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ABSTRACT

Guaranteeing 100% fault free products is becom-
ing an emerging standard in many branches of
manufacturing. This paper addresses the design
of an end–quality diagnostic system for detec-
tion of mechanical faults in electronically com-
mutated motors. One of the main requirements of
an end–quality diagnostic system is its ability for
detecting faults in their earliest stages. Main issue
in detecting final products with such faults lies in
the fact that the faulty product is indistinguishable
from the fault–free one. In order to overcome this
problem, we have performed the feature extrac-
tion method using the spectral kurtosis method.
These features were used as an input to the fault
localization module, which is based on approxi-
mate reasoning technique known as Transferable
Belief Model (TBM). Results show that the di-
agnostic system comprising spectral kurtosis and
transferable belief model successfully isolates the
most common mechanical faults. Additionally
the strength of conflict can be used as a measure
of certainty of the diagnostic results. The perfor-
mance of the diagnostic system was evaluated on
a batch of 60 motors.

1 INTRODUCTION
Designing an efficient fault diagnosis system has al-
ways been a challenging task. The goal of 100% fault–
free end-products is becoming an industry standard.
In this paper we focus on designing a diagnostic sys-
tem for quality assurance in manufacturing of electron-
ically commutated (EC) motors.

In the research domain there is an impressive body
of literature that addresses the issues of rotational
machines. Xu and Marangoni did extensive re-
search in the area of shaft misalignment and imbal-
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ance faults, and concluded that these faults were di-
rectly connected with the shaft rotating speeds (Xu
and Marangoni, 1994a; 1994b). McFadden and Smith
laid the basic principles of the bearing fault detection
(McFadden and Smith, 1984) and afterwards (Tandon
and Choudhury, 1999) devised a model for bearing
faults defining the characteristic frequencies that are
produced by a particular localized fault.

Extensive work has also been done in the area of
signal processing methods. Time–frequency wavelet
analysis of the electrical current was used by (Kar
and Mohanty, 2006) and (Zarei and Poshtan, 2007)
for fault detection in electrical motors. (Sawalhi et
al., 2007) used spectral kurtosis for bearing fault de-
tection. (Rubini and Meneghetti, 2001) and (Ho and
Randall, 2000) used envelope analysis for fault de-
tection in rotational machinery. Additionally cyclo-
stationary analysis of the vibration signals have been
applied with satisfactory results (Randall et al., 2001;
Antoni, 2007).

The problem of fault detection in electrical motors
has also been addressed by many authors, however
most of their work concentrates on fault detection in
AC electrical motors, like (Röpke and Filbert, 1994;
Sasi et al., 2001; Didier et al., 2007). Unlike the con-
ventional AC motors, fault detection for brushless DC
motor has been addressed by fewer authors e.g. (Ju-
ričić et al., 2001).

Apart from the abundance of fault detection algo-
rithms and signal processing techniques, very few pub-
lished works address the design of industrial operating
prototypes of diagnostic systems. One such system de-
signed for vacuum cleaner motors based on vibration
and sound analysis was done by (Benko et al., 2005)
and (Tinta et al., 2005).

The tasks of any diagnostic procedure can be sub-
divided into fault detection by analytic and heuris-
tic symptom generation and fault diagnosis (Isermann,
2000). The process of symptom generation should be
able to produce distinctive features for each particular
fault. Based on these extracted feature an autonomous
fault diagnostic has to be able to determine whether
the observed motor is fault–free or not. Furthermore,
in cases of positive fault detection the diagnostic mod-
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ule should be able to isolate the source of the fault.
Envelope analysis method has been one of the most

common approaches used for symptom generation.
This method has proven to be sufficient for detection
of severe faults. However, in cases where the vibra-
tions produced by an incipient fault are masked by
surrounding vibration sources or additive noise, a sim-
ple envelope analysis becomes inefficient. Such were
the cases of EC motors with improper bearing lubrica-
tion or bearing damages due to inappropriate mount-
ing. The main problem in these cases is that the ex-
tracted features resamble the fault–free case, so the
faulty EC motor under investigation becomes indis-
tinguishable from the fault–free ones. Several authors
have shown that a significant increase in analysis sensi-
tivity can be obtained by calculating the envelope spec-
trum of the acquired vibration signal filtered within
specially selected frequency band (Staszewski, 1998;
Wang, 2001). In our case, the acquired vibration sig-
nals were analyzed by spectral kurtosis (SK) method
(Antoni, 2006; Sawalhi et al., 2007). The spectral
kurtosis method is an effective tool for determining
the frequency bands in which the examined signal ex-
hibits high amount of impulsiveness. Thus by filtering
the signal in the proposed frequency bands the fault
impulses become more distinguishable. The spectral
analysis of the filtered singals in the selected frequency
bands have shown significant increase in sensitivity, al-
lowing unambiguous detection of all faults, thus com-
pleting the symptom generation task.

The next step in the process of end–quality assess-
ment was the fault diagnosis procedure. The fault
diagnosis procedure may be considered as a task of
matching the observed feature patterns with a pre–
determined set of patterns representing particular me-
chanical faults (Jardine et al., 2006). Although, some
machine learning methods have been used for this
purpose, for fault diagnosis of EC motors we have
selected an approximate reasoning technique called
transferable belief model (TBM). The TBM method
was selected due to the possibilities of incorporating
expert’s knowledge as well as its adaptability towards
unforeseen errors. The main idea was to combine an
efficient signal processing method with an accurate di-
agnostic algorithm, thus obtaining accurate final qual-
ity assessment system.

The paper is organized in the following manner. The
characteristics of EC motors and an overview of the
assessment rig are given in Sections 2 and 3. Feature
extraction and the theory behind the applied signal pro-
cessing technique are presented in Section 4. Results
of the application of the feature extraction process are
given in Section 5. Brief overview of the theory be-
hind the Transferable Belief Model is presented in Sec-
tion 6. The implementation of the TBM and the results
of the validation of the diagnostic system are given in
the Section 7.

2 ELECTRONICALLY COMMUTATED
MOTORS

In a conventional DC motor, brushes make mechanical
contact with a set of electrical contacts on the rotor’s
commutator, forming an electrical circuit between the
DC electrical source and the armature windings. In

a electronically commutated (EC) motors, the perma-
nent magnets rotate and the armature remains static.
Since the armature is static the commutator becomes
obsolete. In order to generate a rotating magnetic field,
the brush-system/commutator assembly is replaced by
an electronic controller.

3 THE ASSESSMENT RIG
The prototype of the assessment rig is shown in Fig-
ure 1. The motor under investigation is positioned
vertically. It is suspended on rubber dampers, which
are fixed to a pedestal. The motor runs without any
load during all experimental runs and under a constant
speed frot = 38Hz.

Figure 1: The prototype assessment point

Motor vibrations were measured on the motor hous-
ing. The signal was conditioned by a low-pass filter
with the cut-off frequency at 22kHz and then sampled
at 60kHz. The following faults were investigated:
• bearing inner race fault,
• bearing outer race fault,
• bearing roller element fault,
• lack of lubricant in the bearing and
• rotor unbalance.

Due to lack of historical vibration measurements cov-
ering the listed mechanical faults we have prepared
a set of artificially damaged bearings. The damages
were artificially introduced using electric erosion pro-
cedure, by eroding small areas either on the bearing
inner, outer or roller element surface. Besides this me-
chanical faults, the lack of lubrication fault was done
by cleaning several bearings with tetrachloroethylene,
thus removing all present grease in the bearing. The
unbalance fault was tested in two ways: (i) adding dif-
ferent weights in the shaft key and (ii) by installing
unbalanced rotor. With such configuration of artificial
faults, we have obtained a set of most probable me-
chanical faults with different stages of fault severity.

Both motor bearings are FAG 6205. The bearing’s
characteristic defect frequencies are shown in Table 1
(Tandon and Choudhury, 1999).

The frequencies given in Table 1 are calculated for
a bearing with a stationary outer race using the expres-
sions shown in Eq. (1).
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Table 1: Calculated bearing frequencies for FAG 6205

Bearing fault f/frot
Ball pass frequency inner (BPFI) 5.415
Ball pass frequency outer (BPFO) 3.585
Fundamental train frequency (FTF) 0.398
Ball spin frequency (BSF) 2.375

BPFO =
Zfrot

2

(
1− d

D
cosα

)
BPFI =

Zfrot
2

(
1 +

d

D
cosα

)
FTF =

frot
2

(
1− d

D
cosα

)
BSF =

Dfrot
2d

(
1−

(
d

D
cosα

)2
)
,

(1)

where Z is the number of rolling elements, d is the
rolling element diameter, D is the pitch diameter, α is
the contact angle and frot is the inner ring rotational
speed.

4 FEATURE EXTRACTION TECHNIQUES
Rotor unbalance and misalignment faults
The vibration signature produced by the presence of
these faults is rather simple. According to (Xu and
Marangoni, 1994a; 1994b) rotor unbalance and mis-
alignment faults produce vibrations that have strong
spectral components at rotational speed frot and its
higher harmonics, usually 2 × frot and 4 × frot. An
increase in any of these three listed harmonics can be
attributed to the presence of rotor unbalance.

Bearing faults
Most frequently, bearing faults include surface damage
of the inner or outer rings as well as the rolling bear-
ing elements. When such a fault appears, the passing
rolling element will generate an impact which will ex-
cite damped oscillations defined by the modes of the
bearing and its support. Due to the rotation, the vi-
bration produced by a faulty bearing will consist of
similar periodic bursts dominated by the resonance fre-
quency of the structure. Since there are random speed
fluctuations as well as some random slip, these im-
pulses almost never repeat in truly periodic manner.
That is why a simple statistical model of bearing vi-
bration defined by (Randall et al., 2001), was used for
further analysis

x(t) =
∑
i

Ais(t− iT − τi) + n(t), (2)

where x(t) is the vibration signal, Ai is the randomly
changing impact amplitude, s(t) is system impulse re-
sponse, T is the average time between each impact,
and τi is the time lag of the ith impact due to the ran-
dom slip.

4.1 Spectral Kurtosis
According to the Eq. (2), bearing faults are character-
ized by quasi–periodic impulses. Thus, for the pur-
pose of fault detection, the most suitable frequency
band would be the one where these impulses are most
clearly visible. One possibility is to use the method
called spectral kurtosis.

The spectral kurtosis (SK) method was firstly intro-
duced by (Dwyer, 1983), as a method that is able to
distinguish between transients (impulses and unsteady
harmonic components) and stationary sinusoidal sig-
nals in background Gaussian noise.

Spectral kurtosis takes high values for frequency
bands where the vibration signal x(t) defined with
Eq.(2) is dominated by the corresponding impulses,
and it takes low values for frequency bands where the
signal is dominated by the Gaussian noise n(t) or sta-
tionary periodic components. If we rewrite the signal
from Eq.(2) as

x(t) = y(t) + n(t), (3)

where
y(t) =

∑
i

Ais(t− iT − τi), (4)

than the SK values for the signal x(t) contaminated by
additive noise n(t) can be calculated as (Antoni and
Randall, 2006)

Kx(f) =
Ky(f)

[1 + ρ(f)]2
, (5)

whereKy(f) is the spectral kurtosis of the signal y(t),
and ρ(f) is the noise–to–signal ratio for that particular
frequency f . The value for Ky(f) can be obtained
using the following relation

Ky(f) =
S4y(f)− 2S2

2y(f)
S2

2y(f)
, (6)

where S2y(f) and S4y(f) are the second and fourth
spectral moments respectively. The maximum of
Eq.(5), actually determines the frequency band where
the signal–to–noise ratio in the observed signal is the
biggest and in the same time the closest to the original,
uncontaminated signal, y(t).

The definition of SK given by the Eq.(6) bears re-
semblance with the statistical definition of kurtosis.
However the actual physical interpretation and its abil-
ity for detection of non-stationary transients in signals
is not so obvious. One way to clarify this issue is to
observe the time–frequency characteristic of the vi-
bration signal x(t), defined by Eq. (2). We can con-
sider the changes of the amplitude of particular spec-
tral components of x(t) in time as a stochastic process.
The SK method searches for a frequency band were
this stochastic process shows highest kurtosis. Such
analysis is justified since for non–stationary processes
these changes in the amplitudes of some spectral com-
ponents will be more expressed then in the cases of
stationary processes. Consequently, we can use the SK
as a indicator for a frequency band where the signal’s
non–stationarities are most expressed.
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5 FAULT SIGNATURES
Since there is no model for the motor or any historical
data, the presence of a fault can only be determined
by comparing the vibration signal from the examined
motor against the vibration signal from a fault–free
motor. In order to be able to make a proper compar-
ison all tests were conducted under the same speed
(frot=38Hz), which is the nominal motor speed. The
measurements where conducted on a batch of 60 mo-
tors, containing different types of faults. The presented
fault signatures are taken from a particular experimen-
tal runs representing each type of simulated faults.

5.1 Fault-free motor
Under nominal speed frot, the pulse width modulation
has frequency at fpwm = 5× frot. The factor 5 origi-
nates from the motor construction, i.e. 5 pole brushless
DC motor.

The vibration signal of the fault free state is domi-
nated by the three frequencies marked as PWM , 10×
frot = 387.3Hz, and its second harmonic 20 × frot,
shown in Figure 2. The first component originates
from the pulse with modulation of the power supply
fpwm. The other two components at 10 × frot and
20 × frot are actually the 2nd and 3rd harmonics of
the fpwm.

Frequency [f/frot]

fpwm

20× frot

10× frot

0 5 10 15 20 25
0

0.5

1

1.5

2 ×10−3

Figure 2: Envelope spectra of the vibration signal from
fault-free motor

Frequency [f/frot]

BPFI

2×BPFI

frot
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0.01

0.015
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0.025

Figure 3: Envelope spectra of the vibration signal for
inner race fault
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Figure 4: Envelope spectra of the vibration signal for
outer race fault

Frequency [f/frot]

FTF

BPFO
10× frot

0 5 10 15 20 25
0

0.2

0.4

0.6

0.8

1

1.2 ×10−3

Figure 5: Envelope spectra of the vibration signal for
lack of lubrication fault

5.2 Bearing inner and outer race faults
Two separate experiments were done in order to exam-
ine the vibration signature in the presence of inner and
outer bearing fault respectively.

The envelope spectrum of the vibration signal for
the inner race fault is shown in Figure 3. The spec-
trum is dominated by the BPFI, see (1), and its 2nd
harmonic. It should be noticed that the amplitudes of
these components are several times larger then the am-
plitudes of the components in the fault-free case. Sim-
ilarly, the spectrum of the outer race fault, shown in
Figure 4, is dominated by the BPFO and its 2nd har-
monic.

Besides the different dominant spectral components,
the spectra of bearing inner and outer race faults sig-
nificantly differ in the amplitude range of the spectral
components. The spectral components for the case
of outer race fault have significantly larger amplitudes
due to the fact that the damage done on the outer race
was more severe compared to the damage on the bear-
ing with inner race fault.

5.3 Lack of lubrication
The envelope spectrum for this fault is shown in Fig-
ure 5. Unlike the bearing inner and outer race faults
this spectrum does not contain any new spectral com-
ponents compared to the spectrum of the fault–free
case. Even more, comparison with the fault-free case
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Figure 6: Envelope spectra of the vibration signal for
unbalance fault

reveals that the amplitudes of almost all spectral com-
ponents are smaller. The spectrum is not dominated
by the spectral components at 10 × frot and its sec-
ond harmonic as it was in the fault-free motor. Similar
observation was done by (Singh and Kazzaz, 2009).
They noticed that in the case of lack of lubrication the
spectrum of the vibration signal has no dominant har-
monics. The absence of dominant components as well
as lower amplitudes, compared to the fault–free case,
makes this fault very difficult to detect.

The spectral component with the largest amplitude
is the fundamental train frequency (FTF). This compo-
nent is not visible in the fault-free state because pres-
ence of lubrication damps the vibrations caused by the
rolling bearing elements. This effectively removes or
significantly attenuates the FTF spectral component.
Since there is no lubricant to act as a damper, these
vibrations are clearly visible in the envelope spectrum.

Apart from FTF component, the spectrum for lack
of lubrication also contains spectral components of
bearing outer race fault. This is due to the fact that
the BPFO is 9th harmonic of FTF, i.e. BPFO =
Z×FTF , where Z is the number of rolling elements.
The amplitude of this component is quite smaller then
the corresponding one in the case of pure outer ring
fault. Since the mentioned components are not present
in the fault free case they can be used as an additional
feature for detection of this fault.

5.4 Rotor unbalance
This fault is characterized by stronger first and second
harmonics of the shaft rotating speed. Accordingly,
the fault is most visible in the first harmonic of the
rotational speed. The spectrum of the vibration signal
for a rotor with unbalance is dominated by the spectral
component of the rotational speed frot (cf. Figure 6).
The amplitude is several orders bigger then the one in
the fault–free case.

6 FAULT DIAGNOSTICS
Fault diagnostics process consists of fault isolation and
identification tasks. The fault isolation task is a pro-
cess of determination of the kind, location and time
of detection of a fault, where as the fault identifica-
tion task is a process of determination of the size and
time–variant behavior of a fault (Isermann and Ballé,

1997). The task of fault diagnostics of the BLDC mo-
tor was done by comparing the features extracted from
the acquired vibration signals with a pre–determined
set of features for each particular fault obtained from
a signal–model, (eg. the bearing principle fault fre-
quency components Eq. (1) in the envelope spectrum).
Such approach opens a way for employing several al-
ready developed methods for classification or pattern
recognition. In this manner, clustering has been one
of the most commonly used approaches. Fault diagno-
sis using clustering method is performed by defining a
cluster for each expected fault as well as an additional
cluster representing the fault–free products. The deter-
mination of the clusters’ parameters can be performed
using different approaches of supervised or unsuper-
vised learning (Leia et al., 2008). Recently support
vector machines (SVM) have been used to optimize
the boundary between the adjacent clusters (Jack and
Nandi, 2001). Besides clustering approaches, Artifi-
cial Neural Networks (ANN) with Genetic Algorithm
(GA) optimization have been also used for the purpose
of fault diagnosis (Samanta, 2004). Although the re-
sults of fault diagnostics using any of these methods
are satisfactory, there are several limitations. Firstly,
for the purpose of training, the mentioned algorithms
require sufficiently high amount of training data. Fur-
thermore, it was not shown how an expert’s knowledge
or some startard’s requirements can be incorporated in
the proposed methods. Finally, the training process
consisted of only a limited set of faults, and the perfor-
mance of the methods was not evaluated for the cases
of unforeseen faults.

The insufficient amount of training data, and the in-
ability to simulate all possible faults were the main ob-
stacles in using any of the listed machine learning tools
for the task of fault diagnosis of EC motors. One way
around this limitations is to use some methods from the
field of maintenance decision support. In such manner
we have selected an approximate reasoning technique
called Transferable belief model (TBM). This method
allows incorporation of expert’s knowledge in the cre-
ation of the incidence matrix and also on the selection
of features and intervals of their acceptable values. All
these information remove the need for high amount of
training data, needed in the case of machine learning
approaches. Moreover, the cases of unforeseen errors
are resolved by using the strength of conflict parame-
ter, which can be treated as measure of uncertainty for
the performed diagnosis.

6.1 Transferable belief model
The fault isolation part of the diagnostic system is
based on the transferable belief model (TBM) (Smets
and Kennes, 1994). Besides the degrees of belief for
each fault candidate, the approach also provides a mea-
sure for confidence in diagnostic results, referred to as
the strength of conflict.

The TBM derives from the Dempster–Shafer the-
ory of evidence by introducing the concept of “open-
world”. It simply says that the set of all propositions
Ω consists of the three subsets: (PP ) the set of pos-
sible propositions, (IP ) impossible propositions and
(UP ) the unknown propositions. Classical reasoning
schemes do not operate with UP.

The purpose of the TBM is to compute the
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belief masses for the fault candidates PP =
{f1, f2, · · · , fn, ff} given the measured features
{r1, r2, · · · , rM} (Rakar and Juričić, 2002; Juričić et
al., 2001). Here ff denotes the fault–free case. There
is no need to consider elements of IP , as the beliefs
are assigned only to PP . The elements of UP can
be transferred to PP if new evidence becomes avail-
able. The qualitative relationship between faults and
features is expressed in terms of the incidence matrix
Λ = [λi,j ]. An entry λi,j 6= 0 means that the jth fault
triggers the ith feature (|ri,j | ≥ fi). The symbol hi
denotes the predefined threshold value.

TBM reasoning is performed in two steps. In
the first step, basic belief masses m are assigned
to the subsets Ai = {∀fj |λi,j 6= 0} and Bi =
{∀fj ∨ ff |λi,j = 0}, i = 1, 2, · · · ,K, j =
1, 2, · · · ,M , where Ai and Bi are mutually comple-
mentary (m(Bi) = 1−m(Ai)).

The belief masses can be set-up as follows

mi(Ai) =
1

1 + 1−a
a

(
hi

ri

)2γ , (7)

where a is the belief mass assigned at threshold hi and
γ is an adjustable smoothing parameter.

In the second step, the belief masses 0 ≤ m(fi) ≤ 1
for individual faults and the fault–free case are cal-
culated by using the unnormalized Dempster rule of
combination. In the diagnostic context, where features
are used as the source of evidence, the rule takes the
following form:

m(fi) = (m1 ⊕m2 ⊕ · · · ⊕mK)(fi)

=
k∏
j=1

fi∈Ai

mj(Ai)
k∏
j=1

fi∈Bi

mj(Bi) (8)

As a result, a ranked list of faults is obtained. Por-
tion of belief not assigned to any of the faulty states is
assigned to the empty set:

m(φ) = 1−
M+1∑
i=1

m(fi) (9)

This measure is referred to as the strength of con-
flict, which may be caused by various sources such
as modelling errors, noise and unknown or unforeseen
faults. It can be treated as a measure of confidence
in the diagnostic results, which provides an interesting
feature of this theory.

7 EXPERIMENTAL RESULTS
7.1 Incidence matrix
From the analysis conducted in Section 5 we derived
the incidence matrix Λ, shown in Table 2. The faults
are labeled as follows:
Fault 1. Rotor unbalance,
Fault 2. Bearing outer race fault,
Fault 3. Bearing inner race fault and
Fault 4. Lack of lubrication.

Besides the listed faults, there is an additional state, the
fault–free motor. Since the state does not indicate fault
in the remaining part of the paper it will be marked as
ff which stands for fault–free. Entry “1” in the inci-
dence matrix indicates that the fault affects the corre-
sponding feature, where entry “0” indicated indepen-
dence between the fault and the corresponding feature.

For feature values we selected the amplitudes of a
specific spectral components from the envelope spec-
trum obtained with the spectral kurtosis method. The
corresponding thresholds were determined heuristi-
cally, by taking into consideration the quality limits
defined by the manufacturer.

Table 2: Incidence matrix Λ
No. Feature F1 F2 F3 F4
1 RMS 1 1 1 1
2 frot 1 0 0 1
3 FTF 0 1 0 1
4 BPFO 0 1 0 1
5 2×BPFO 0 1 0 1
6 BPFI 0 0 1 0
7 2×BPFI 0 0 1 0

7.2 Validation of the diagnostic system
In order to evaluate the performance of the diagnostic
system three different fault cases are presented: fault–
free, rotor unbalance fault and bearing outer race fault.
Feature values have been normalized, by dividing the
feature value with the corresponding threshold, thus in
all following figures the threshold, marked with dashed
line, has value of “1”.

In case of fault–free motor (Figure 7), all features
are below the threshold. The algorithm assigns al-
most all belief to fault–free case (marked as ff ). The
strength of conflict is almost zero, m(φ) = 0.096.
High belief mass assigned to the fault free case and low
strength of conflict undoubtedly confirms the fault–
free case. This is expected since all the features
have significantly lower values than the corresponding
thresholds.

Contrary to the first case, some features in the case
of unbalanced rotor (Fault 1) have much higher val-
ues then the corresponding thresholds. The diagno-
sis algorithm properly classifies this case with a belief
m(f1) = 0.7 and strength of conflict m(φ) = 0.285
(Figure 8).

The last case represents a motor which has a bearing
that was not properly mounted. The algorithm assigns
a belief m(f2) = 0.28 to the bearing outer race fault
and m(f1) = 0.15 to the fault–free case (Figure 9).
Additionally the strength of conflict is m(φ) = 0.57.
The algorithm’s decision for this case is ambiguous.
However, the high strength of conflict indicates high
uncertainty in the decision, and in such cases addi-
tional examination should take place. Although for
this case the algorithm failed to provide distinctive de-
cision on a particular fault, it assigned low belief that
the examined motor was fault–free.

The benefit of using the transfer belief model is
most clearly visible in the last case. The boolean
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Figure 7: Fault–free case

logic would have decided that the motor was fault–free
since all features have values lower than correspond-
ing thresholds. On the other hand, the TBM assigned
bigger belief mass to the particular fault but most im-
portantly it assigns lower belief mass to the fault–free
case and high strength of conflict. Furthermore TBM
has the ability to react properly on unforeseen faults.
In such cases, the method will not assign belief mass
to any existing fault, or the values will be near 0, but
the strength of conflict parameter would get large val-
ues approaching 1.

8 CONCLUSION
The aim of this paper was to evaluate the effectiveness
of end quality assurance system. Due to the strict pro-
duction quality standards the fault detection procedure
had to be able to detect even the smallest deviations
from the fault–free motor. The use of spectral kur-
tosis for the feature extraction process has enabled a
significant increase in sensitivity. The method allows
a systematic approach in finding the frequency band
where the impulses generated by localized faults are
most clearly visible. Features extracted from such a
selected band are good indicators of a presence of a
particular fault.
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Figure 8: Rotor unbalance

Based on these features a diagnostic procedure is
performed employing transferable belief model. Un-
like the most machine learning approaches, TBM
method does not require experimental runs for train-
ing, since the knowledge is incorporated within the in-
cidence matrix. Furthermore the result of this method
is a ranked list of possible faults with an appropri-
ate belief assigned to each one. Another asset of the
TBM method is the strength of conflict parameter.
This parameter provides extra information about the
uncertainty of the diagnostic process, which is a valu-
able information in the decision process, which be-
comes quite apparent in the cases of unforeseen faults.
We can conclude that the approximate reasoning ap-
proaches, like the TBM, in conjunction with an effec-
tive feature extraction method, like the spectral kurto-
sis, represent an effective diagnostic tool.
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Figure 9: Bearing outer race fault

NOMENCLATURE
BPFO Ball pass frequency outer (race)
BPFI Ball pass frequency inner (race)
FTF Fundamental train frequency
BSF Ball spin frequency
Z Number of bearing roller elements
D Bearing pitch diameter
d Bearing ball diameter
α Bearing contact angle
frot Bearing inner race rotational fre-

quency
x(t) Faulty bearing vibrations
y(t) Faulty bearing measured vibrations
n(t) Noise
s(t) System’s impulse response
τi Random time lag between two con-

secutive pulses
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A. Rakar. Model-based condition monitoring of
an actuator system driven by a brushless dc motor.
Control Engineering Practice, 9:545–554, 2001.

(Kar and Mohanty, 2006) C. Kar and A. R. Mohanty.
Monitoring gear vibrations through motor current
signature analysis and wavelet transform. Mechan-
ical Systems and Signal Processing, 20:158–187,
2006.

(Leia et al., 2008) Yaguo Leia, Zhengjia Hea,
Yanyang Zia, and Xuefeng Chena. New clustering
algorithm-based fault diagnosis using compensa-
tion distance evaluation technique. Mechanical
Systems and Signal Processing, 22:419–435, 2008.

8



Annual Conference of the Prognostics and Health Management Society, 2009

(McFadden and Smith, 1984) P.D. McFadden and
J.D. Smith. Vibration monitoring of rolling element
bearings by the high-frequency resonance tech-
nique - a review. Tribology International, 17:3–10,
1984.
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