3, which on this test stand should have 
small values (e.g. no misalignment, and strain on a coupling 
is small), the distribution should be near Rayleigh. Figure 12 
is a plot of SO3. 
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Figure 12 Nominal SO3 and Rayleigh Distribution 

Using the Komogorov-Smirnov test for Goodness of fit, the 
null hypothesis is that the distribution is Rayleigh, vs. the 
alternative hypothesis that the distribution is not Rayleigh. 
From SO3, a beta of 0.0706 was estimated for a Rayleigh 
distribution. For the 100 samples, the KS statistic is 0.0742. 
For an α = .05 rejection region, the cut off value is 0.134. 
Therefore, we can not reject the null hypothesis.  

These experimental results support the hypothesis that the 
magnitude of a shaft order is Rayleigh when eccentricity is 
close to zero, and Rician when eccentricity is greater than 
zero. This information is important for modeling the 
threshold setting process in HUMS (see Bechhoefer 2007). 

6 CONCLUSIONS 

This paper is a review of TSA techniques and provides 
background on statistical properties of the TSA. This is 
important in the system design and threshold setting in 
HUMS applications. Of note: 

• Both time and frequency domain TSA have similar 
performance. 

• From a fault detection perspective, we found the 
frequency domain TSA techniques to have the 
greatest sensitivity to fault (see table 4). 

• The TSA is ergodic: non-synchronous noise is 
reduced by 1/sqrt(number of revolutions) 

• The statistical distribution of the amplitude of a 
shaft order is Rayleigh if no eccentricity is present 
(due to an imbalance or fault) 

• The statistical distribution of the amplitude of a 
shaft order is Rician if eccentricity is present (due 
to an imbalance). 

In the future, we wish to test the hypothesis that sampling at 
rates exceeding the resonance of the accelerometer improve 
fault detection.  
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APPENDIX 

Matlab code for Time Synchronous Averaging based on 
resampling the time domain data. Note: Linear or 
Polynomial interpolation is given. It is a simple mater to 
chang the Interpolate function to cubic spline or band limited 
filter (such a cosine filter) 

function [tsadata, navgs,rpm]=tsa_intp(data,tach,sr,ratio,navgs) 
%[tsadata, navgs,rpm, z]=tsa_intp(data,tachsignal,sr,ratio,navgs) 
%Inputs: 
%   data:       time domain data in g's 
%   tach:       tachomiter signal 
%   sr:         sample rate 
%   ratio:      gear ratio/pulse per revolution on the tach 
%   navgs:      desired number of averages 
% find the portion of the tach vector that is zero or negative 
%Output: 
%   tsadata:    time synchronous average data 
%   navgs:      the number of averages in the TSA 
%   rpm:        mean shaft rpm 
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dt=1/sr;            %time bewteen samples. 
n = length(tach); 
tach = tach - mean(tach); 
x=find(tach<=0);    % find the zero crossings,  
                    %eliminate the first value to insure that  
i=x(find(tach(x(2:length(x))-1)>0)); %(i-1)>=1 {i.e. x(2:length(x)} 
if i(end) == n, 
   i(end) = []; 
end 
i1 = i + 1; 
% now interpolate the zero crossing times 
in = i+tach(i)./(tach(i)-tach(i1)); 
zct = in*dt'; 
  
  
rpm = mean(1./diff(zct))*60*ratio; 
  
% Define the number of averages to perform 
if nargin < 6, 
    navgs = floor((length(zct)-1)*ratio);  
end 
% Determine radix 2 number where # of points in resampled TSA 
% is at sample rate just greater than fsample 
N=(2^(ceil(log2(60/rpm*sr)))); 
  
% now calculate times for each rev (1/ratio teeth pass by) 
xidx = 1:length(zct); 
% resample vibe data using zero crossing times to interpolate the vibe  
yy = zeros(1,N); %data to accumulate the resampled signal once per rev 
ya = yy;         %ya is the resample signal once per rev   
  
iN = 1/N;       %resample N points per rev 
tidx = 1;       %start of zct index 
ir = 1/ratio;   %inverse ratio - how much to advance zct 
zct1 = zct(tidx);%start zct time; 
x = (0:length(data)-1)*dt;%time index of each sample 
z = zeros(navgs,1); 
for k = 1:navgs 
    tidx = tidx + ir;       %get the zct for the shaft  
    stidx = floor(tidx)-1;  %start idx for interpolation  
    zcti = polint(xidx,zct, stidx, 2, tidx); %interpolated ZCT 
    dtrev = zcti - zct1;    %time of 1 rev 
    dtic = dtrev*iN;        %time between each sample 
     
    for j = 1:N, 
        cidx = floor(zct1*sr); 
        ya(j) = polint(x,data,cidx,2,zct1); %interp. time domain sample 
        zct1 = zct1 + dtic; %increment to the next sample 
    end 
    zct1 = zcti; 
    % generate resampled vibe data and accumulate t 
    % the vector values for each rev 
    yy = yy + ya; 
end 
tsadata = yy/navgs;     % compute the average 
  
function y = interpolate(xa, ya, stidx, n, x) 
%polynomial interpolation: n = 2 is linear,  
%Numerical Recipies in C, 1995 
%given vect xa and vect ya, and valuex, retures a yalue y.  
% uses a N-1 degree polynomial 
% such that P(xai) = pai, i = 1:n,  
    ns = 1; 
    c = zeros(n,1); 
    d = zeros(n,1); 
    dif = abs( x - xa(stidx+1) ); 
     for i = 1:n, 
        dift = abs(x-xa(stidx+i)); 
        if dift < dif, 
            ns = i; 
            dif = dift; 
        end 

        c(i) = ya(stidx+i); 
        d(i) = ya(stidx+i); 
    end 
     y = ya(stidx+ns); 
    ns = ns-1; 
      for m = 1:n-1, 
        for i = 1:(n-m), 
            ho = xa(stidx+i) - x; 
            hp = xa(stidx+i+m) - x; 
            w = c(i+1) - d(i); 
            den = ho-hp; 
             
            if den == 0.0 
                disp('Error in polint'); 
                return; 
            end 
            den = w/den; 
            d(i) = hp*den; 
            c(i) = ho*den; 
        end 
        if 2*ns < (n-m),  
           dy = c(ns+1); 
        else 
              
            dy = d(ns); 
            ns = ns-1; 
        end 
         
        y = y + dy; 
    end 
 
function [tsa,navgs,rpm] = tsa_fft(v,tach,sr,ratio,navgs) 
%[tsa,navgs,rpm] = tsa_fft(v,tach,sr,ratio) 
%Frequency domain time synchronous average 
%Inputs: 
%   v       :vibration signal 
%   tach    :tach signal 
%   sr      :sample rate 
%   ratio   :1/pulse per rev* reduction ratio 
%Outputs: 
%   tsa     :time synchronous average 
%   navgs   :number of avearges 
%   rpm     :shaft rpm 
%Example: 10 pulse per rev tach, 5:1 reduction ratio, sr = 200000/3; 
%[tsa,navgs,rpm]=tsa_fft(v,tach,sr,1/10*1/5); 
%Eric Bechhoefer, April 10, 2009 for PHM Conference 
%Adapted from: Vachtsevanos, G., et al., "Intelligent Fault Diagnosis and 
% Prognosis for Engineering Systems" John Wiley and Sons, 2006, page 
%418 
if nargin < 5, 
    navgs = 0; 
end 
n = length(tach); 
t = tach-mean(tach); 
x=find(t<=0); 
% find the zero crossings 
i=x(t(x(2:length(x))-1)>0); 
if i(end) == n, 
    i(end) = []; 
end 
i1 = i + 1; 
  
% linear interpolation 
idx = i+t(i)./(t(i)-t(i1)); 
rpm = mean(1./diff(idx))*60*sr*ratio; 
  
% number of tach zero crossings give number of pulse per rev  
% and reduction ration 
  
nr = 1/ratio; 
% number of averages to perform 
avgs = floor(((length(idx)-1)/nr));  
if navgs>avgs || navgs == 0, 
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    navgs = avgs; 
end 
     
% length of the fft; 
minRL = min(diff(idx)*nr); 
nF = floor(minRL/2)-1; 
yy = zeros(navgs,nF); 
cnt = 0; 
for k = 1:nr:navgs*nr, 
    % get the indexs between shaft zero crossings 
    sidx = round(idx(k)):round(idx(k+nr))-1;  
    % the signal for 1 revolution 
    sv = v(sidx); 
    % spectrum of one per rev vibration 
    spec = fft(sv); 
    % generate resampled vibe data and accumulate the vector values for 
each rev 
    cnt = cnt + 1; 
    yy(cnt,:)= spec(1:nF); 
     
 end 
% compute the average 
Y = mean(yy); 
fd = [Y 0 conj(fliplr(Y(2:end)))]; 
% get the time domain representation and normalize 
tsa = real(ifft(fd)); 
  
  
 
 


