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ABSTRACT 

The ultimate goal of most prognostic 
systems is accurate prediction of the 
remaining useful life of individual systems 
or components based on their use and 
performance.  This class of prognostic 
algorithms is termed Effects-Based or Type 
III Prognostics.   Traditional individual-
based prognostics involve identifying an 
appropriate degradation measure to 
characterize the system's progression to 
failure.  These degradation measures may 
be sensed measurements, such as 
temperature or vibration level, or inferred 
measurements, such as model residuals or 
physics-based model predictions using 
other sensed measurements.  Often, it is 
beneficial to combine several measures of 
degradation to develop a single parameter, 
called a prognostic parameter.  A 
parametric model is fit to this parameter 
and then extrapolated to some predefined 
critical failure threshold to estimate the 
system's remaining useful life.  Commonly, 
identification of a prognostic parameter is 
accomplished through visual inspection of 
the available information and engineering 
judgment.  However, a set of metrics to 
characterize the suitability of prognostic 
parameters has been proposed.  These 
metrics include monotonicity, 
prognosability, and trendability.  
Monotonicity characterizes a parameter's 
general increasing or decreasing nature.  
Prognosability measures the spread of the 
parameter's failure value for a population of 

systems.  Finally, trendability indicates 
whether the parameters for a population of 
systems have the same underlying trend, 
and hence can be described by the same 
parametric function.  This research 
formalizes these metrics in a way that is 
robust to the noise found in real world 
systems.  The metrics are used in 
conjunction with a Genetic Algorithms 
optimization routine to identify an optimal 
prognostic parameter for the Prognostics 
and Health Management (PHM) Challenge 
data from the 2008 PHM conference.   * 

1. INTRODUCTION 

Prognostics is one component of a full health 
monitoring system for a system or component of 
interest. Health monitoring systems commonly use 
several modules which monitor a system's 
performance, detect changes, identify the root cause 
of the change, and then predict the remaining useful 
life (RUL) or probability of failure (POF).  
Prognostics completes the final step of this system; 
estimation of the RUL of a system and associated 
uncertainty bounds.  Accurate RUL estimation can 
play an important role in increasing safety, reducing 
downtime, ensuring misson completion, and 
improving the corporate bottom line. 

                                                
* Jamie Coble et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution 3.0 United 
States License, which permits unrestricted use, distribution, and 
reproduction in any medium, provided the original author and 
source are credited. 
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For most safety-critical components, the ultimate 
prognostic goals is accurate RUL estimation based on 
the current and projected future condition of the 
specific component.  (Lu and Meeker, 1993) 
developed the General Path Model (GPM) to assess 
equipment reliability using degradation measures of 
the specific component or system, or appropriate 
functions thereof.  The GPM assumes that there is 
some underlying parametric model to describe 
component degradation.  The model may be derived 
from physical models or from available historical 
degradation data.  Typically, this model accounts for 
both population (fixed) effects and individual 
(random) effects.   

Although GPM was originally conceived as a method 
for estimating population reliability characteristics, 
such as a time to failure distribution, it has since been 
extended to individual prognostic applications 
(Upadhyaya et al, 1994).  In prognostic applications, 
the fitted model is extrapolated to some known 
failure threshold to estimate the RUL of a particular 
component or system.  The data used to fit this model 
is called a prognostic parameter.  Prognostic 
parameters may be sensed measurements, such as 
temperature or vibration level, or inferred 
measurements, such as model residuals or physics-
based model predictions using other sensed 
measurements.  Often, it is beneficial to combine 
several measures of degradation to develop a single 
parameter.  Selection of an appropriate parameter is 
key for making useful RUL estimates.  Parameter 
features such as trendability, monotonicity, and 
prognosability can be used to compare candidate 
prognostic parameters.  Several methods for 
identifying possible prognostic parameters are 
available, including visual inspection of sensed data 
and model residuals, Principal Component Analysis, 
and optimization methods.  With a formalized set of 
metrics to characterize the suitability of each 
candidate parameter, traditional optimization 
methods, such as gradient descent methods, genetic 
algorithms, and machine learning techniques, can be 
used to automate the identification of prognostic 
parameters. 

This paper presents the results of research in 
automating prognostic parameter identification.  The 
following section presents the methodologies used, 
including the GPM prognostic model and Genetic 
Algorithms method of optimization.  Then, the 
proposed methodology is applied to the Prognostics 
and Health Management (PHM) Challenge problem 

posed at the 2008 PHM Conference.  Finally, some 
conclusions are made about the proposed parameter 
identification system and areas of future work are 
outlined. 

2. METHODOLOGY 

Prognostics is one component in a larger health 
monitoring system which also includes system 
monitoring, fault detection, and diagnostic modules.  
Figure 1 gives a diagram of a typical health 
monitoring system.  Data collected from a system of 
interest is monitored for deviations from normal 
behavior.  Monitoring can be accomplished through a 
variety of methods, including first principle models, 
empirical models, and statistical analysis (Hines et al, 
2006).  The monitoring module can be considered an 
error correction routine; the model gives its best 
estimate of the value of the system variables 
assuming that the system is operating in a nominal 
way.  These estimates are compared to the data 
collected from the system to generate a series of 
residuals.  Residuals characterize system deviations 
from normal behavior, and can be used to determine 
if the system is operating in an abnormal state.  A 
common test for anomalous behavior is the 
Sequential Probability Ratio Test (SPRT) (Wald, 
1945).  This statistical test considers a sequence of 
residuals and determines if they are more likely from 
the distribution that represents normal behavior or a 
faulted distribution, which may have a shifted mean 
value or altered standard deviation from the nominal 
distribution.  If a fault is detected, it is often 
important to identify the type of fault; systems will 
likely degrade in different ways depending on the 
type of fault and so different prognostic models 
should be used for each fault mode.  Expert systems, 
such as fuzzy rule-based systems, are common fault 
diagnosers.  Finally, a prognostic model is employed 
to estimate the RUL of the system.  This model may 
include information from the original data, the 
monitoring system residuals, and the results of the 
fault detection and isolation routines.  Estimation of 
the RUL is the focus of the current work.   

 
Figure 1: Modules in a Full Health Management System 

The problem of accurately and precisely predicting 
remaining useful life is very complicated; as such 
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many methodologies and algorithms have been 
proposed to address this problem.  These methods 
can be classified based on the type of information 
used to make predictions (Hines et al, 2007).  This 
scheme leads to three classes: traditional reliability-
based, stressor-based, and condition-based.  Type I, 
or reliability-based, prognostics is traditional time to 
failure analysis.  Examples include Weibull analysis, 
exponential and normal distribution analysis.  This 
group of methods does not consider operating 
conditions or environment when making RUL 
estimates.  Typically, systems operating in harsher 
conditions will fail more quickly while those in 
milder environments, more slowly.  Type II, or 
stressor-based, prognostics incorporate operational 
and environmental condition data in RUL estimation.  
Type II methods can be used if operating conditions, 
such as load, input current and voltage, ambient 
temperature, vibration, etc., are measurable and 
correlated to system degradation.  Algorithms in this 
class include specific formulations of the Markov 
Chain model and shock model.  Although more 
specific than Type I models, Type II models are 
deficient because they neglect unit-to-unit variance.  
The final class of algorithms, Type III or condition-
based prognostics, characterizes the lifetime of a 
specific unit or system operating in its specific 
environment.  Extrapolation of a general path model 
(GPM) to some pre-defined failure threshold is the 
most common Type III method.  The GPM is 
employed in the current research and is described in 
detail in the following section. 

2.1 The General Path Model 

The General Path Model (GPM), also called 
degradation modeling, was first proposed by (Lu and 
Meeker, 1993) to move reliability analysis methods 
from failure-time analysis to failure-process analysis.  
Traditional methods of reliability estimation use 
failure times recorded during normal use or 
accelerated testing to estimate a time of failure (TOF) 
distribution for a population of identical components.  
In contrast, GPM uses degradation measures to 
estimate the TOF distribution.  The use of historical 
degradation measures allows for the direct inclusion 
of censored data, which gives additional information 
on unit-wise variations in a population.   

GPM analysis begins with some assumption of an 
underlying functional form of the degradation path 
for a specific fault mode.  The degradation of the ith 
unit at time tj is given by: 

€ 

yij =η(t j ,φ,θi) + εij  (1) 

where φ is a vector of fixed (population) effects, θi is 
a vector of random (individual) effects for the ith 
component, and εij ~ N(0,σ2

ε) is the standard 
measurement error term.  Application of the GPM 
methodology involves several assumptions.  First, the 
degradation data must be describable by a function, 
η; this function may be derived from physics-of-
failure models or from the degradation data itself.  In 
order to fit this model, the second assumption is that 
historical degradation data from a population of 
identical components or systems is available.  This 
data should be collected under similar use (or 
accelerated test) conditions and should reasonably 
span the range of individual variations between 
components.  Because GPM uses degradation 
measures instead of failure times, it is not necessary 
that all historical units are run to failure; censored 
data contains information useful to GPM forecasting.  
The final assumption of the GPM model is that there 
exists some defined critical level of degradation, D, 
beyond which a component no longer meets its 
design specifications, i.e. the component has failed.  
Therefore, some components should be run to failure 
in order to quantify this degradation level.  
Alternatively, engineering judgment may be used to 
identify this threshold if the nature of the degradation 
parameter is explicitly known. 

The GPM reliability methodology has a natural 
extension to estimation of remaining useful life of an 
individual component or system; the degradation path 
model, yi, can be extrapolated to the failure threshold, 
D, to estimate the component's time of failure.  This 
type of degradation extrapolation was first proposed 
by (Upadhyaya, et al, 1994).  In that work, the 
authors used both neural networks and nonlinear 
regression models to predict the RUL of a small 
induction motor.  The prognostic methodology used 
for the current research is described below.   

First, exemplar degradation paths are used to fit the 
assumed model.  These stage-1 parameter estimates 
are used to evaluate the random-effects distributions, 
to determine the mean population random effects, the 
mean time to failure (MTTF) and their associated 
standard deviations, and to estimate the noise 
variance in the degradation paths.  The MTTF 
distribution can be used to estimate the time of failure 
for any component which has not yet been degraded.  
As data is collected during use, the degradation 



Annual Conference of the Prognostics and Health Management Society, 2009 

 4  

model can be fit for the individual component.  This 
component-specific model can be used to project a 
time of failure for the component.  

The methodology described considers only the data 
collected on the current unit to fit the degradation 
model.  However, prior information is available from 
the historic degradation paths used for initial model 
fitting, including the mean degradation path and 
associated distributions.  This data can provide 
valuable knowledge for fitting the degradation model 
of an individual component, particularly when only a 
few data points have been collected or the collected 
data suffers from excessive noise.  A basic 
methodology to include prior knowledge in linear 
regression models via dynamic Bayesian updating 
has been investigated and is briefly described below.  
The interested reader is referred to (Gelman et al, 
2004; Lindley and Smith, 1972; Robinson and 
Crowder, 2000) for a more thorough discussion. 

A linear regression model is given by: 

€ 

Y = bX  (2) 

The model parameters are estimated as: 

€ 

b = XTΣy
−1X( )

−1
XTΣy

−1Y  (3)
 

where Σy is the variance-covariance noise matrix for 
the response observations.  It is important to note that 
the linear regression model is not necessarily a linear 
model.  The data matrix X can be populated with any 
function of degradation measures, including higher 
order terms, interaction terms, and functions such as 
sin(x) or ex.  If prior information is available for a 
specific model parameter, i.e. βj~N(βjo,σ2

β), then the 
matrix X should be appended with an additional row 
with value one at the jth position and zero elsewhere, 
and the Y matrix should be appended with the a priori 
value of the jth parameter.   

€ 

X* = X; 0 ... 0 1 0 ... 0[ ]
Y* = Y; β j[ ]  (4)

 

Finally, the variance-covariance matrix is augmented 
with a final row and column of zeros, with the 
variance of the a priori information in the diagonal 
element.   

  

€ 

Σy
* =

σ y
2 0 ... 0
0  0 0
0 … σ y

2 0
0 0 0 σβ j

2

 

 

 
 
 
 
 

 

 

 
 
 
 
  (5)

 

If knowledge is available about multiple regression 
parameters, the matrices should be appended multiple 
times with one additional row for each parameter. 

It is convenient to assume that the noise in the 
degradation measurements is constant and 
uncorrelated.  Some a priori knowledge of the noise 
variance is available from the exemplar degradation 
paths.  If this assumption is not valid for a particular 
problem, then other methods of estimating the noise 
variance must be used.  The assumption of 
uncorrelated noise allows the variance-covariance 
matrix to be a diagonal matrix consisting of noise 
variance estimates and a priori knowledge variance 
estimates.  If this assumption is not valid, including 
covariance terms is trivial; again these terms can be 
estimated from historical degradation paths.   

After a priori knowledge is used to obtain a posterior 
estimate of degradation parameters, this estimate 
becomes the new prior distribution for the next 
estimation of degradation parameters.  The variance 
of this new knowledge is estimated as: 

€ 

1
σ post,β j

2 =
n
σ y
2 +

1
σ prior,β j

2
 (6)

 

where n is the number of observations used to fit the 
current model.   

Several limitations and areas of future work of the 
GPM have been identified by (Meekeret al, 1998).  
Some of these areas have been addressed in work by 
other authors.  First, Meeker, et. al. cite the need for 
more accurate physics of failure models.  While such 
models are helpful for understanding degradation 
models, they may not be necessary for RUL 
estimation.  In fact, if exemplar data sets cover the 
range of likely degradation paths, it is adequate to fit 
a function which does not explain failure modes but 
accurately models the underlying relationships.  With 
this idea, neural networks have been applied to GPM 
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reliability analysis (Chinnam, 1999; Girish et al, 
2003).   

In addition, the GPM was originally developed for 
reliability analysis of only one fault mode.  In 
practical applications, the system of interest may 
consist of several components each with different 
fault modes, or of one component with several 
possible, even simultaneous fault modes.  These 
multiple degradation paths may be uncorrelated, in 
which case extension of the GPM is trivial: reliability 
of a component for all degradation modes is simply 
the product of the individual reliabilities, and RUL 
can be considered some function of the RULs for 
each fault mode, such as the minimum.  If, however, 
the degradation measures are correlated, extension of 
the GPM is more complicated.  For example, in the 
case of tire monitoring, several degradation measures 
may contain information about tire reliability, 
including wall thickness, tire pressure, and tire 
temperature.  However, it is easy to see that these 
measures may be correlated; a higher temperature 
would cause a higher pressure, etc.  The case of 
multiple, competing degradation modes is beyond the 
scope of the current work, but is a key topic in 
prognostic methods of this kind.  A discussion of the 
problem can be found in (Wang and Coit, 2004).  

2.2 Choosing a Prognostic Parameter 

Identification of an appropriate prognostic parameter 
is key for applying a GPM prognostic model to a 
system.  An ideal prognostic parameter has three key 
qualities: monotonicity, prognosability, and 
trendability (Coble and Hines, 2009).  Monotonicity 
characterizes the underlying positive or negative 
trend of the parameter.  This is an important feature 
of a prognostic parameter because it is generally 
assumed that systems do not undergo self healing, 
which would be indicated by a non-monotonic 
parameter.  It should be noted that this assumption is 
not valid for some components such as batteries, 
which may experience some degree of self repair 
during short periods of nonuse.  However, for 
mechanical components or systems with a 
combination of electronic and mechanical 
components, this assumption holds.  The importance 
of the monotonicity measure should be determined by 
the operator for a specific system.  Prognosability 
gives a measure of the variance in the critical failure 
value of a population of systems.  A wide spread in 
critical failure values can make it difficult to 
accurately extrapolate a prognostic parameter to 

failure.  Finally, trendability indicates the degree to 
which the parameters of a population of systems have 
the same underlying shape and can be described by 
the same functional form.  These three intuitive 
metrics can be formalized to give a quantitative 
measure of prognostic parameter suitableness.  
Ideally, these metrics would each range from zero to 
one, one indicating a very high score on that metric 
and zero indicating that the parameter is not suitable 
according to the particular metric.  

Monotonicity is a straightforward measure given by:  

€ 

Monotonicity =
no.of d

dx > 0
n −1

−
no.of d

dx < 0
n −1  (7)

 

where n is the number of observations in a particular 
history.  The monotonicity of a population of 
parameters is given by the average absolute 
difference of the fraction of positive and negative 
derivatives for each path.  When using data collected 
or inferred from actual systems, it is important to 
adequately smooth the data to give more accurate 
estimates of the derivatives.   

Prognosability is also easily calculated as the 
variance of the final failure values for each path 
divided by the mean range of the path.  This is 
exponentially weighted to give the desired zero to 
one scale: 

Prognosability

€ 

= exp −std(pfail ) /mean pstart − pfail( ) (8)
 

where p is the value of the prognostic parameter.   

Characterizing the trendability of a population of 
parameters is slightly more complicated than the 
other two.  A candidate parameter is trendable if each 
parameter in the population can be modeled by the 
same underlying functional form.  This can be 
measured to some degree by comparing the fraction 
of positive first and second derivatives in each 
parameter.  Again, when using real-world data, these 
parameters should be smoothed to give a more 
accurate estimate of the derivatives.  The current 
working formalization of trendability is given by: 

€ 

ti =
no.of d

dx > 0
n −1

+
no.of d 2

dx 2 > 0
n − 2

 

€ 

Trendability =1− std(ti)  (9) 
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where n is the number of observations in the ith 
parameter.  This metric is particularly sensitive to 
noise.  Improvements to the measure are the subject 
of ongoing research.  

A population of good parameters is shown in Figure 
2.  This group of parameters monotonically increases, 
has closely clustered failure values, and appears to 
have the same basic shape.  Figure 3 shows the same 
population of parameters with measurement noise 
artificially added to the curves.  Again, this is a very 
useful parameter, but the addition of noise will make 
it more difficult to fit parametrically.  This is 
reflected in the parameter metrics.  Finally, Figure 4 
gives an example of a poor prognostic parameter.  
The parameters for the population do not share the 
same basic shape, nor does failure occur at the same 
value.  The monotonicity, prognosability, and 
trendability metrics for the three sets of parameters 
are given in Table 1.   

 
Figure 2: An Example of a Good Prognostic Parameter 

 
Figure 3: An Example of a Noisy Prognostic Parameter 

 
Figure 4: An Example of a Poor Prognostic Parameter 

Table 1: Prognostic Parameter Suitability Metrics 
   Monotonicity  Prognosability  Trendability 

Good Parameter 
(Fig 1) 

1.00  0.976  1.00 

Noisy Parameter 
(Fig 2) 

1.00  0.789  0.935 

Poor Parameter 
(Fig 3) 

0.500  0.264  0.026 

Several methods are available for identifying 
candidate prognostic parameters, including visual 
inspection of sensed data and model residuals, 
Principal Component Analysis, and traditional 
optimization methods.  Traditionally, parameter 
identification is done through visual inspection and 
engineering judgment.  While visual inspection can 
lead to the identification of useful prognostic 
parameters, it can be tedious and time consuming 
when parameters are needed for several components 
or fault modes, and the optimal parameter may be 
overlooked in favor of a suitable one.  Automated 
methods for identifying prognostic parameters are 
possible with a formalized set of metrics to 
characterize their suitability.  By defining a fitness 
function as a weighted sum of the three metrics: 

€ 

fitness = a∗monotonicity + b∗ prognosability
+c ∗ trendability (10)

 

a set of prognostic parameters can be compared to 
determine the most suitable one.  Here, the constants 
a, b, and c control how important each metric is in 
the optimization.  In addition to optimizing simply 
for the parameter metrics, the prognostic parameter 
can also be optimized for other features perhaps not 
directly related to parameter performance. For 
instance, in order to reduce the uncertainty in the 
RUL prediction, it is beneficial for the first and 



Annual Conference of the Prognostics and Health Management Society, 2009 

 7  

second derivatives to have the same sign, i.e. 
increasing functions are convex and decreasing 
functions are concave.  This can be included in the 
fitness function by simply adding a large penalty for 
mismatch of first and second derivatives.  Other such 
features may also be included as they apply to the 
desired parameter optimization.  These constants can 
each be identically one to give equal weight to each 
parameter feature, or they may give unequal weight 
to more important features depending on the specific 
application.  This fitness function is used with 
optimization techniques such as gradient descent, 
genetic algorithms, and genetic programming to 
identify useful prognostic parameters. 

2.3 Genetic Algorithms 

Classical optimization attempts to minimize the cost 
function by starting at an initial set of parameter 
values and utilizing function and derivative 
information to hone in on a minimum value.  This 
type of optimization can quickly breakdown if the 
initial values are close to a local minimum; classical 
optimization will assume the first minimum it finds is 
the global minimum which is not necessarily true.  
Genetic algorithm (GA) optimization works 
differently by testing a random population of initial 
parameter values and mimicking the processes of 
evolution to optimize these values, as outlined in 
Figure 5.  Because of the pseudo-random nature of 
the parameter populations evaluated, GA 
optimization is sometimes able to ignore local 
minima in search of a global minimum. The specifics 
of GA optimization are not vital to this paper; a full 
discussion of continuous genetic algorithms is 
available in (Haupt and Haupt, 2004) 

 
Figure 5: Flowchart of Genetic Algorithm Optimization 

3. APPLICATION TO DATA 

This section presents the results of applying the 
described prognostic parameter identification 
methodology to the data set given in the 2008 PHM 
Challenge Problem.   

3.1 PHM Challenge Data Description 

The PHM Challenge data set consists of 218 cases of 
multivariate data that track from nominal operation 
through fault onset to system failure.  Because the 
nature of the PHM challenge was to develop a 
prognostic model without any specific knowledge of 
the system of interest, the exact nature of the data 
simulation is not described here.  The interested 
reader is referred to (Saxena et al, 2008).  The data 
has three operational variables and 21 sensor 
measurements.  Initial data analysis resulted in the 
identification of six distinct operational settings and 
10 sensed variables that seemed to change with cycle 
time; therefore, the set used in this section has been 
reduced to 11 variables: 5 (the operating condition 
indicator), 7, 8, 9, 14, 16, 19, 20, 22, 25, and 26.  For 
this example application, the eleven variables are 
monitored with an auto associative kernel regression 
(AAKR) model.  The residuals between the measured 
values and the AAKR "corrected" values are 
candidates for inclusion in the prognostic parameter.  
Two of these residuals are shown below in Figure 6.  
The residual shown at the top is expected to be useful 
for prognostic predictions, while the residual shown 
at the bottom is not expected to be useful because the 
population of residuals do not all have similar shapes 
or equal failure values.  These type of residuals can 
grouped into several groups of similar residuals; this 
may be indicative of different failure modes, but this 
idea was not pursued for this work. For this simple 
application, only linear combinations of the residuals 
are considered for possible prognostic parameters.  
However, it is a straightforward extension of the 
method to include other features, such as the 
measured data or fault detection results, or to allow 
for higher order terms such as nonlinear 
combinations of several inputs, exponential terms, 
etc.  

Competing prognostic parameters are identified from 
the monitoring system residuals, one identified 
through visual inspection and one identified using 
genetic algorithms.  Both of these parameters are 
used to develop a basic prognostic model and make 
RUL estimations for an example case.  The following 
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sections present the results of prognostic parameter 
identification and  RUL estimation. 

 

 
(a) 

 
 (b) 

Figure 6: Residuals which are expected to be (a) useful 
and (b) un-useful for prognostics 

3.2 Results 

Two competing prognostic parameters are identified.  
The first parameter is based on visual inspection and 
expert analysis.  Another parameter is identified 
using the suitability metrics described coupled with a 
GA routine.  The resulting prognostic parameters and 
results of RUL estimation using them are given 
below.  A GPM model with dynamic Bayesian 
updating is developed using each candidate 
parameter.  The models are tested on a set of 
validation data and the mean absolute percent error is 
given as a measure of performance.   

Visual Inspection Visual inspection of the 
residuals suggests that an appropriate parameter 
might be a weighted average of residuals 2, 3, 4, 6, 8, 
and 9.  For this work, the six residuals are simply 
summed to give one prognostic parameter.  The 
resulting parameter is shown in Figure 7. Using a 

linear combination of different useful features in this 
way is sometimes referred to as parameter bagging 
and is a common variance reduction technique.  
Table 2 gives the parameter suitability metrics for 
each of the residuals and the final prognostic 
parameter.  As the table shows, each of the chosen 
model residuals have total suitability greater than 2.0.  
In addition, the final parameter that is used for 
prognostics has higher suitability than any one of the 
constituent residuals.   Identification of this 
parameter involved several weeks of expert analysis 
of the available data. 

 

Figure 7: Prognostic Parameter Identified by Visual 
Inspection 

Table 2: Prognostic Parameter Suitability Metrics 

Residual # Monotonicity Prognosability Trendability Total 

1 0.43 0.38 0.74 1.55 

2 0.63 0.66 0.77 2.06 

3 0.61 0.70 0.75 2.07 

4 0.76 0.78 0.77 2.31 

5 0.70 0.33 0.69 1.72 

6 0.84 0.84 0.78 2.46 

7 0.71 0.30 0.61 1.61 

8 0.74 0.63 0.75 2.13 

9 0.70 0.73 0.77 2.20 

10 0.59 0.28 0.75 1.62 

11 0.57 0.29 0.76 1.61 

Final Parameter 0.86 0.89 0.82 2.57 

This prognostic parameter was used to develop a 
GPM prognostic model with dynamic Bayesian 
updating, as described previously.  The results of this 
model are given in Figure 8.  As the figure shows, 
most of the estimations are close to the actual values, 
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but several large outliers are present which reduce the 
performance of the model significantly.  When 
considering all 259 test cases used, the mean absolute 
percent error is nearly 100% because of these 
outliers; however, most estimates are correct to 
within a few percent.   

 
Figure 8: RUL Estimation with the Visual Inspection 

Parameter 

GA Optimized Parameter Another 
parameter was identified through genetic algorithm 
optimization.  The GA was used to optimize the 
coefficients in a weighted sum of the eleven 
parameters.  A genetic algorithm optimization was 
applied to the following fitness function, which gives 
equal weight to each of the three parameter suitability 
measures: 

€ 

fitness = monotonicity + prognosability + trendability  (11) 

The GA optimization identified appropriate 
coefficients for the linear combination of the eleven 
variables.  While the visual inspection parameter 
involved several weeks of expert analysis, the GA 
optimizations involved only a fraction of an actual 
manhour and approximately an hour of unsupervised 
computer runtime.  While the time needed for the GA 
optimization to run will scale with the number of 
possible inputs, it involves mainly computer runtime 
and is only a fraction of the time needed for 
parameter identification through expert opinion.  The 
parameter identified by the GA optimization is given 
in Figure 9. 

 
Figure 9: GA-optimized Prognostic Parameter 

The parameter suitability metrics for each parameter 
are given in Table 3.  The fitness of the GA-
optimized parameter is slightly better than that of the 
parameter identified via visual inspection.  This may 
be further improved by standard GA improvement 
techniques, such as coupling the result with a 
gradient descent optimization or running the GA 
several times to find the best result.    

Table 3: Parameter Suitability Metrics 
   Monotonicity  Prognosability  Trendability 

VI Param   0.859  0.894  0.817 

GA Param   0.933  0.909  0.805 

The GA-optimized prognostic parameter was also 
used to develop GPM prognostic models.  Figure 10 
gives the results for the prognostic model developed 
with the GA-optimized parameter. The RUL 
estimates resulting from the model built with the GA 
parameter are better than those from the first model. 
Further research is needed to improve the fitness 
function for the parameter identification method and 
application to RUL estimation; this is left to future 
work. 

 
Figure 10: RUL Estimates for First GA-optimized 

Parameter 
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The sample application presented here benefited from 
the extensive expert analysis needed to identify a 
parameter through visual inspection, in that a subset 
of possible parameter inputs had already been 
identified.  In applications with a larger domain of 
inputs, which could include the actual signals, the 
monitoring system predictions, information on usage, 
environment, and load, and fault alarm and diagnostic 
results, as well as higher order terms of any of these 
inputs, an input selection technique may be applied to 
identify possibly useful parameter inputs prior to the 
GA optimization.  This will greatly reduce GA 
runtime and help ensure that a near optimal 
parameter is identified.   

4. CONCLUSIONS 

This research presented a set of suitability metrics 
and a methodology for identifying prognostic 
parameters from data.  Prognostic parameters are 
used in individual-based prognostic models to 
characterize the lifetime of a specific component in 
its specific environment.  Identification of 
appropriate parameters is vital to accurate and precise 
remaining useful life (RUL) estimation.  Three 
parameter suitability metrics were proposed: 
monotonicity, prognosability, and trendability.  
Monotonicity characterizes a parameter's general 
increasing or decreasing nature.  Prognosability 
measures the spread of the parameter's failure value 
for a population of systems.  Finally, trendability 
indicates whether the parameters for a population of 
systems have the same underlying trend, and hence 
can be described by the same parametric function.  
An example application was given to illustrate the 
identification of prognostic parameters from 
monitoring system residuals.  First, a parameter was 
identified through visual inspection and expert 
analysis.  An additional parameter was identified 
using genetic algorithm optimization.  The GA 
optimized parameter had slightly higher parameter 
suitability metrics and resulted in more accurate RUL 
estimates. For this example, the major benefit of 
using the optimization routine was in the reduced 
time needed to identify an appropriate parameter.  
More complicated systems, i.e. systems with more 
monitored variables and candidate parameter 
constituents, may also benefit from increased 
prognostic model performance as visual inspection 
will likely result in a significantly less optimal 
parameter. 

5. FUTURE WORK 

Several areas of greater study remain to complete this 
work.  Most importantly, the robustness of the 
suitability metrics to noisy data needs to be studied.  
There is a particular concern about the robustness of 
the trendability metric; formulation of a metric which 
is immune to the effects of noise but still captures the 
dynamics of the data is ongoing.  Addition of other 
features in the fitness function might help identify 
simpler parameters. Other desirable features of the 
prognostic parameter can be included to encourage 
those features in the final parameter selection, such as 
correlations between the starting degradation and the 
failure time, estimates of the noise in the parameters, 
and desirable concavity features.  In addition, the 
multi-objective fitness function equally weighted 
each of the suitability metrics; however, it may be 
more useful to weight the metrics differently.  A 
study of the resulting prognostic model performance 
will reveal the importance of this weighting.  Finally, 
development of an input selection technique to 
couple with the GA optimization will greatly improve 
optimization runtime by reducing the number of 
possible combinations which may be considered and 
will help extend the applicability of the method to 
systems with many sensed variables.  
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