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ABSTRACT 

The paper presents health indices (HI) for 
monitoring and prognostics of machine 
condition. HI are developed using morphology 
and entropy based complexity measures of 
machine vibration signals. The indices are 
compared with a recently introduced energy 
based feature and the commonly used 
statistical measure of signal kurtosis. The 
procedure of extracting HI is illustrated first 
using the simulated response of a simple gear 
model with tooth crack. Next the HI extraction 
process is applied to the experimental 
vibration data of a helicopter drivetrain 
gearbox with a seeded tooth fault. The 
effectiveness of the extracted HI is compared 
for gear condition monitoring and 
prognostics.* 

1 INTRODUCTION 

Prognostics and health management (PHM) is gaining 
importance as a requirement for the reliability of safety 
critical systems used in aerospace, military and 
commercial applications that mandate continuous 
uptime. PHM is critical to condition based maintenance 
(CBM) and reliability assurance of engineering 
systems. The assessment of machine condition utilizes 
various temporal patterns including oil-debris analysis, 
temperature profile, acoustic and vibration signals. Due 
to ease of measurement and analysis, vibration based 
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monitoring and prognostic approach is quite common 
in CBM of machines (Heng et al., 2009; Vachtsevanos 
et al., 2006; Jardine et al., 2006; Hardman et al., 1999). 
 CBM involves three principal steps, namely, data 
acquisition, signal processing, and maintenance 
decision-making based on diagnostics and prognostics.  
The signal processing step involves analysis of the 
acquired vibration data to identify a suitable health 
index (HI) characterizing the machine condition, both 
in type and level of faults. The remaining useful life 
(RUL) can be estimated for a predefined threshold from 
the trend of HI. The HI include time domain features 
(Honchmann and Bechhoefer, 2003; Samanta, 2004; 
Choi and Li,  2006; He and Bechhoefer, 2008; Samanta 
and Nataraj, 2009a), frequency spectrum (Zakrajsek et 
al., 1995), wavelet amplitude pattern of residual signal 
(Wang et al., 2004; Samanta and Nataraj, 2008a), 
signal energy (Al-Balushi and Samanta, 2002; Samanta 
and Nataraj, 2009b), and signal complexity measures 
(Yu et al., 2006; Yan and Gao, 2007; Janjarasjitt et al., 
2008), among others.  
 Several measures like approximate entropy (ApEn), 
sample entropy (SampEn), and multiscale entropy 
(MSE) have been proposed as indicators of complexity 
(or lack of regularity) of time series signals in 
biomedical domain (Pincus, 1991; Richman and 
Moorman, 2000; Costa et al., 2005). These information 
entropy based features are used for short and noisy 
physiological signals as alternatives to other nonlinear 
system measures like Lyapunov exponent and 
correlation dimension (Henry et al., 2002).  SampEn 
has been shown to have better accuracy than ApEn over 
a wide range of conditions (Richman and Moorman 
2000). The MSE introduced by Costa et al. (2005) 
measures complexity of the time series by computing 
SampEn over multiple scales. The scale factor is one 
for the original signal. For each scale factor, a new time 
series is constructed by dividing the original time series 
into non-overlapping windows of length equal to the 
scale, with each window being replaced by its average. 
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 Some of these signal complexity measures, namely 
ApEn and permutation entropy, have been used for 
machine condition monitoring (Yu et al., 2006; Yan 
and Gao, 2007; Janjarasjitt et al., 2008). However, there 
is a need to study the effectiveness of these complexity 
measures as potential HI in comparison with other 
measures for condition monitoring and prognostics of 
machines.  
 Mathematical morphology (MM) was introduced to 
analyze shape-size complexity of images through basic 
morphological operations of erosion (contraction), 
dilation (expansion), opening (erosion followed by 
dilation) and closing (dilation followed by erosion) 
using a simple structuring element (SE) (Maragos and 
Schafer, 1987; Maragos, 1989a; 1989b). Though the 
initial applications of MM were mainly in the field of 
image processing and analysis, there have been 
growing interests in other domains including 
biomedical signal processing (Sun et al., 2003; Sun et 
al., 2005; Xu et al., 2007). In recent years, 
morphological signal processing (MSP) has been used 
on vibration signals for detection and diagnosis of 
machine conditions (Nikolaou and Antoniadis, 2003; 
Zhang et al., 2008; Wang et al., 2009). In a recent work 
(Samanta and Nataraj, 2008b), the authors used MSP to 
extract multiscale pattern spectrum (PS) (Maragos, 
1989b) and proposed a novel entropy based feature 
from PS as the HI for monitoring and prognostics of 
machinery condition.  
 The present work uses the information entropy 
based complexity measure SampEn and compares it 
with the PS entropy (PSEn) for development of suitable 
HI. These indicators are also compared with energy 
based feature called energy index (Al-Balushi and 
Samanta, 2002; Samanta and Nataraj, 2009b) and 
signal kurtosis.  In this work, each HI has been 
developed using the evolving average of the feature 
instead of its instantaneous value, similar to (Samanta 
and Nataraj, 2008b; 2009b). The procedure of feature 
extraction has been illustrated using the simulated time 
response of a simple gear model with a tooth crack 
(Smith, 2003; Honchmann and Bechhoefer, 2003). The 
effect of tooth crack has been modeled as a reduction in 
tooth stiffness during its engagement. Next, the process 
of HI development has been applied to  the vibration 
dataset of a helicopter drivetrain gearbox with a seeded 
tooth fault (Hardman et al., 1999).The effectiveness of 
these HI has been compared for both datasets. 
 The rest of the paper is organized as follows. 
Section 2 briefly presents the background information 
on MSP and the formulation of the PS entropy based 
HI. Section 3 gives a brief discussion on the complexity 
measure SampEn. In Section 4, energy based feature EI 
is briefly discussed.  Section 5 presents  the 
evolutionary average of the HI. Section 6 describes a 
simple model for simulating the dynamics of a spur 

gear pair with a crack developing in one of the teeth.  In 
section 7,  results on HI are presented for vibration data 
of the simulated gear response and the helicopter 
gearbox test data. The salient features of the present 
work are summarized in section 8.  

2 MORPHOLOGICAL SIGNAL PROCESSING 

In this section, analysis of time domain vibration 
signals using MSP is briefly discussed for 
completeness. For details, readers are referred to 
(Maragos and Schafer, 1987; Maragos, 1989a; 1989b; 
Samanta and Nataraj, 2008b). 

2.1 Basic Morphological Operations  

The basic idea of MSP is to modify and extract the 
geometrical features of a signal by its morphological 
convolution with another object of simpler shape and 
size, termed as structuring element (SE). The selection 
of SE, in terms of shape and size (scale), is an 
important issue in MSP. The basic morphological 
operations are defined  for a one-dimensional sampled 
function f(i) with a discrete-valued SE, g(j), (i∈I, j∈J, 
J<I) as follows: 
 
Erosion:  ),g(j)j)(f(imin   (i) g)  (f −+=Θ                  (1) 
Dilation:   , )g(j)j)(f(imax   (i) g)(f +−=⊕                (2) 
Opening:   ,(i) g)  )g  f(( g)(i)  (f ⊕Θ=o                       (3) 
Closing:     (i) g)  )g f(((i) g)  (f Θ⊕=• .                   (4) 
 
where Θ, ⊕,   o and • denote morphological operators 
for erosion, dilation, opening and closing respectively. 
For a sampled signal with a small, flat SE, the erosion 
of the signal reduces the peaks and enlarges the 
minima. Similarly, the dilation of the signal increases 
the valleys and enlarges the maxima. The opening 
operation smoothens the time signal from below cutting 
down the peaks and the closing operation smoothens 
the signal from top filling up the valleys. Thus closing 
and opening operations can be used to detect peaks and 
valleys respectively in a signal. The peaks (valleys) of 
the function can be obtained subtracting opening 
(closing) from the function. This is quite useful in 
analyzing signals of impulsive nature, especially in the 
presence of machinery faults and background noise. 
The scale of SE should be larger than the widths of the 
peaks and the valleys for proper detection and or 
elimination of the peaks and valleys (Nikolaou and 
Antoniadis, 2003). 

2.2 Multiscale Morphology Analysis and Pattern 
Spectrum 

Most of the traditional MM used single-scale analysis 
with a SE of fixed scale selected a priori based on the 



Annual Conference of the Prognostics and Health Management Society, 2009 

 3 

nature of the signal. Quite often in single-scale 
applications, it is not possible to have the prior 
knowledge for selecting the scale of a SE. The a priori 
selection of scale in traditional MM is overcome with 
the introduction of multiscale morphological filters 
(Maragos, 1989b). In the multiscale approach, SE of 
scales (n=0,1,2,..., N) are used for morphological 
analysis. For a discrete-valued function g(j), j∈J, used 
as the basic SE, the function pattern can be defined as 
follows: 
 

      { }⎩
⎨
⎧

=
⊕⊕⊕=

.00g
,(n times)  g...gggng
                  (5) 

 
For a nonnegative sampled signal, f(i), i∈I and a SE, g,  
PS is defined as follows: 

 
Nn0     ],g)1n(fngf[S)n,g,f(PS ≤≤+−=+ oo ,      (6) 
Kn1     ],g)1n(fngf[S)n,g,f(PS ≤≤−•−•=− .      (7) 

 
Where ∑=

i
)i(f)f(S , N is the maximum size of n such 

that ngfΘ is not all -∞, f has sufficient dc-bias such that 
Nn 0, g  f ≤∀≥o and K is the minimum size of n. 

 
The PS contains useful qualitative information about 
the signal (f) shape and size relative to the SE (g). The 
degree of shape content of g in f is given as normalized 
PS: 

)f(S/)n,g,f(PS)n(q = .                 (8) 
 
It is worth mentioning that MSP has some apparent 
similarities with wavelet transform (WT). For example, 
SE is similar to mother wavelet, and both MSP and WT 
are applicable for processing non-stationary signals. 
The distinguishing feature between these techniques is 
that MSP is capable of handling nonlinearity of signals 
whereas WT is limited to linear signals. In some recent 
applications, both MSP and WT have been used 
combining their advantages (Jia et al., 2006).  In the 
present paper, MSP is preferred to WT because of the 
capability of MSP in handling nonlinear signals 
commonly encountered in rotating machines.  

2.3 Pattern Spectrum Entropy  

The quantitative measure of shape-size complexity of a 
signal relative to a SE pattern is obtained as an average 
roughness from its PS using the concepts of 
information theory (Maragos, 1989b): 

                     ∑−=
=

N

0n
)n(qlog)n(q)g/f(H .            (9) 

H(f/g) is termed as PS entropy and its normalized form 
is defined as:  

 
)1Nlog(/)n,g,f(H)g/f(H r += .              (10) 

 
There are two versions of normalized PS entropy, HrO 
and HrC, corresponding to PS with opening PS(f,g,+n) 
and closing PS(f,g,-n), respectively. 

3 SAMPLE ENTROPY 

Among different complexity measures, sample entropy 
(SampEn) is considered in this work. This section gives 
a brief discussion on SampEn. For details, readers are 
referred to (Richman and Moorman, 2000). SampEn is 
defined as the negative logarithm of the conditional 
probability that two sequences that are similar for m 
points (dimension m), remain similar at the next point 
(m+1), within a tolerance r, Eq. (11). The probability 
density function is estimated using Eq. (12), where Λ 
represents Heaviside function and L  is the length of the 
time series.  

    
⎟
⎟
⎠

⎞
⎜
⎜
⎝

⎛
−=

+

)r(A

)r(Aln)L,r,m(SampEn
m

1m
                (11) 

    
)xxr(

)1L(L
2)r(A

L

1i

L

1j

m
j

m
i

m ∑ ∑ −−Λ
−

=
= =

            (12) 

 

SampEn is widely used for nonlinear discrimination 
between datasets based on the lack of regularity or 
complexity of their underlying dynamics. A time series 
with higher complexity (or less regularity) will have a 
higher value of SampEn than a more regular one (with 
higher degree of predictability).   

4 ENERGY INDEX (EI) 

In this Section, a brief review is presented on the 
energy based feature proposed in previous research (Al-
Balushi and Samanta, 2002; Samanta and Nataraj, 
2009b) for condition  monitoring of machines. EI  is 
defined as square of the ratio between root mean square 
(RMS) value for a segment of the signal and the overall 
RMS value of the entire signal. For a uniform 
consistent signal, the value of EI is 1.0 for all segments. 
However, for a segment which has relatively higher 
activities, either in the form of high amplitude levels or 
additional high frequency energy components, the 
value of EI will be higher than 1.0, while it will be less 
than 1.0 for other segments with relatively lower level 
of activities. The higher the value of EI, the greater is 
the energy concentration for that specific segment 
which needs to be monitored.  
 For a gearbox signal, the segment energy 
corresponds to the duration of engagement of each gear 
tooth, and the total energy corresponds to one complete 
revolution of the gear wheel. In this development, it is 
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assumed that the number of teeth in the gear under 
investigation is known a priori. It is also assumed that 
the gear speed is constant over a complete revolution 
(cycle) even though the speed may vary between 
cycles. The proposed feature (EI) will be applicable 
even if the meshing periods vary between the cycles. 
Under the assumption of constant gear speed over a 
cycle, the meshing period of a tooth is constant and the 
independent variable, time of sampling over a cycle, 
may be replaced by the angular position of the gear. 
The time to angle transformation, in presence of 
variation in instantaneous gear speed over a cycle, can 
be taken care of by interpolating the gearbox signal and 
re-sampling it at the intervals matching exactly with the 
required angular increments. In this approach, both the 
gearbox signal and the gear shaft rotational speed can 
be sampled at fixed rates.  
 In terms of signal samples, EI for individual gear 
tooth i and time index (cycle number) k, EI(i,k), can be 
obtained as follows: 

                      

⎪
⎪
⎭

⎪
⎪
⎬

⎫

⎪
⎪
⎩

⎪
⎪
⎨

⎧

∑

∑
=

=

+−=
L

1j

2

TiN

1TN)1i(j

2

T

))k,j(x(
L
1

))k,j(x(
N
1

)k,i(EI            (13) 

 
where indices i, j, and k represent the current number of 
gear tooth, sample (within a cycle) and time index 
(cycle number) respectively,  i (1 ≤  i ≤  P), j (1 ≤  j  ≤  
L) and k (1 ≤  k ≤  M). The parameters P, N and M 
represent the total number of teeth, samples for one 
revolution of the gear, and cycles respectively. NT 
represents number of samples corresponding to one 
gear tooth. x(j,k) represents the value of sample j at 
time index k and is considered to be a random variable. 
It should be noted that the first point of the time series 
x(1,k) corresponds to the beginning of the first gear 
tooth for each cycle so that each NT samples correspond 
to a single tooth without any overlap. In Eq. (13), the 
numerator is the expected value of the mean square 
(MS) of samples within the shifting window that frames 
individual tooth as it travels from the first to the last. 
The denominator of the equation represents the 
expected value of the MS of the whole signal and needs 
to be computed only once for a cycle. 

5 EVOLUTIONARY AVERAGE HI 

In an earlier work (Al-Balushi and Samanta, 2002) 
several forms of EI, namely,  cumulative (cEI) and 
evolutionary average (aEI) were proposed and their 
relative effectiveness in diagnosing the machine state 
were demonstrated. The main advantage of using 
cumulative value, cEI, over the current value of EI is 
that the recurring events show up prominently in the 

plot of cEI as the corresponding energy contributions 
add up. The spurious events become insignificant in the 
plot of cEI as the contributions are not consistent 
although these may have high values of EI at certain 
points of time. The EI values between any two 
successive cycles can be clearly seen from the plot of 
cEI. These features are useful in identifying the 
localized faults. The cumulative value of a feature (EI) 
gives an indication about the accumulation of the value 
over the entire period of investigation. The concept of 
evolutionary average of EI has been extended to other 
features (HI) to represent the variation over the period 
for any tooth i at time (cycle) index k(>0), as follows: 

                                                                                            

⎪⎩

⎪
⎨
⎧

∑ >

=
=

=

k

1l
0k),l,i(HI

k
1

0k  ,0
)k,i(aHI                    (14)        

In the present work, evolutionary average of each HI  
has been used as the monitoring index for  gear 
condition. 

6 GEAR CRACK MODEL 

The dynamic model for simulating vibration of a gear 
pair in mesh can be represented in form of an 
equivalent single degree of freedom system as follows 
(Smith 2003; Hochmann and Bechhoefer, 2003): 
 

  
                                                                   (15) 

 
where Ie is the equivalent mass of the gear pair, c is the 
system viscous damping coefficient, s is the tooth 
stiffness, x(t) is the time varying gear vibration, Fe is 
the equivalent force due to the input and output torques 
on the gear pair, θ(t) is the gear rotation and e(t) is the 
gear transmission error. The expressions for the 
equivalent mass and the external force are given as 
follows: 
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where Ip, Ig are the rotary inertia of the pinion and the 
gear, rp and rg are the corresponding pitch radii, and Tin 
and Tout are the input and the output torques 
respectively. The gear mesh stiffness depends on the 
gear rotation angle. The effect of crack in a tooth is 
modeled as a step reduction in stiffness during the 
period of engagement of the tooth as follows: 

         
⎩
⎨
⎧ θ≤θ<θα

=θ +

otherwise,s
)t()t()t(,s

))t((s 1ii                 (18) 



Annual Conference of the Prognostics and Health Management Society, 2009 

 5 

where i represents the number of the tooth under 
consideration and  θi θ(t ) represents the 
range of the gear angle when the ith tooth is engaged. 
The factor α is a positive number, 0<α≤1, a value of 
α=1 represents a tooth with no crack and a value of α=0 
means the total loss of the tooth. 

7 RESULTS AND DISCUSSIONS 

This section presents the results of feature extraction 
using the simulated vibration data of a gear pair with a 
tooth crack and the experimental dataset of a helicopter 
drive train gearbox with a seeded tooth fault. 

7.1 HI for Simulated Data of Gear Tooth Crack 

The procedure is illustrated through the simulated 
dynamic response of a spur gear pair using Eq. (15). 
The effect of tooth crack is studied considering the 
tooth mesh stiffness to be constant (s) throughout the 
gear rotation except when the tooth is engaged as 
discussed in Eq. (18). The level of crack is simulated 
through a lower value of factor α. The parameters, 
similar to those used by Hochmann and Bechhoefer 
(2003) are given in Table 1. A nominal speed of 800 
rpm is used with 20 teeth for each gear.  A normal 
distribution with an assumed mean and variance has 
been used as the static transmission error, e(t). The 
weakening effect of the gear tooth crack has been 
simulated using two sets of tooth stiffness factors. In 
the first case, a gradual change in factor α, from 1.0 to 
0.70 in steps of 0.02, is used to simulate the gradual 
weakening of the tooth with a uniform rate of increase 
in the crack size. In the second case, α has been 
assumed to vary gradually at the initial stage from 1.0 
to 0.98 in steps of 0.002 to simulate the slow crack 
initiation, then abruptly to 0.90 and finally to 0.70. The 
second case has been considered to simulate the abrupt 
change in tooth stiffness due to rapid weakening of the 
tooth before its failure. 

Table 1: Gear model parameters 

Parameter Value 
Ie 0.25 lb.s2/in 
s 1 × 106 lb/in 
c 50 lb.s/in 
Fe 1 × 103 lb 
emean 1 × 10-6 in 
e std deviation 1/3 × 10-6 in 

 
 Equation (15) has been integrated using fourth-order 
Runge-Kutta method with a step size of 0.15 ms giving 
500 data points for each rotation of the gears. Figure 
1(a) shows the simulated steady state response of the 
gear vibration with no tooth crack. The random nature 
of the time response is due to the assumed normal 

distribution of the static transmission error. In Fig. 1(b), 
the time response is shown for α=0.99. The effect of 
tooth weakening (1%) is evident in the periodic 
response. The time period of 0.075s, between two 
successive peaks, corresponds to the gear rotational 
speed. Figure 1(c) shows the response for α=0.70. As 
expected the periodic response becomes even more 
prominent with a higher level of vibration amplitude.  
 The simulated gear signals have been processed 
further to extract the features, namely, SampEn, 
kurtosis, EI and PSEn for each level of the gear tooth 
crack. Figures 2(a)-(d) show the features for the second 
case of slow crack initiation followed with an abrupt 
change in tooth stiffness. In Fig. 2(a), SampEn starts 
with a high value corresponding to the random nature 
of the gear vibration without any tooth crack for the 
normally distributed transmission error. SampEn 
decreases as the gear response becomes more regular 
with the development of the tooth crack. The signal 
kurtosis in Fig. 2(b) starts with a value close to 3 
implying the normal distribution of the gear response 
without crack and then increases with the weakening of 
the tooth.  In Fig. 2(c), EI remains quite low during the 
initial stages of the crack and then increases due to 
higher amplitudes of gear vibration with weakening of 
the tooth. PSEn starts with a small value, remains small 
during the gradual change in tooth stiffness and jumps 
to higher value towards the end, see Fig. 2(d). It should 
be noted that all features except SampEn show higher 
values with reduction in tooth stiffness. To keep all the 
features positive during the crack development, 
difference of SampEn from its initial value, 
dSampEn(k)=SampEn(1)-SampEn(k), is used for all 
subsequent analysis. For the first simulated case of 
gradual tooth weakening, the extracted features follow 
similar trends, though more gradual. These plots are 
omitted for brevity. 
 HI based on the evolving averages of the features 
have been next obtained using the procedure discussed 
in earlier sections. Figure 3(a) shows the variations of 
the normalized HI with a gradual increase of the tooth 
crack size (represented as reduced tooth stiffness). The 
evolving average of kurtosis has also been computed 
and presented in Fig. 3(a) for comparison with other 
HI. EI and dSampEn (differential SampEn)  have the 
highest sensitivity at the initial stage. Kurtosis and 
dSampEn show similar trends in the mid stage of the 
crack development and increase slowly towards the 
end. PSEn shows almost no change at the initial stage, 
then increases slowly till α≤0.98 and finally rises 
sharply showing a high sensitivity.  
 Figure 3(b) shows similar trends except for the 
slightly higher slopes for HI based on EI and kurtosis 
near the region of abrupt change in tooth stiffness  
compared to the case of gradual change in Fig. 3(a).  
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Figure 1: Simulated gear vibration for different levels 
of tooth fault, S=αs, (a) α=1, (b) α=0.99, (c) α=0.70. 
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Figure 2:  Features extracted from simulated gear 
vibration data (a) Sample entropy, (b) kurtosis, (c) 
Energy index, (d) Pattern spectrum entropy 
 
It should be noted that the x-axes in Figs. 2(a)-(d) and 
Fig. 3(b) show two zones: gradual change from 1 to 
0.980 and abrupt change from 0.980 to 0.700 
corresponding to the simulation of case 2. The plots are 
helpful to compare qualitatively the relative changes in 
features in the two zones simulating, to some extent, 
the gear tooth crack.     

7.2 HI for Vibration Data of Helicopter Gearbox 

This section briefly presents the steps of extracting HI 
from the seeded gear fault vibration data of a helicopter 
drivetrain gearbox. Tests were conducted, from crack 
initiation to failure, on an intermediate gearbox pinion 
of a helicopter drivetrain with a small electric discharge 
notch at the root of a gear tooth (Hardman et al., 1999). 
The number of teeth on the input gear (pinion) and the 
output gear were 25 and 31 respectively with a tooth 
meshing frequency of 1.7145 kHz (corresponding to 
the input shaft speed of 4116 rpm). Two piezoelectric 
accelerometers were placed on the gearbox casing, one 
each at the input and the output side. The shaft speed 
data were recorded using a tachometer. Fourteen sets of 
data from the input side accelerometer were used for 
the present study covering the experimentation period. 
Time synchronous average (TSA) of 20 cycles over a 
complete revolution of the pinion for each time 
(corresponding to a level of gear tooth fault) has been 
used. The frequency spectrum of the average signals 
showed the presence of low frequency interference 
corresponding to the third harmonic of the gear 
meshing frequency. The signals have been high-pass 
filtered to eliminate this interference.  
 Each residual signal has been processed further to 
extract dSampEn, kurtosis and EI and the 

corresponding evolutionary averages for each level of 
the gear tooth fault. 
 The residual signals over one complete revolution 
of the pinion have been shifted to non-negative values 
by adding 1 for MSP. Each non-negative (shifted) 
signal has been subsequently processed through MSP to 
extract PS using a flat SE ={1}10 with a size of 10 
sample points (each having a value of 1). The width of 
basic SE  has been selected based on the examination 
of the residual signal peaks and valleys. For multiscale 
MM and extraction of PS, the scales (n) upto 50 have 
been used. Each PS is further processed to extract PS 
entropy. The evolutionary averages of PS entropy have 
been obtained over the period of experiment. 
 Figure 4 shows the variations of normalized 
evolutionary averages of HI over the period of 
experimentation from the crack initiation to the failure 
of the gear tooth. All four indices show excellent 
sensitivity to the initiation of the gear tooth fault. The 
trends of EI and  kurtosis based HI are similar though 
during the intermediate period of fault development,  EI 
gives  relatively higher values than the latter. Kurtosis 
based HI shows better sensitivity than EI near the total 
failure of the tooth. Both EI and kurtosis based HI keep 
fluctuating during the intermediate section.  The  curve 
of HI based on dSampEn drops to lower value  towards 
the end and remains almost flat reducing its sensitivity 
to changes in gear tooth condition. This lack of 
sensitivity of SampEn based HI may be attributed to the 
lower values of SampEn with higher regularity of the 
gear signal. However, this issue needs further study. 
 The near flatness of the PSEn based HI curve in the 
intermediate section implies sustained level of the 
residual signal in the presence of  fault. It implies that 
shape-size complexity measure (PSEn) remains less 
sensitive to the changes in signal amplitude in the 
intermediate stage of fault development. In other 
words, the signal shape remains relatively unchanged 
during the intermediate stage of tooth fault 
development.  The steep slope of  PSEn based HI 
towards the end of the experimentation period signifies 
almost complete failure of the gear tooth. PSEn and 
kurtosis based HI give better sensitivity to the 
imminent gear failure than other EI. The more regular 
shape of PSEn based index makes it a better candidate 
than others as a potential HI for machinery diagnostics 
and prognostics.  
 The proposed HI based on PSEn conforms to the 
expected ‘bathtub’ trend for fault status in engineering 
systems (Heng et al., 2009; Vachtsevanos et al., 2006).  
It is worth mentioning that the HI curves in Fig. 4 have 
been obtained using the dataset of an accelerated failure 
test of a gearbox. In  actual cases, similar curves can be 
obtained with a much longer time span. These HI 
curves may be established from the legacy data of 
similar systems. A typical HI curve can be used for 
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detection and prognostics of the fault with user defined 
thresholds for each zone. For example, in the present 
case, the following may be used: fault detection level 
HI=0.5 and failure: HI>0.7.   

 

 
Figure 3: Normalized HI for simulated gear vibration 
data with increasing crack size (a) gradual  change, (b) 
abrupt change 

 

 
Figure 4: Normalized HI for helicopter gearbox 
vibration data 

8 CONCLUSION 

Health indices have been presented for machine 
condition monitoring and prognostics using 
morphology and complexity measures of vibration 
signals. The procedure has been illustrated using 
simulated gear vibration data and experimental dataset 
of a helicopter drivetrain gearbox. The features based 
on shape-size complexity (morphology) and 
information complexity measures have also been 
compared with an energy based feature and the 
commonly used signal kurtosis.  All features give 
excellent sensitivity to the fault initiation for both 
simulated and experimental datasets. However, 
morphology based HI (PSEn) shows better sensitivity 
to the imminent failure than other features for the 
simulated dataset. For the experimental dataset, HI 
based on signal morphology shows the expected 
‘bathtub’ trend of fault status. Though the features 
based on energy and kurtosis show progression with the 
crack, these suffer from fluctuations in the intermediate 
section of the failure period.  The MSP based HI shows 
better characteristics than others as a viable HI. It 
would be interesting to apply the HI development 
process using more extensive datasets of in-service 
helicopter drive train gearboxes or similar systems in 
future. The extension of the technique to other types of 
rotating machinery will also be the subject of further 
study. 
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