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ABSTRACT

This paper builds on the ability to produce a com-
prehensive automated Failure Modes and Effects
Analysis using qualitative model based reasoning
techniques. From the FMEA output a diagnostic
system comprised of a set of symptoms and asso-
ciated potential faults can be generated and used
as the basis of an on-board or off-board diagnos-
tic system. This makes it is easy to propose ad-
ditional sensing possibilities for the system, how-
ever a method is required to allow an appropriate
set of sensors to be selected that provide the re-
quired level of diagnosability. The large number
of competing factors outside of the scope of the
modelling combined with the additional system
knowledge required makes it difficult to optimise
automatically. This paper therefore documents a
semi automated technique that provides an engi-
neer with easy access to information about diag-
nostic capability via a matrix visualisation tech-
nique. The focus of the project was the fuel sys-
tem of an Uninhabited Aerial Vehicle(UAV) al-
though the system has also been used on an au-
tomotive electrical system, and is applicable to
a wide range of schematic and component based
systems.

1 INTRODUCTION
This paper presents a technique to allow an engineer
to investigate the relationship between sensor selec-
tion and the ability of a one step diagnostic system
to detect faults. It has been developed as part of
ASTRAEA(ASTRAEA, 2009), a pioneering £32 mil-
lion UK aerospace programme which is addressing
key technological and regulatory issues in order to
open up non-segregated airspace to uninhabited au-
tonomous aircraft.

Failure mode and effects analysis is a technique
that is used to provide a comprehensive description
of the effects of component faults. In the ASTRAEA
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project automated FMEA results were processed gen-
erate symptoms for an onboard diagnostic application.
This automated technique allows for many possible ad-
ditional sensors to be included, however pragmatically
a subset of the possibilities must be chosen and the
challenge is to decide which sensing provides for the
the ‘best’ diagnostic system.

The symptoms can be generated manually from an
FMEA or by automated simulation techniques (Price
et al., 2006; 1997). This work focusses on symptoms
generated automatically, because the approach allows
new diagnostic systems to be rapidly generated based
different sensor sets or allow a fully instrumented sys-
tem to be generated that allows any system parameter
to be considered in the symptom generation process.
The impact of design changes can also easily be in-
corporated into the diagnostic system. While manual
FMEA generally only considers functional effects of
failures, an automated FMEA is able to provide details
of specific behaviour such as sensor readings. This
allows a very comprehensive set of symptoms to be
generated that includes observation combinations that
may not be immediately obvious to an engineer and
in any case would be very tedious to generate manu-
ally. The automated generation of symptoms from an
FMEA will be the subject of a future paper.

In many applications there are various costs (finan-
cial, mass, layout, harness complexity etc) involved
with each sensor resulting in a need to compromise
between diagnostic ability and sensing. Typical issues
that arise are:
• Which faults are diagnosable by the system?
• Which additional sensors could be included to di-

agnose additional or critical faults?
• What is the best ‘diagnostic value’ that can be ob-

tained by adding additional sensors.
Due to the complexity of the mapping between sen-
sors, symptoms and faults it is a non trivial task for
an engineer to answer these questions without tool
assistance. Many existing optimisation methods are
either very specific solutions to an individual system
e.g. (Maul et al., 2007; Mushini and Simon, 2005), or
generic and do not allow varied additional application
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Ce Oe Faults indicated
false false ∅ (no fault information)
false true ∅
true false ¬F (∅ for non negatable symptoms)
true true F implicated

Table 1: Symptom states

specific information to be taken into account (Debouk
et al., 1999; Trave-Massuyes et al., 2006). The prob-
lem has large search spaces and techniques such as ge-
netic algorithms (GA) are often used to find solutions
(Spanache et al., 2004; Mushini and Simon, 2005;
Maul et al., 2007). We found empirically that in many
cases there were simply too many additional consider-
ations that an engineer can resolve but which would be
difficult to provide to a fully automated system.

This work therefore focuses on assisting an engineer
to use their knowledge, while retaining the comprehen-
sive analysis that comes from a detailed whole system
model-based simulation of failures.

The following sections of this paper firstly outline
the generation of the symptoms and their characteris-
tics and we briefly describe a software tool to allow
an engineer to explore the diagnostic system using a
simulator. A graphical approach is presented to assist
an engineer to quickly visualize the diagnostic behav-
ior of the system. (Thompson et al., 1999) also de-
scribes a graphical tradeoff of competing requirements
however these are aimed at architectural choices rather
than sensor selection. This allows rapid investigation
of the sensor selection and placement options avail-
able. The technique has been used on several case
studies including an aircraft fuel system and an auto-
motive Daylight Running Light (DTRL) electrical sys-
tem and these systems with differing diagnostic char-
acteristics are presented as case studies to illustrate the
diagnostic system generation.

2 SYMPTOM GENERATION AND THE
DIAGNOSTIC SYSTEM

Given a set of symptoms S1..SN derived from an
FMEA, each symptom is comprised of a tuple of
(Ce,Oe, F ) where both Ce and Oe are logical expres-
sions and F is a non empty set of faults that are indi-
cated when the symptom is satisfied. Each of these as-
sociated faults will have produced an abnormal set of
observations in the FMEA that will lead to the symp-
tom being satisfied. Ce specifies when the symptom
is applicable and is termed the symptom condition ex-
pression. If Ce is false then the symptom is considered
invalid and cannot be used. Oe is termed the symptom
expression. If Ce∧Oe evaluates true then one or more
of the faults F are indicated. Table 1 shows the possi-
ble states of a symptom.

The third row illustrates a ‘negatable’ symptom able
to exonerate faults (¬F ) and is the reason for Ce
expressions. Negatable symptoms typically produce

fewer symptoms but require more terms in the expres-
sions than non-negatable symptoms. The ability to ex-
onorate faults when observations are absent is impor-
tant when the symptoms are used in some forms of on
board diagnosis based on for example Bayesian net-
works. For garage based or workshop applications it
may be useful to use the non-negatable version where
the concept of symptom validity is not required and the
Ce ∧ Oe conjunction can used as a single expression
directly indicating associated faults.

Both Ce and Oe are logical expressions formed
from boolean observations and the usual logical oper-
ators. Observations may be formed from any available
sensor reading, variable, state or system parameter that
can be observed. Inputs (externally controlled values)
are also considered as measurements and in fact the
diagnostic system does not need to differentiate inputs
and outputs during symptom generation or when in
use, although observations that are required in the con-
ditional part of a symptom often turn out to be inputs
to satisfy the definition of a symptom. Most sensors
produce measurements and a comparison operator is
normally used to for an observation (e.g. pressure <
5, or flow 6= high). The use of a qualitative simulator
(Price et al., 2003; Lee and Ormsby, 1991; Lee, 2000;
Snooke, 2007) makes it unnecessary to consider nu-
merical values at the symptom generation stage since
all measurements produced by the simulator are from
qualitative quantity spaces for example ‘high’, ‘zero’
‘lower than expected’ etc. Typical real symptom ex-
amples are shown in table 2. The example symptoms
demonstrate qualitative analysis; in the final row we
see that when the pump (CP) is on and a valve (TVL)
is set, a low flow transducer (FT) observation indicates
a possible blockage in two places. Clearly a flow meter
will provide a numerical value and a decision must be
made as to what constitutes a ‘low’ value. This could
be done in a number of ways including a character-
ization of each system during manufacture, however
the ASTRAEA project has simply chosen appropriate
thresholds. For real systems found in the aerospace
and automotive application areas we find there are typ-
ically of the order of hundreds of symptoms, diagnos-
ing hundreds of possible faults.

An example automatically generated diagnostic sys-
tem produced from an automated FMEA is illustrated
in figure 2 for a twin engine aircraft fuel system 1. The
tool in the figure allows an engineer to exercise a di-
agnostic system by inserting known faults in the top
panel. The values determined by the simulation are
immediately shown in middle section. The functions
are derived from a functional model of the system that
is used in the generation of the symptoms as well as to
provide interpretation of the behaviour for presentation
to an engineer in an FMEA output (Bell et al., 2007;
Bell and Snooke, 2004; Snooke and Bell, 2002). Func-
tions are not used in the evaluation of the symptoms
(but do have a role in their generation) and are only
shown in the interface to allow easy recognition of the
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Ce Oe F

TVL RL LH.position==‘isolation’ TVL FL LH.tellback==‘crossover’ TVL FL LH.stuck crossover
TVL RL LH.position==‘crossover’∧
CP FL LH.control==‘on’

OC WT RH.tank level==‘higher than
expected’

TP4 FL LH.fracture
TP2 FL LH.fracture
TP4 FL LH.partialblocked

CP FL RH.Control==‘on’∧
TVL RL RH.position==‘normal’

FT FL RH.flow==‘low’ FL1 1 FS RH.partialblocked
TP5 FL RH.partialblocked

Table 2: Example symptoms

Bravo on ADTF

Hist o ry nst  -  o r ig inal versio n 7/ 1/ 2 0 0 8

nst  -  name chang es 11/ 1/ 2 0 0 8

nst  -  chang ed  eng ines 2 5/ 1/ 2 0 0 8

nst  -  chang ed  eng ine ret urn. 8 / 4 / 2 0 0 8

nst  -  chang ed  names + mo d els. 2 9 / 4 / 2 0 0 8

nst  -  chang ed  p ressure mo d els. 15/ 5/ 2 0 0 8
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Figure 1: Fuel system schematic

overall effect of the fault to the user. The lower part of
the screen shows the results of the diagnosis. On the
left are all symptoms where Ce = true. The symp-
tom set is negatable and therefore a check in the I/E
column of figure 2 indicates that Oe = true for the
symptom and therefore indicates a set of faults. There
is no check in the I/E column if Oe = false and in this
case the symptom will exonorate associated faults. A
simple ranking of faults is provided based on the sum
of the total number of symptoms indicating and ex-
onerating each fault (shown in parenthesis). In this
example there are 9 top ranking faults and these are
in fact indistinguishable from the sensing available.
The real diagnostic system includes other information
about symptom and measurement confidence, using
Bayesian methods to provide more fine grained fault
ranking. This tool simply allows the symptom gener-

ation to be verified. Further down the list faults may
have negative scores, showing that there is evidence
from the symptoms that those faults are not present.

The engineer can select or deselect any sensor and
the effect on the diagnosis is shown instantly and this
is useful to check the applicability of specific measure-
ments in specific fault scenarios, however it is not suf-
ficient to allow an engineer to make a sensor selection
for the system due to the number of possible operating
modes and faults possible. It is this issue that provides
the main focus of the remainder of this paper.

3 FAULT MATRICES
The relationship between observations (sensor mea-
surements), symptoms and faults can be represented
using two 2 dimensional matrices as shown in figure
3. A colour coding system is used to indicate the sta-

SYMPTOMS

MEASUREMENTS

FAULTS

1 112
1
2

1
2

7

9

Figure 3: Measurement - Fault Matrix

tus of each element. Green indicates that an item is
available to the diagnostic system (also a small tick is
shown for clarity). Once a measurement is made avail-
able any symptoms that have all the necessary infor-
mation to evaluate their Ce and Oe expressions also
turn green together with any faults that can be diag-
nosed. A lighter green colour (centre dot) indicates
that a measurement is available to a symptom but the
symptom requires further measurements. If a measure-
ment is to be excluded then it will be coloured red (a
small cross shown) and any symptoms and faults that
therefore cannot be diagnosed also turn red. Notice
that it is necessary for all symptoms that can diagnose a
fault to be excluded before the fault is not diagnosable.
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input 
configurations

fault simulation 
results

user selected fault

valid symptoms

diagnosis

Figure 2: Diagnostic evaluator interface

Hence, cells that are pink (dot) indicate a symptom
that cannot be used for a fault that can be diagnosed
using an alternative. Elements that are undecided are
coloured grey. This will be measurements that are nei-
ther chosen or excluded, symptoms that require unde-
cided measurements and do not include excluded mea-
surements, and faults that could still be diagnosed if
additional symptoms (measurements) are included.

A real example for the aircraft fuel system is shown
in figure 4 where it is clear that a structure exists in the
fault behaviour of the system. Simply by selecting and
deselecting measurements at any point in the measure-
ment selection process it is easy to find out which (ad-
ditional) measurements are significant in the context
of the currently available measurements. In this figure
the user has already selected some measurements and
the result of this in terms of the symptoms and faults
that can be diagnosed is shown in green (darker). The
user is considering additional measurements and these
are shown in yellow (lightest).

Patterns in the matrices graphically illustrate some
characteristics of the diagnostic system:
• Highly populated rows in the measurement-

symptom matrix shows measurements that partic-
ipate in many symptoms and are therefore impor-
tant to the diagnostic system.
• Similar patterns existing in more than one row

of the measurement-symptom matrix indicate that
there are several measurements required as a set,
for a given a set of symptoms
• Highly populated columns in the measurement-

symptom matrix indicate symptoms that require
many measurements. In practice we find inputs
such as valve positions and switches that affect
major system state typically have this character-
istic.
• Highly populated columns in the fault - symptom

matrix indicate symptoms that can diagnose many
faults.
• Similar patterns in several fault - symptom

columns show that there may be a choice of
symptoms that diagnose the same set of faults

3.1 The diagonal matrix
To gain an understanding of the relationships con-
tained within the matrices an ‘approximate diagonal
form’ can be generated for either matrix which at-
tempts to place all the matrix elements as close to an
imaginary line from top-left to bottom-right as possi-
ble. Since the matrices are not generally square a true
diagonal matrix in the mathematical sense is not pos-
sible.

The concept of a row (or column) weight is used to
describe the number of cells in either a row or column
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Figure 4: Aircraft fuel system matrix example

to either side of the imaginary diagonal line across the
matrix. Figure 5 shows an example 6 by 4 matrix.
The mid point of rows 1 and 2 are shown by the filled
symbols. The weight of each row is calculated as the
sum of the distance (as a cell count) of each active cell
(shown grey in figure 5) from the mid point. In the up-
per matrix of the example row 1 has a weight of 2

3 and
row 2 has a weight of− 11

3 . By extension, the columns
can be similarly considered. If the imbalance of two
rows is defined as the weight of row n−the weight of
row n + 1, then the rows are swapped if the imbalance
is greater than zero unless the result of swapping the
rows creates a larger imbalance for the rows. In the
example the imbalance is 2

3 − (− 11
3 ) = 13

3 . This is
greater than zero and therefore the rows are swapped
to produce the matrix shown in the lower part of fig-
ure 5, in which the imbalance is − 1

3 − (− 9
3 ) = 8

3 .
Since 8

3 is less than 11
3 the reordered matrix is consid-

ered closer to diagonal than the original and the swap
is retained. A similar procedure is then carried out be-
tween rows 2 and 3, and so on. The overall effect of
swaps is to reorder the lists of measurements, symp-
toms, and faults. Each pair of rows are repeatedly con-
sidered in the manner of the known bubble sort algo-
rithm, using the weight measure as the ordering crite-
rion. However, in contrast to a standard sort the weight

of a row changes (and is therefore recalculated) when
it is moved. The sort is undertaken alternately on rows
and columns.

Once each pair of row and column sorts is com-
pleted the total imbalance of the entire matrix is calcu-
lated as the imbalance sum of all rows plus the imbal-
ance sum of all columns. The alternate sorting of rows
and columns continues until no further reduction in the
total matrix imbalance can be achieved. Once the cho-
sen matrix is in diagonal form the unshared axis of the
other matrix is sorted to make it as diagonal as pos-
sible. At this point the majority of the weight of the
matrix is balanced around the diagonal as closely as
possible. This has the effect of bringing related mea-
surements and symptoms (or symptoms and faults) to-
gether on the diagonal and allows the user/engineer
further insight to the diagnostic capability of the sys-
tem.

The aim is to assist in the selection or removal of
measurement and therefore any elements that are al-
ready decided are NOT included in the process and
are moved to the bottom or right of the matrix. This
is why the diagonal line does not extend the full size
of the matrix in figure 12 (discussed later) which is
also an example of a diagonal symptom-fault matrix
showing distinct sets of symptoms that diagnose dis-
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Weight of row 1 = 0-5/3 + 4-5/3  =  -5/3 + 7/3 = 2/3

1 2 30 4 5

0

1

2

3

MidPoint of row 1 = 1*5/3  =  5/3

Weight of row 2 = 1-10/3 + 2-10/3 = -7/3 + -4/3 = -11/3
MidPoint of row 1 = 2*5/3 = 10/3

Weight of row 1 = 1-5/3 + 2-5/3  =  -2/3 + 1/3 = -1/3

0

1

2

3

MidPoint of row 1 = 1*5/3  =  5/3

Weight of row 2 = 0-10/3 + 4-10/3 = -10/3 + 2/3 = -9/3
MidPoint of row 1 = 2*5/3 = 10/3

Figure 5: Producing the diagonal matrix

tinct sets of faults for an automotive system. In fig-
ure 6 the measurement matrix for the fuel system is
diagonal (compare with figure 4) and in figure 11 the
measurement matrix for the lighting system (discussed
later) has been made diagonal and can be compared
with figure 12 where the fault matrix is diagonal.

4 SENSOR SELECTION
The tool can calculate the maximum number of faults
that can be diagnosed for up to n additional measure-
ments dependent upon the system and time available.
This is an exhaustive search and n can usually only be
a small number since if r is the number of unselected
measurements remaining there are r!

(n∗(r!−n)) combi-
nations of measurements to consider. The best solu-
tion may not necessarily be included in best solutions
for larger numbers of measurements so hill climbing
solutions do not work in general. In addition most
non trivial systems have many possible ‘best’ combi-
nations of n sensors, often due to symmetry in designs
or sensors equivalent for some diagnostic aspect. An
engineer is able to notice these features and decide that
either all or none of a set should be included. For ex-
ample there is little point in being able to diagnose a
left hand circuit aircraft fuel system fault and not an
equivalent right circuit fault. Of course once an en-
gineer has identified a few critical measurements and
perhaps excluded some unobtainable measurements r
decreases allowing larger n to be considered.

4.1 The sensor selection advisor
To assist the engineer the tool can search for the next
best n measurements in terms of the number of faults
able to be diagnosed. An iterative process of measure-
ment inclusion and exclusion can therefore be carried

out until the a diagnostic system is produced with the
required balance between measurement cost, symptom
count (generally this is not a problem) and fault iden-
tification. The next section describes by means of an
example how information is presented to the engineer
at each iteration of the process.

For the example systems (with no previous selec-
tions) a search for n = 3 measurements takes seconds,
5 measurements a minute or so, with a maximum of 8-
10 if an hour can be spared1. However higher numbers
do not actually help in the measurement selection pro-
cess, because the number of numerically equivalent so-
lutions becomes overwhelming. The results naturally
fall into a hierarchy:

1. The results are firstly grouped according to the
number m <= n of measurements involved and
the number of diagnosable faults .

2. All of the measurements involved in any m mea-
surement solution are listed, with any that also
participate in a shorter (i.e. fewer measure-
ments) solution indicated in a lighter font (e.g.
CP FL LH.control).

3. The possible measurement combinations are
grouped according to the fault set diagnosable.

4. The measurements required for each fault set is
given. It is common to find several alternative
sets of measurements that can diagnose the same
set of faults and often the reason is obvious to
the system engineer, for example in figure 9 we
see that either the flow (FL) or return (RL) valve
position can be used.

For clarification, an example of the hierarchy can be
seen in a subsequent example at the lower right of fig-
ure 8.

5 EXAMPLE
The benefit of the diagnosability matrices and are best
illustrated by a worked example of how an engineer
might use the information to select a set of sensors
and generate a diagnostic system. Consider the air-
craft fuel system example of figure 4. From figure 6,
it will be apparent to the skilled user/engineer that for
this system most measurements are needed in several
symptoms because of the horizontal bars in the ma-
trices. If the user/engineer knows that the measure-
ments from the flow meters are definitely available
to the diagnostic system, then this can be selected in
the measurement list by checking boxes as shown, re-
sulting in the appropriate cells in the matrices turning
green. However, it can be seen on the fault matrix that
no cells turn green demonstrating that these measure-
ments alone are not enough to diagnose any fault (see
also the summary at the top of the window).

The pump control values are also known and can
be selected, in figure 7. It can then be seen that these

1using a 2.4Ghz dual core Intel based laptop computer
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Figure 6: Fuel system - Selected flow measurements

observations are part of a symptom superset of the flow
values and so the user may appreciate that it might be
better to use them as a starting point instead of the flow
meters.

The flow meter measurements could be deselected,
but this might lead to un-diagnosable faults. In use,
none of the cells in the symptom-fault matrix turn red
when the flow meter measurements are de-selected,
which indicates that no faults are precluded by not us-
ing the flow meter measurements, i.e. there is always
an alternative symptom available.

The user can request an exhaustive search for the
next best n measurements that provide the maximum
number of fault detections. The search space can be
large so the application firstly will inform the user of
the search space size. In the example of figure 8 these
are as follows:

1. 21

2. 210 (as selected in the example of figure 8)

3. 1330

4. 5985

5. 20349

6. 54264

7. 116280

8. 352716

Each of the measurement sets of the requested
search is listed with any measurement sets that are a
superset of the best measurements using fewer mea-
surements can be highlighted, i.e. in a lighter font.
This distinguishes measurement sets that can be pro-
duced by adding measurements in sequence from a
shorter best solution from those where allowing more
measurements opens up a different set of measure-
ments (usually for a different aspect or function of the
system).

The user is able to select the sets of measurements
from the lists shown in figure 8 and can immediately
see the affected measurements, symptoms and faults
highlighted in (e.g. yellow) on the matrices and the
lists. These can then be selected or rejected as re-
quired. It can be seen on lower right of the figure
that by adding one additional measurement six faults
can be detected (i.e. the left pressure sensor detects 6
blockage faults in the left system and the right pressure
sensor detects 6 blockage faults in the right system).
However, it also possible to detect 80 faults by adding
two measurements. Selecting on the Total 6 measure-
ments message expands it to display all measurements
involved in any pairs that provide these 80 faults, as
shown in figure 9.

The skilled user will appreciate that there are two
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Figure 7: Fuel system - Control valves selected

groups of faults that can be detected (left and right
variants). Considering the first set of faults, it is ap-
parent that the flow meter measurement is common,
plus either of the left flow or return valves. An engi-
neer would know that both valves are, in fact, mechan-
ically slaved and so the measurements are equivalent,
save for a mechanical linkage failure2. If it is known
that the flow valve is most closely connected to the
actuator and return valve slaved to it then this is the
one to choose. Thus, the flow left and right meters
and flow valves are selected as it is pointless to diag-
nose only left or right systems. When this is done, it
can be seen at the top of the resulting window shown
in figure 10 that 116 of the 184 faults are now diag-
nosable using 6 measurements, and these are shown
as diagnosable (green) in the lower matrix and fault
list when this is scrolled. Viewing a schematic of the

Figure 9: Fuel System - Equally good measurements

system colour coded to indicate diagnosable faults will
clearly show that the main fuel and supply return faults
are detectable with the subset of symptoms selected at
this point. The skilled user/engineer can continue this
process of selecting measurements and reviewing the

2the mechanical aspects of the system are not modelled
or included in the FMEA in this example

resulting symptom/fault displays until an optimal se-
lection of measurements is made, ideally one that re-
sults in all faults being diagnosable with no fault being
un-diagnosable using a minimal number of measure-
ments.

It is possible to include features other than simply
the number of faults diagnosed in the definition of best
measurements, e.g. the ability of the diagnostic system
to isolate faults based on the number of different sets
and intersections of sets of faults diagnosed by each
symptom. Weighting of measurements and/or faults
according to physical features such as cost, accessibil-
ity or severity is also possible where such data can be
obtained, and will result in modified orderings and se-
lections.

6 SYSTEM INSTRUMENTATION
The aircraft fuel system example in the previous sec-
tions of this paper had a predefined set of sensors and
observable settings. For other systems the task may be
to determine which sensors to add to build a diagnostic
system. We concentrate on sensors that measure sys-
tem parameters within the domain of the simulation,
so for example in an electrical network rising temper-
atures as a fault symptom could not be produced as a
symptom unless the simulation were to include a ther-
mal model.

It is easy to allow the diagnostic generator to have
access to any system (simulation) parameter, and as an
example we present an automotive daylight running
lights system (DTRL) allowing the current in every
wire in the system as a possible sensor input. Perhaps
unsurprisingly, many symptoms are generated based
on one output observation and a small set of input that
are the triggers for the functionality that will cause
activity at the observation point. The matrices show
which observations are diagnostically equivalent for
various sets of faults, for example the vertical ‘stripe’
patterns in the figure 11 fault - symptom matrix. Figure
11 also demonstrates critical input as a long horisontal
bar in the center of the measurement matrix (lighting
switch position), without which most faults cannot be
diagnosed. The bar is (green) light coloured because
it is clear it must be selected for the majority of the
symptoms to be usable. The lower right of the figure

8
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Figure 8: Fuel System - Result of search for two additional measurements

also demonstrates a situation where three equivalent
alternative measurements may be used. The number
plate lamps have been excluded because they are not
directly observable by a sensor, leaving a choice be-
tween W16 and W27. W27 was chosen and we note
that this makes 3 symptoms redundant (red), although
there is no effect on the number of faults that can be
diagnosed.

In Figure 12 the remaining elements have been di-
agonalised on the fault symptom matrix and groups
of related faults are clearly seen, each block tends to
be related to a different system function, due to struc-
tural locality. Hovering the mouse over each block and
looking at the symptom conditions easily reveals the
states of the system involved, for example the block
under the mouse pointer is related to the sidelights and
the yellow (light coloured) selected symptoms are all
related to the dip lights. Following the process until
all faults are accounted for results in the statistics in
table 3. Most systems exhibit this law of diminishing
returns as more sensors are required to identify fewer
faults.

Measurements
(55 total)

Faults (46
total)

Symptoms
(87 total)

2 17 2
3 19 4
4 28 6
5 35 8
6 38 10
8 42 11
9 43 13
10 44 15
11 45 16
12 46 18

Table 3: DTRL sensor selection

7 CONCLUSION AND FUTURE
ENHANCEMENTS

The work presented in this paper builds on the recently
developed capability to develop symptom sets based
on an automated simulation based FMEA. It provides
an engineer with tools to investigate the diagnostic
ability of a system or product based on existing or
additional sensing. Both on board and workshop di-
agnostic systems could be produced and evaluated by
modifying the visibility of the available observations.
The tools have been applied to a number of systems

9



Annual Conference of the Prognostics and Health Management Society, 2009

Figure 10: Fuel system - left and right main fuel supply diagnosed

including an aircraft fuel system containing 98 compo-
nents and 239 possible faults [Snooke07] and a number
of automotive electrical systems.

Sometimes diagnostics require specific computa-
tions or information from additional domains and these
cannot be included unless the system simulation pro-
duces the relevant measurements. For specialist di-
agnostic data it is possible to include a module into
the system that produces any such computed results
using the usual component modeling capabilities in-
cluding state machines and general computations. The
symptom generator will then utilize any of these spe-
cialist measurements that fulfill a diagnostic capabil-
ity, allowing an engineer to experiment with a number
of possible specialist measurements, to determine how
well they perform. Some systems contain distinct op-
erating modes and symptoms often relate to specific
modes only due to their condition expressions. These
modes could be identified and included in the diag-
nostic generation process to allow choices to be made
concerning when faults can be detected during system
operation. A good deal of this information is already
contained in the functional description of the system
and it may therefore be possible to indicate selected
information on the matrices via additional colouring
or symbolism.

The tool concentrates on optimizing the total num-
ber of diagnosable faults. In some applications the
ability to isolate faults (to a replaceable unit) and the
ability to diagnose faults in specific operating modes
is important. In addition there are a number of ranking
measures that may be available for fault types, or com-
ponent failure instances, or affected system functions,
all of which could be used to guide the sensor selection
advisor. These additions are feasible future additions
to the tools that would allow a more tailored diagnostic
system to be generated.

There are a few additions to the graphical interface
that would improve the tool, for example the ability
to select elements by region in the matrices, and to
present lists of the elements within these selected re-
gions for inclusion or exclusion.
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Figure 11: Instrumented DTRL system
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