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ABSTRACT 

Aircraft engine bearing prognosis not only 

requires early detection of a bearing defect, 

but also the ability to predict bearing health 

conditions for all operational scenarios.  This 

paper summarizes a physics-based remaining 

useful life (RUL) prediction method 

developed in the DARPA Engine System 

Prognosis (ESP) program. This investigation 

focuses on a typical roller bearing fault (or 

defect) on the outer raceway. Spall detection is 

based on the fusion of vibration and online oil 

debris sensors.  Spall size estimation is 

derived from the amount of bearing debris 

chips that passed through the Oil Debris 

Monitor sensor.  Subscale propagation tests 

were performed to generate the response 

surface of the spall propagation rate under 

various operating speeds and loads. A particle 

filter based approach was used to track the 

spall propagation rate and update the 

prediction according to newly calculated 

diagnostics information. The bearing spall 

propagation model outputs a RUL distribution, 

which is calculated based on future operating 

conditions and the time the spall size crossing 

the failure threshold. The developed RUL 

prediction method was validated using full-

scale bearing spall tests. The comparison of 

model prediction and measured ground truth 

demonstrated that the developed model was 

able to predict the spall propagation rate 

accurately, and its prediction accuracy and 

confidence can be further improved by 

incorporating more diagnostics updates and/or 

increasing the confidence in the sensor data.
*
 

1 INTRODUCTION 

Engine bearing spalls are one of the leading causes of 

class-A mechanical failures leading to the loss of an 

aircraft (Wade, 2005).  Bearing prognostics is the key 

to maximizing safety and asset availability while 

minimizing logistical costs, by allowing maintenance to 

be proactive rather than reactive (Marble and Morton, 

2005). When a damaged or contaminated bearing 

spalls, metal particles from the bearing will eventually 

be detectible in the lubrication system. Today, bearing 

diagnostics is accomplished through the use of a 

Scanning Electron Microscope and Energy Dispersive 

X-Ray (SEM-EDX) examination of oil samples taken 

from the aircraft.  The magnetic chip detector is 

examined for chips after every flight. If chips exist, 

they are removed and sent to the SEM-EDX machine to 

determine chemical composition and size. The 

approach is labor intensive, time consuming, and 

costly. Recent advances in sensor technology and 

computational intelligence have made real-time bearing 

prognosis feasible. However, bearing fault prognosis is 
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a very challenging subject, where two important 

questions need to be addressed. The first is to detect 

fault and assess its severity, i.e., where on the overall 

health curve the component or system resides   

(Brotherton, 2000). Once the current health condition is 

defined, the second question is to predict the change in 

component health as a function of RUL based on 

anticipated future missions. 

 Assuming a fault propagation model is available, it 

is possible to estimate a margin from the predicted 

failure threshold once the first question is addressed.  

However, it is hard to quantitatively diagnose the fault 

severity, especially at the early stage of fault. It is still 

very challenging to predict the future trend due to 

strong stochastic characteristics of the failure 

propagation process. And lastly, it is difficult to define 

a reasonable failure threshold, especially when limited 

historical failure data is available.  

 A large variety of RUL prediction algorithms have 

been proposed in the past research projects.  Jardine et 

al.(2006) presented a review on various RUL 

estimation methods and defined the RUL as a 

conditional random variable of the time left before 

observing a failure given the current machine age and 

condition and past operation profile.  It should be noted 

that the RUL is not only a function of past condition 

profiles, but up to future usage. As pointed out in 

(Jardine et al., 2006), RUL estimation methods fall into 

three main categories: statistical approaches (Wang, 

2002, Banjevic and Jardine, 2005, Vlok et al., 2004, 

Phelps et al., 2001) artificial intelligent (AI) approaches 

(Gebraeel et al., 2004, Zhang and Ganesan, 1997, Yam 

et al., 2001, Wang et al., 2004) and model-based 

approaches.  Here, model-based approaches refer to 

specific physics-based fault propagation model, such as 

the spall propagation model to be discussed in this 

paper.   

 Statistical and AI approaches attempt to generate 

data-driven models to approximate the RUL 

distribution or the expectation value of RUL 

distribution. RUL estimation can be simplified as 

generating trending models, either from data-driven or 

in combination with degradation mechanism or 

empirical failure definition models, and use those 

models to forecast the degradation trend. A physics-

based approach, such as the bearing spall propagation 

model, tracks damage accumulation and related 

accumulated plastic strain to cycle life. Unfortunately, 

they are often expensive to develop and are narrowly 

applicable. For instance, each physics-based model is 

specific to bearing material and geometry; any change 

to the bearing configuration requires the development 

of a new model. However, the advantage of this model 

is its capability to accurately factor in future operating 

conditions.  

 This paper summarizes a physics-based RUL 

prediction method for the aircraft engine bearing 

prognostics developed in the DARPA ESP Program.  

The model computes the spall growth trajectory and 

time to failure based on operating conditions, and uses 

diagnostic feedback to self-update, which reduces 

prediction uncertainty.  Experimental data from the 

bearing test rig demonstrated that spall propagation 

rates can be predicted with higher confidence. This 

paper is organized as follows: Section 2 discusses the 

bearing diagnostics techniques, mainly focusing on 

how to detect a bearing spall and estimate the spall 

length using the fusion of vibration and oil debris data. 

Section 3 illustrates the steps of developing the spall 

propagation model, and how to use it to predict bearing 

RUL. Experimental bearing tests are presented in 

section 4.  Finally, discussions and conclusions are 

provided in section 5. 

2 BEARING DIAGNOSTICS 

The architecture of the Bearing Prognosis Reasoner is 

shown in Figure 1. It consists of two major steps, 

diagnostics and prognostics. The objective of the 

diagnostic section is to determine the health of the 

bearing. If the model determines an unhealthy bearing 

exists by detecting the existence of spall signature and 

the spall size is determined using sensed vibration and 

oil debris data. The prognostic functions will be 

triggered by a positive diagnostic assessment.  A key 

function in the prognostic module is the RUL 

calculation to determine the urgency of impending 

maintenance. This is accomplished by exercising the 

physics-based spall propagation model, which takes 

inputs of the initial spall size as well as future operating 

conditions and generates a series of possible spall 

propagation trends.  The RUL distribution can therefore 

be approximated by computing when the propagation 

trend will pass a pre-defined failure threshold and 

trigger a maintenance action. 

 

 

Figure 1: Bearing Prognosis Reasoner 

2.1 Spall Detection 

Vibration data monitoring is a widely used approach 

for spall detection. High frequency vibration features 

are known to be good indicators of incipient bearing 

defects. However, the performance is often influenced 
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by the load, operational speed, and background noise 

etc. On the other hand, an online oil debris sensor either 

captures metallic particles, or counts the particles, from 

which an estimate of total accumulated mass lost can be 

estimated. While metal particles in the oil system may 

indicate bearing spall, a complex aircraft engine 

lubrication system can trap a large fraction of particles. 

This limits the amount of mass detected by the sensor 

and delays or prevents the detection of a spall. 

Moreover, it is impossible to isolate which engine 

component is defective based solely on oil debris 

information, since other mechanical components may 

also shed metal particles under normal operating 

conditions. SEM-EDX is required at this point to 

identify the faulty component. Therefore, the fusion of 

vibration and oil debris information, capitalizing on the 

strengths of each approach, results in a sensitive and 

robust defect detection and isolation system.  

 A method called Synthesized Synchronous 

Sampling was used to convert the vibration data into an 

order domain and enhance the differential bearing 

damage signature.  This technique, in combination with 

the conventional acceleration enveloping technique, 

allows the detection of inter-shaft bearing damage at a 

much earlier stage when compared to conventional 

enveloping analysis or spectrum analysis methods. For 

more information about this method please refer to 

(Luo and Qiu, 2009). 

 A fuzzy logic based sensor fusion scheme was 

developed to integrate the vibration feature with oil 

debris data for spall detection. Fuzzy membership 

functions and fuzzy rules were derived from the 

experimental data. The output of the spall detection 

fusion module is a detection flag. A value of 1 indicates 

a spall is detected.  Once a spall is detected, the next 

step commences a quantitative estimation of initial 

spall size.  

2.2 Quantitative Bearing Diagnostics 

The initial spall size is the estimated spall size at the 

moment when the spall is initially detected.  A spall 

size estimate is one of the initial conditions required to 

run the spall propagation model. The spall size 

estimation algorithm relies on the oil debris sensor that 

provides a monotonic signal related to spall length. 

Assuming a faulty bearing component, it is possible to 

estimate spall length from total chips counted in the 

scavenge line. The magnitude of vibration features, 

however, are often less clearly related to damage 

magnitude – it is not unusual to see the magnitude of a 

frequency domain vibration feature decrease as the 

fault develops due to the stochastic nature of fault 

development and the occasional shift in energy at 

different stages of failure.  

 Multiple rig tests were conducted to derive the 

relationship between the quantity of detected oil chips 

and the actual spall size on the bearing raceway.  Figure 

2 shows the test data from multiple rig tests and the 

derived linear spall size estimation model as well as the 

95% confidence intervals and 95% predictive intervals. 

 

Figure 2: Spall size estimation based on oil debris data 

3 Bearing Prognostics Integration Architecture  

3.1 Bearing Failure Threshold - Critical Spall 

Length 

Figure 3 depicts the general process for spall initiation 

and propagation. Critical spall length is defined as 

length of one rolling element spacing (actual length 

varies depending on the bearing). 
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Figure 3: Bearing spall propagation process 

 Destructive failure occurs when the cage fails. In 

low speed bearings, a spall can cover the entire race 

without catastrophic failure. However, for high-speed 

bearings, the bearing reaches end of life when the spall 

length is greater than the circumferential ball or roller 

spacing. Stress on cage crossbars and rails increases 

dramatically when spall length is greater than ball 

spacing and a cage failure usually happens soon 

afterwards. 

3.2 Physics of Bearing Spall Propagation 

Bearing spall propagation is a complex phenomenon 

describing the growth of an existing damaged region on 
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a bearing race or roller due to the quasi-continuous 

liberation of material in the form of chips/particles 

during operation. The rate of damage accumulation due 

to a given set of operating conditions (speed/load) is 

dependent upon the properties of the particular material 

under consideration.  In this study, subscale seeded-

fault spall propagation testing was utilized to 

investigate the spall propagation phenomena and 

determine the rolling contact fatigue/impact damage 

accumulation behavior of the bearing material. 

 Figure 4 shows the test rig developed as part of this 

study for subscale spall propagation testing of 

cylindrical roller bearings. Obtaining experimental data 

of sufficient density is quite labor intensive. The key 

feature of this test rig is the ease with which the test 

bearing can be removed for inspection.  

 
Figure 4: Subscale spall propagation test rig  

 

 Inspection photographs, along with periodic 

samples of vibration and temperature data, are stored in 

a proprietary database. 

 Figure 6 presents an example case of spall 

propagation from a seeded fault.  There are three 

distinct phases of spall growth. At first, the spall grows 

slowly (Figure 6, frames 1-3), undergoing an 

‘incubation’ period prior to downstream propagation. 

During the incubation phase, growth is primarily 

outwards rather than downstream. 

While there is a solid qualitative understanding of spall 

behavior during the incubation phase, quantitative spall 

size estimates during this phase present some 

challenges.  Growth during this phase is governed 

primarily by two factors: a) the degree of damage 

imparted at initiation (i.e. the magnitude of plastic 

deformation and residual stresses at the indentation) 

and b) the development of the initial subsurface crack 

network.  Both of these factors are subject to some 

degree of uncertainty, and are not considered in the 

current analysis.  

 Once the spall has propagated across the race, it 

transitions to the ‘propagation’ phase (Figure 6, frames 

4-9).  This phase of spall growth is typically regular 

and well behaved enough to enable predictive 

modeling, and is therefore the focus of the current 

modeling effort.   Growth during this phase is driven by 

the impact and reloading of the roller as it reaches the 

trailing edge of the spall. This leads to an accumulation 

of plastic strain in the material, ultimately resulting in 

crack propagation and chip liberation.  

 After the cumulative spall length has surpassed a 

certain threshold, the rate of propagation accelerates 

significantly (Figure 6, frames 10-12). The transition to 

this ‘accelerated growth’ phase is typically defined as 

the failure threshold. In high-speed applications this 

transition point is associated with a spall length 

corresponding to one roller spacing, after which cage 

failure occurs, leading to catastrophic failure of the 

bearing. 

 Figure 7 illustrates the downstream spall growth 

during the ‘propagation’, and early ‘accelerated 

growth’ phases observed during several tests.  

  

  

  

  

Figure 6: Spall propagation for a cylindrical roller 

bearing under radial loading. Rolling direction is 

right-to-left 

 Each of these tests were run under different 

(constant) operating conditions (constant load & 

speed), with data set TS03 corresponding to the results 

presented in Figure 6). For comparison purposes the 

time axis in Figure 7 has been normalized with respect 

to the time at which the spall reached approximately 

20mm in length. An interesting knee in the curve can 

be observed in Figure 7, roughly corresponding with 

the spacing between rollers. Spall growth prior to this 

point (the ‘propagation’ phase described previously) is 

typically very regular, lending itself well to predictive 

modeling. The 'accelerated growth' phase beyond this 

1) 2) 3) 

4) 5) 6) 

7) 8) 9) 

 11) 

 
Figure 

12) 10) 
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knee is similarly well behaved for these bearings, 

however operation in this region carries an increased 

risk of cage failure. 

  
Figure 7: Spall growth during propagation phase 

3.3 CABPro Model 

There are two key elements required to model spall 

propagation: determination of dynamic loads and 

stresses occurring in the material as a rolling element 

passes over the spall, and development of a method 

relating this local stress field to damage accrued in the 

material. Sentient Corporation has developed a physics-

based model to predict the rate at which bearing spall 

damage will progress under a given set of operating 

conditions. CABPro tracks the material state using 

principles of continuum damage mechanics, which 

relates to localized stress and strain to microstructural 

degradation and eventual failure in a widely applicable 

way.  The purpose of the subscale testing described in 

the previous section was to characterize the behavior of 

the bearing material under rolling contact 

fatigue/impact. In a damage mechanics model (such as 

the one in CABPro) the behavior of the material is 

described by one or more material parameters.  In this 

case, the material parameters are embedded in the rate 

of spall propagation that is measured periodically 

during the subscale tests via teardown and inspection. 

Through accumulation of spall propagation data over a 

range of operating conditions, the parameters 

characterizing the RCF/impact damage behavior of the 

bearing material can be extracted and applied in the 

continuum damage mechanics approach for the full 

scale bearing. Further details of the CABPro model can 

be found in (Marble and Morton, 2006) 

 The contact-level conditions are based on the 

overall loads, speeds, lubrication, etc. applied to the 

bearing. The accumulation of damage during a stress 

cycle is related to the existing damage and to the 

applied stress via the incremental plastic strain energy 

accumulated. A custom damage accumulation program 

imports stress and strain data from finite element 

analysis (FEA) and applies damage mechanics to 

calculate the spall propagation rate for a particular 

geometry and load/speed combination.  

 Figure 8 presents a 3D finite element model of a 

segment of a cylindrical roller bearing with a simulated 

spall. Cyclic boundary conditions are applied at each 

end of the segment, with the assumption that the 

interaction between the roller and spall is sufficiently 

localized so as not to propagate to the neighboring 

segment. A symmetrical boundary condition is applied 

along the rotational axis to exploit the plane of 

symmetry in the bearing, thus requiring that only half 

of the total geometry be modeled. The materials of the 

inner race and cage are defined as rigid, with prescribed 

motion given by the kinematics of the bearing. These 

two components act to drive the roller through the 

spalled region and reloading zone. The local stresses 

generated during the impact/reloading event at the 

trailing edge of the spall are the principle driving 

mechanism behind spall propagation. The stresses from 

the FE analysis are imported into CABPro and used to 

calculate the rate of damage accumulation in the 

material near the trailing edge. This analysis is repeated 

periodically to update the stress/strain fields as the 

crack network grows and the surface material erodes. 

Symmetry Plane
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Inner Race 
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Roller 
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Simulated Spall
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Figure 8: FEA modeling of roller/spall impact 

  Figure 9 depicts the formation of a chip at the 

trailing edge of a simulated spall.  The removal of 

material in discrete amounts explains the linearity of 

the spall propagation curve – the material removal 

process is quasi-continuous. Damage due to the 

impact/reloading event is confined to a small region 

surrounding the trailing edge of the existing spall.  

Essentially, spall propagation is a self-resetting fatigue 

process; a new region of material is exposed to the 

impact/reloading event as the previous damaged 

material is removed. Thus, while the damage 

accumulation at the trailing edge is a decidedly non-

linear process, the spall propagation process, on 

average, is linear. Once the parameters in the damage 

equation have been calibrated such that they adequately 

represent the rolling contact fatigue/impact behavior of 

the bearing material, the CABPro model can be used to 

explore RUL under various mission load spectrums. 
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Figure 9: Snapshots from FE runs showing evolution of damage at the trailing edge of an existing spall 

3.4  Spall Rate Response Surface 

The full high-fidelity CABPro model is very 

computationally intensive due to the iterative use of 

finite element analysis to determine the local stress 

fields.  However, due to the linear behavior of the spall 

growth during the ‘propagation’ phase (as illustrated in 

Figure 6), the behavior of the high-fidelity CABPro 

model can be captured by a response surface describing 

the rate of spall propagation as a function of load and 

speed. This reduced order model (ROM) can then be 

used within the online model updating procedure 

described in the next section.  

   

 

Figure 10: Spall rate response surface 

 The first step in developing the spall rate response 

surface is to define the operational envelope for the 

bearing. This envelope should include all anticipated 

potential load/speed combinations encountered by the 

bearing during operation. The full CABPro model 

exercised at a sufficient number of points within this 

region to map out the spall propagation rate response 

surface. Figure 10 present the response surface 

developed for this study. 

 The response surface presented in Figure 10 

exhibits the expected behavior, i.e. spall growth rate 

increases with operating condition severity, with a 

slightly greater dependence upon load than speed 

3.5 Online Model Updating 

Model updating refers to the process of utilizing 

diagnostic data as a source of additional knowledge in 

order to reduce uncertainty in the RUL prediction. 

Proper model updating approaches view the model as a 

general description of fault progression characteristics 

and the sensor based diagnostics as a noisy indication 

of current state. An improved estimate of state can be 

obtained by combining the sensor-based state estimates 

with a fault or damage progression (prognosis) model. 

Sentient Corporation’s Prognostic Integration 

Architecture (PIA) is a stochastic framework and set of 

general-purpose algorithms for fusion of diagnostic 

state indications with damage progression models.  It 

provides an automated prediction of current state and 

remaining life with accurate and optimal uncertainty 

bounds. The PIA is a mature, generalized architecture 

applicable to a wide range of diagnostics and 

prognostic models at the component level. In this 

section, a description of the methodologies employed 

by the PIA will be provided, followed by a discussion 

of integration with diagnostic and damage progression 

models for an example dataset.  

 The PIA is based on a particle filter approach with 

Bayesian updating.  Particle filters are most commonly 

used to directly estimate the observable state of interest, 

which for this application is the spall severity.  In the 

1) 2) 3) 

4) 5) 6) 
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PIA, Sequential Monte Carlo methods have been 

developed to indirectly estimate state by employing 

them in a parameter identification mode. The 

parameter(s) to be identified are initially unknown 

constants that describe the differences in damage 

propagation behavior between individual components. 

The objective of the model updating scheme is to 

reduce uncertainty in both current state estimates and 

forward predictions by learning the characteristics of 

an individual component as it degrades. This model 

updating scheme is flexible, powerful, and applicable to 

a large class of problems in health management and 

prognostics.  

 Figure 11 provides a conceptual illustration of the 

parameter identification process. Stochastic parameters 

are used to represent the difference between the 

“average” component and a particular component. 

Based on the damage progression model and the 

uncertainty of the parameters, a group of particle values 

is sampled from the parameter distributions; each 

sampled value is used to generate a candidate damage 

trajectory (particle model).   

  

 

Figure 11: Conceptual illustration of model updating 

via Bayesian fusion 

 The black lines in Figure 11 represent the range of 

possible damage trajectories, the variance in the 

trajectories being reflective of the sampled particle 

parameter values.  By utilizing a source of additional 

information (diagnostic data, green points), the values 

of the particle parameters (and the resulting damage 

trajectory) that best represent the particular unit under 

test can be ascertained. 

 The challenge is to determine which, among a 

family of trajectories as defined by the damage rate 

parameter, best represents the particular bearing under 

consideration. This is accomplished by incorporating 

additional information obtained through the incoming 

diagnostic data. A Bayesian updating procedure is used 

to weight the particle trajectories based on how well 

they fit the incoming and past diagnostic data. These 

fitness values, or weights, are applied to a (Gaussian) 

kernel function for each particle, which are then 

combined in a Gaussian mixture density to provide a 

probability distribution for the current state of damage.  

This current state distribution is then propagated into 

the future past the failure threshold to determine the 

RUL distribution.  

4 EXPERIMENT 

4.1 Rig Setup and Data 

An existing engine rig located in GE’s bearing lab was 

modified to suit the bearing spall test experiment and 

installation requirements. The full scale bearing test rig 

has the capability for periodic partial teardowns to 

inspect photograph and measure spalls generated in the 

outer race. Multiple rig tests had been conducted. One 

test result was chosen for discussion here. To create a 

realistic spall initialization condition, the test bearing 

started with one indent on the outer race. A template 

centered the indent in the middle of the roller path. 

Four inspections including a final teardown were 

performed at total run time (TRT) of 1.64, 38.6, 48.8, 

and 57.1 hours respectively (see Figure 12). A spall 

with the size estimated to be 0.037 square inches was 

detected at TRT 38.6 hour. 

  

  

Figure 12: Inspection at TRT (a) 1.64 hrs (b) 38.6 hrs  

(c) 48.8 hrs (d) 57.1 hrs  

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

0.18

0.2

0.00 10.00 20.00 30.00 40.00 50.00 60.00

Total Run Time (Hour)

S
p

a
ll
 S

iz
e

Estimated Spall Size

Actual Spall Size

High 95% PI

Low 95% PI

 
Figure 13: Spall estimation vs. actual tear down 

measurements 

a) 
b) 

c) d) 
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4.2 Data Analysis 

Table 1. Spall measurement and estimates 

Total 

Run 

Time 

(Hour) 

Actual 

Spall 

Size 

(inch^2) 

Estimated 

Spall Size 

(inch^2) 

Upper 

95% PI of 

estimation 

(inch^2) 

Upper 

95% PI of 

estimation 

(inch^2) 

0 0 N/A N/A N/A 

1.54 0.0088 N/A N/A N/A 

38.6 0.0156 0.037 0.097 0 

48.8 0.0820 0.078 0.138 0.018 

57.1 0.1250 0.150 0.210 0.090 

 

The diagnostic data presented in Table 1 was used as 

input to the CABPro/PIA model, utilizing the spall rate 

response surface presented in Figure 10.  The model 

was initialized at TRT=38.6 hrs (hereafter referred to as 

diagnostic step 1), where the oil debris data indicated 

that the spall had entered its downstream growth phase. 

Figure 14(a) presents the CABPro/PIA prognostics 

generated at this timestamp. Ground truth data for the 

actual spall size is plotted for comparison purposes 

only. Color contours represent the damage probability 

density in the forward prediction.  The accuracy of the 

prediction in the early stages of the analysis is strongly 

dependent upon the initial spall size estimation. 

Possible damage trajectories are generated to 

encompass the upper and lower bounds, and weighted 

based on their proximity to the mean value. Hence, in 

Figure 14(a) the damage trajectories that carry the 

highest probability are those coincident with the initial 

diagnostic value, as indicated by the color contours. 

The RUL cumulative distribution function (RUL CDF, 

dashed blue line) is calculated by integrating the 

probability of the damage trajectories that have crossed 

the failure threshold (critical spall size).  

 Figure 14(b) and Figure 14(c) present the updated 

predictions for diagnostic steps 2&3 at TRT 48.8 and 

57.1 hours respectively. The step 2 diagnostic value of 

0.078 square inch (Figure 14(b)) is very close to the 

ground truth data. The step 3 diagnostics estimates the 

spall size is 0.150 square inch. Given this information 

the damage trajectory weights have been updated 

accordingly. Note that as more diagnostic information 

is incorporated into the prognostic analysis, the damage 

probability density (color contours) begins to sharpen 

to reflect higher confidence in the prediction near the 

mean damage trajectory. Incorporating more 

diagnostics and/or increasing the confidence in the 

diagnostic data will provide an improvement in the 

prediction. 

 
 

 

 
Figure 14: CABPro/PIA prognostics for rig test, 

diagnostics steps 1 ,2, and 3 at TRT 38.6, 48.8, and 

57.1 hours 

5 CONCLUSION 

The physics-based RUL prediction method is the last 

step of the bearing prognosis reasoner developed in the 

DARPA ESP Program. The bearing prognosis reasoner 

consists of two modules, diagnostics and prognostics. 

the diagnostic module detects the presence of a spall 

and estimates the spall size using online vibration and 

oil debris sensors. Positive spall detection during the 

diagnostics module phase will trigger the prognostics 

functions, which estimates the RUL using the initial 

spall size and the future operating conditions.  

a) 

b) 

c) 
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 Subscale seeded-fault spall propagation testing was 

utilized to investigate the spall propagation 

phenomenon and determine the rolling contact 

fatigue/impact damage accumulation behavior of the 

bearing material. A custom damage accumulation 

program imports stress and strain data from FEA and 

applies damage mechanics to calculate the spall 

propagation rate for a particular geometry and 

load/speed combination. Based on the subscale spall 

propagation tests and FEA analysis, a response surface 

was then developed to describe the rate of spall 

propagation as a function of load and speed.  

 Another unique feature of the developed physics-

based RUL prediction method is the model updating 

function, which refers to the process of utilizing 

diagnostic data as a source of additional knowledge in 

order to reduce uncertainty in the RUL prediction. The 

RUL prediction method is based on a particle filter 

approach with Bayesian updating.  The prognostic 

model is first initialized using a-priori, expert 

knowledge. A Bayesian updating procedure is used to 

weight the particle trajectories based on how well they 

fit the incoming and past diagnostic data. These fitness 

values, or weights, are applied to a (Gaussian) kernel 

function for each particle, which are then combined in a 

Gaussian mixture density to provide a probability 

distribution for the current state of damage.  This 

current state distribution is then propagated into the 

future – beyond the failure threshold – to determine the 

RUL distribution. 

 The developed RUL prediction method was 

validated by a full-scale bearing test. Comparison of 

model prediction and measured ground truth 

demonstrated that the developed model was able to 

predict the spall propagation rate accurately, and its 

prediction accuracy and confidence can be further 

improved by incorporating more diagnostics updates 

and/or increasing the confidence in the diagnostic data. 
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