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ABSTRACT 

The ability to forecast machinery failure is vital to 
reducing maintenance costs, operation downtime and 
safety hazards. Recent advances in condition monitoring 
technologies have given rise to a number of prognostic 
schemes (both model-based and data-driven) that attempt 
to forecast machinery health by constructing health 
propagation models for the underlying systems. In 
particular, algorithms that use the data-driven approach 
learn models directly from the data, rather than using a 
hand-built model based on human expertise. This paper 
introduces a novel architecture for data-driven Failure 
Prognosis of complex non-linear systems using Least 
Squares Support Vector Regression Machines (LSSVR). 
An adaptive recurrent LSSVR machine is proposed and 
augmented with a Bayesian Inference scheme that allows 
probabilistic estimates of future health deterioration. 
Extensions for efficient multi-step long-term prognostics 
and Remaining Useful Life (RUL) calculation are 
suggested. Data from a seeded fault test for a UH-60 
planetary gearbox plate is used to test the online 
performance of the prognostics algorithm. 
 
1. INTRODUCTION 

Rapid growth in modern day industry, such as nuclear 
power plant, automobile and shipbuilding, industry, has 
resulted in the development of increasingly complex non-
linear systems with complicated controls and feedback 
loops. Today’s complex and advanced machines demand 
highly sophisticated and costly maintenance strategies 
leading to much improved instrumentation and monitoring 
capabilities. Current maintenance strategies have 
progressed from breakdown maintenance, to preventive 
maintenance, then to condition-based maintenance (CBM) 
managed by experts, and lately towards a futuristic view of 
intelligent predictive maintenance systems in effect 
extending lifecycles, lowering downtimes and improving 

mission management capabilities (Heng 2009).  This 
just-in-time predictive maintenance approach is 
referred to as system Prognostics in the reliability 
industry. 
 
Essentially, the approaches for prognostic reasoning 
are based on one of the following three 
methodologies: (1) physical modeling, (2) model-
driven statistical learning techniques and (3) data-
driven statistical learning modeling (Kothamasu 
2006), (Jardine, 2006). Physical models are 
designed by experts and validated using large sets of 
data. Generally, they have higher accuracy, but have 
characters of higher operation costs and inflexibility, 
which can only be applied to specific types of 
components (Brotherton, 2000). The model-driven 
statistical learning methods assume that both the 
operational data and a mathematical model are 
available. In comparison, the data-driven statistical 
learning models are developed from collected 
input/output data. They are based on the selected 
features that correlate with the failure progression 
and produce the desired output prediction of the 
time-to-failure (TTF) based on a training process. 
Hybrid approaches combining data-driven 
approaches with model-based techniques have also 
been suggested. 
 
Most real-world systems are non-linear in nature. 
Prognosis for the prediction of chaotic or non-linear 
time-series signals remains a huge challenge. 
Moreover, prognostic schemes must contend with 
multiple sources of error such as noise, modeling 
inconsistencies and degraded sensor fidelity which 
contributes to the uncertainty associated with 
prognosis. Any viable solution must therefore be 
able to model non-linear systems and incorporate 
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methods to effectively deal with the issue of uncertainty. 
 
Many existing approaches to data-driven prognosis use 
artificial neural networks (Wang, 2003), (Brotherton, 
2000), (Parker, 1993). Artificial neural networks are a type 
of model, based loosely on the neural structure of the 
brain, in which the weights of the connections among 
neurons are automatically adjusted to maximize the fit of 
the model to the data. Although ANNs have bee shown to 
successfully model many non-linear systems, they also 
have there limitations. One of the main issues with ANNs 
is the high number of free parameters that need to be tuned 
in order to get good results. Secondly, ANNs are not 
guaranteed to converge to the optimal solution and are 
prone to the issue of local optima. Finally, with the 
exception of a few ANN prognostic schemes, most black-
box ANN strategies output point predictions incapable of 
representing process uncertainties. In order to overcome 
these limitations many researchers study Support Vector 
Machines (SVM) as an alternate to ANNs. Support Vector 
Machines (SVM) are an elegant classification and 
regression scheme that employ Structural Risk 
minimization (SRM) principles as opposed to Empirical 
Risk Minimization (ERM) used by ANNs which makes 
them less prone to overfitting. Additionally, whilst ANNs 
can suffer from multiple local minima, the solution to an 
SVM is global and unique (Chen, 2005). It is thus that 
SVMs are often applied to prediction of time-varying 
nonlinear systems in the form of Support Vector 
Regression Machines (SVRs).  
 
In this paper, we introduce a prognostics architecture for 
real-time Prognostics and Health Management (PHM) 
systems based on the Least Squares formulation of SVR 
(LSSVR) framework. The core LSSVR algorithm is an 
efficient reformulation of the classical SVR scheme and is 
therefore suitable for online real-time prognostics systems 
(Suykens, 1999). A Bayesian Inference System is 
associated with the LSSVR (B-LSSVR) thus providing a 
natural framework for probabilistic interpretation of 
prediction uncertainty (Gestel, 2002). The rest of the paper 
is organized as follows. Section 2 discusses some related 
background on LSSVR formulation. The Bayesian 
Inference Model associated with LSSVRs is also discussed 
briefly. In section 3, the proposed prognostics architecture 
is introduced while its individual modules are discussed at 
length in Section 4. Section 5 addresses the evaluation of 
Remaining useful life (RUL) based on the proposed 
scheme. In section 6, we present prognostics results 
obtained by applying the scheme to a progressing crack on 
a planetary gear plate on-board the UH-60 BlackHawk 
aircraft and complete the discussion with concluding 
remarks and future research in section 7. 
 

2. LSSVR AND BAYESIAN INFERENCE 
METHODS FOR LSSVR 

SVM (and its regression counterpart SVR) is based 
on the principles of statistical learning theory, or VC 
theory (Vapnik, Chervonenkis) developed over the 
last several decades. Given training data 

1 1 2 2{( , ), ( , ), ( , )}l lx y x y x y ⊂ Χ×ℜL , where 
Χ    denotes the space of input patterns, the goal is 
to find a function f(x) which has at the most ε 
deviation from the actually obtained targets iy  for 
all the training data, and at the same time is as flat as 
possible. That function f(x) can be described 
according to Equation 2-1: 
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Flatness in this case implies that we seek a small w. 
Mathematically, the primal SVR problem can be 
defined according to Equation 2-2. 
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where the slack variables *,i iξ ξ  are introduced to 
allow for some errors in order to cope with 
otherwise infeasible constraints of the optimization 
problem. The constantC > 0 determines the trade-off 
between the flatness of f and the amount up to 
which deviations larger than ε are tolerated. 
 

 
Figure 2-1 Non-Linear extension of SVR using the kernel 
mapping 
 
Non-linear regression for SVRs is achieved by 
preprocessing the training patterns ix  by a map 

:ϕ Χ→ ℑ  that transforms the input space into a 
higher dimensional feature space ℑ , where linear 
SVR regression can be applied to estimate the 
underlying function (Nillson, 1965). Figure 2-1 
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illustrates how the use of a kernel can simplify the 
regression process. 
 
SVR, being a derivative of SVM, is a quadratic 
programming (QP) problem and its solution is very time 
consuming. The LS-SVM is an efficient reformulation of 
the SVM because it is solved through a set of linear 
equations (Sollich et. Al., 2001) and is therefore very well 
suited for solving on-line real-time regression problems. 
The primal LSSVR problem can be defined according to 
Equation 2-3. 

where the tradeoff between regularization and training 

error is determined by the ratio ( )1,2,...,i
i i Nζγ

μ
= = . 

The LSSVR problem in the dual space corresponds to 
solving the following linear system. 
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By dividing the linear system above into two linear 
systems with positive definite data matrices as in 
(Suykens, 2000), iterative methods such as the Hestenes-
Stiefel Conjugate Gradient algorithm can be applied to 
solve large scale problems efficiently.  
 
The Bayesian Inference model for LSSVR is defined 
similar to its SVM counterpart. Given N data points 

{( , )} 1
N

D x yi i i= =  and hyper-parameters  μ  and 1:Nζ  for 
the model, a probabilistic interpretation of Equation 2-3 is 
obtained by applying Baye’s rule as follows: 

Where the model H corresponds to the kernel function K, 
possibly with kernel parameters. Assuming that the prior is 
independent of the hyperparameters 1:Nζ , w  and b  are 
independent variables and that the noise is Gaussian 

distributed additive noise ( 1,..., )ie i N=  with zero 

mean and variance 1
iζ
− , the posterior can be 

redefined as follows: 
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The maximum a Posteriori model parameters 
MPw  

and 
MPb  are obtained by taking the negative 

logarithm of Equation 2-6  which corresponds to 
solving the optimization problem in Equation 2-4. 
The moderated output (which is also the mean of the 
posterior) is obtained using the Equation below: 

Since z  is a linear transformation of the Gaussian 
distributed model parameters w  and b , the 
variance 2

zσ  in the feature space is given as 
follows: 

with ( ) [ ( );1]x xψ ϕ= . Notice that the 
computation is carried out without explicit 
knowledge of the mapping ( )xϕ . The interested 
reader is referred to (Gestel, 2001) for detailed 
derivations. The Bayesian Inference scheme allows 
us to represent the prognosis results in the form of a 
posterior probability. In addition, this framework 
establishes an adaptive scheme which continuous 
tunes model hyperparameters and helps in model 
estimation (Gestel, 2001).  
 
We employ the B-LSSVR algorithm as a basic 
building block for the prognosis algorithm. For 
long-term prediction, the posterior probability 
distribution with mean 

MPz  and variance  2
zσ  is 

sampled using Monte Carlo methods in order to 
determine possible failure progression trajectories in 
a way that manages the curse of dimensionality 
always associated with prognosis. 
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3. PROGNOSIS ARCHITECTURE 

Figure 3-1 proposes an architecture for fault diagnosis and 
failure prognosis of complex non-linear systems. 
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Figure 3-1 Architecture for fault diagnosis and failure prognosis 
 
The architecture groups modules as offline and online 
modules. Offline analysis provides critical parameters 
integrated into online operations of signal de-noising and 
feature-to-fault mapping besides other possibilities. Online 
modules include de-noising/signal preprocessing, feature 
extraction, fault diagnosis and failure prognosis. In this 
paper, we focus on one particular module - the online 
prognostics module. 

 
Figure 3-2 A real-time prognosis scheme based on Bayesian LSSVR 
machines 
 
An overview of the proposed prognosis architecture is 
presented in Figure 3-2. At each time step, the stream of 
incoming feature/fault progression data is used to generate 
a sequence of training vectors used as input to a recurrent 
LSSVR predictor. Tied together with the Bayesian 
Inference scheme introduced in Section 2, the short-term 
predictor estimates a one-step ahead (possibly) multi-
modal distribution representing fault progression. An 
importance sampling step following that uses the estimated 
distribution to determine a finite set of most-likely next-
step predictions for the evolving fault. The scheme is 
employed recursively in order to infer multi-step 
prediction trajectories along with associated multi-modal 
distributions and uncertainty bounds. 
 
Although this prediction scheme can be employed to 
generate long-term predictions, this process may require 
significant computational time especially when time-
horizons are large and near-real-time performance is 

expected. This paper proposes a scheme to 
circumvent this problem by splitting the prognostics 
scheme into a short-term and a long-term 
prognostics problem as highlighted in Figure 3-2. 
Accurate trajectories are predicted by using the 
more complex, short term prediction scheme basd 
on the recurrent BLSSVR. On the other hand, the 
long-term prognosticator can have multiple forms. 
One solution would be to use the same trained 
recurrent LSSVM without further adaptation of the 
hyper-parameters for long term predictions. 
However, recurrent LSSVMs over multiple 
trajectories would still bear a considerable overhead. 
Alternatively, we propose to use a simple and more 
computationally efficient scheme that implements a 
BLSSVR machines with an exponential kernel 
function. Here we assume that the prognostics 
module is activated after the occurrence of a fault 
and that evolving faults are monotonic in nature, i.e. 
the system goes from bad to worse. The short-term 
and long-term predictors are discussed at length in 
Section 4.  
 
4. BAYESIAN LSSVR FOR REAL-TIME 

LONG-TERM PROGNOSIS 

Consider a nonlinear time series with samples 

{ }1 2, ,..., nx x x  sequentially collected from a 
deteriorating system. In order to predict the future 
health { }1 2, ,...n nx x+ + of the system using LSSVRs, 
one trains a recurrent model of the system with the 
following training data: 
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The corresponding LSSVR machine is similar to the 
one described in Equation 2-4 where the matrices 
are defined as follows: 
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The LS-SVM regression model for nonlinear time-series 
prediction is then expressed using Equation 4-4: 
 

( ) ( )
1

,
n p
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i

y x K x x bα
−

=

= +∑
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If { }1,...,test n p nx x x− += , then ( ) 1ˆtest ny x x +=  is the 

one-step ahead predicted value. This recurrent predictor is 
combined with the Bayesian Inference model for robust 
prognostics as discussed below. 
 
At T n= , the B-LSSVR algorithm approximates the 
posterior distribution (defined by the mean MPz  and 

variance  2
zσ ) representing the health of the system. In 

order to generate multiple trajectories from this single 
distribution, one needs to sample the posterior. Obviously, 
the choice of the sampling method influences the accuracy 
of predicted future paths. The importance of an intelligent 
sampling method is further motivated by the fact that it 
can act as an important tool in managing the curse of 
dimensionality generally associated with long term 
prediction. Obviously, if we take each sample in the 
estimated distribution as a possible future prediction, we 
will end up with an NP complex problem (Cooper, 1990). 
We take a page out of the Markov Chain Monte Carlo 
(MCMC) methods for approximate inference and use an 
Importance Sampling algorithm that takes the information 
available in the distribution and redistributes it 
proportionally on the state space as illustrated in  
Figure 4-1 by using an acceptable number of samples, sN  

(Optimal sN  is still an open subject to research) in the 
process (Doucet, 2005). Thus, a set of most likely one-step 
ahead prediction points is obtained as represented in 
Figure 4-2. 
 
Consequently, these prediction points are combined with 
the training data vectors to create multiple prediction paths 
originating from a single progression as shown in Figure 
4-2 Bayesian LS-SVR based multi-step prediction 
distribution and IS 
Each trajectory is retrained using the same B-LSSVR 
algorithm to produce additional distributions representing 
possible predictions for time 2T +  which are combined to 

derive the posterior distribution as a mixture of 
Gaussians. Note that the mixture of Gaussians 
produces a multi-modal posterior prediction 
distribution. It must also be noted that although the 
underlying process for posterior estimation for each 
predicted trajectory is indeed entirely Gaussian in 
nature, the nature of the cumulative posterior 
distribution as presented in Figure 4-2 is a function 
of both the means and variances of the individual 
Gaussian distributions. Indeed, it has been shown 
that any arbitrarily complex distribution can be 
estimated using a mixture of Gaussians with 
appropriate bandwidths (Turlach, B.A., 1993). 
Additionally, a certain amount of randomness is also 
built in the Importance Sampling algorithm in order 
to facilitate exploration and also to mitigate the 
chances of artificial convergence. The combined B-
LSSVR and Importance Sampling step is employed 
iteratively in order to predict fault evolution in the 
long-term. 

 
 
Figure 4-1 B-LSSVR based one-step ahead prediction 
distribution and IS 
 
 

 
Figure 4-2 Bayesian LS-SVR based multi-step prediction 
distribution and IS 
 
In summary, the proposed implementation considers 
non-linear processes with non-gaussian noise where 
the time varying parameters are fine tuned 
iteratively with new incoming measurements. We 
start with an initial model Η  (the kernel parameter) 
and initial hyper-parameters μ  and 1:Nζ . At the 
first level, model Η  is combined with the incoming 
measurements D  to provide an estimated 
distribution of the predicted fault growth using 
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f 
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Equation 2-7 and Equation 2-8. This distribution is sampled 
using an Importance Sampling algorithm to derive possible 
future paths for fault growth. Each path is then retrained 
using the B-LSSVR model. The second inference level 
tunes the hyperparameters; μ  and iζ . For multistep 
predictions, the same algorithm is iterated. It is thus that 
the algorithm is adaptive in nature while the fact that the 
estimated distribution is sampled using no more than sN  
samples allows us to manage the curse of dimensionality 
associated with long-term prognosis. 
 
5. REMAINING USEFUL LIFETIME (RUL) 

Besides characterizing the time evolution of impending 
failures, the second important task for machine prognostics 
is estimating the Remaining Useful Life (RUL) of the 
system. RUL is the time left for the normal operation 
before a breakdown occurs or machine condition reaches 
the critical failure threshold. At a given time instance, the 
algorithm described in Section 3 accurately forecasts a set 
of prediction paths that describe the possible fault growth 
trends over the long-term prediction horizon as shown in 
Figure 5-1.  
 
Due to the fact that probabilistic predictive schemes are 
very time consuming, many prognosis schemes resort to 
limited steps of model refinement in essence accounting 
for modeling uncertainties and various noise sources 
contaminating the signal. This refined model is used for 
accurate short term predictions which are then projected 
over long-term prediction horizons using simpler models. 
We propose to use a two-level scheme by first ascertaining 
high confidence prediction paths using the core recurrent 
B-LSSVR algorithm over the short-term horizon. Instead 
of using simpler regression schemes, the filtered future 
trajectories are used to train regression models using the 
core LSSVR algorithm. The efficient combination of 
recurrent B-LSSVR for short term prediction and LSSVR 
for long term prediction results in a set of intelligently 
filtered most-likely paths which in combination with the 
definition of critical thresholds is used to estimate the RUL 
pdf, also referred to as the Time-to-Failure (TTF) pdf. 
 
In statistics, kernel density estimation (KDE) (or Parzen 
window method, named after Emanuel Parzen) is a non-
parametric way of estimating the probability density 
function of a random variable. Given some i.i.d. data 

1 2{ , ,..., }nx x x x=  about a sample of a population, 
kernel density estimation makes it possible to extrapolate 
the data to the entire population (Parzen, 1962) according 
to Equation 5-1.  

( )
1

1 N
i

h
i

x xf x K
Nh h=

−⎛ ⎞= ⎜ ⎟
⎝ ⎠

∑  5-1 

where K  is some kernel and h  is a smoothing 
parameter called the bandwidth. In order to estimate 
the RUL distribution based on long-term predicted 
trajectories, we employ KDE with a gaussian kernel 
whereby the variance is controlled indirectly 
through the parameter h . 
 
Once the probability density function of the RUL is 
estimated, other important attributes − such as 
expectations and 95% confidence intervals − may be 
computed. We apply our prognostics scheme on 
data collected from a seeded fault test for 
progressively degrading planetary gear from a UH-
60 Blackhawk aircraft in the following section. 

Figure 5-1 Long-term Prediction, Time of Failure (ToF), 
Uncertainty Bounds and Remaining Useful Life (RUL) 
 
6. CASE STUDY: CRACK GROWTH ON A 

UH-60 PLANETARY GEARBOX 

A UH-60 Blackhawk gearbox with a growing axial 
crack fault on the gear plate was chosen as a real-
world test case (Saxena, 2005). The research team 
designed a Finite Element ANSYS model of the 
plate, generated artificial vibration data based on the 
model and inferred several features from it which 
could reflect the growth pattern of a simulated fault. 
An overview of the system Finite Element Model 
(ANSYS) and its equivalent mechanical layout is 
shown in Figure 6-1. 

 
Figure 6-1 (a) ANSYS model of the gearbox plate (b) Mechanical 
layout 
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A developing crack close to one of the planetary gears as 
shown in Figure 6-1(a) can lead to a critical failure 
condition in the aircraft. With the purpose of testing the 
feasibility and efficiency of diagnostics and prognostics 
algorithms, a seeded fault test was conducted to collect 
fault data under a fixed known loading profile. Data is 
collected in terms of Ground-air-Ground (GAG) cycles 
representing time. Raw vibration signals were first 
denoised to get rid of artifacts and environmental noise. 
Features identified during the modeling phase were used to 
extract fault growth patterns from the denoised data (Wu, 
2004). One feature, in particular, referred to as the Side-
Band Ratio (SBR) correlates remarkably well with the 
actual fault evolution and is used for the purpose of this 
research. Figure 6-2 shows how the feature varies as the 
crack grows with time till the gear-plate breaks into half; a 
stage considered catastrophic. Subsequently, the hazard 
threshold for the feature is represented by the red line. The 
figure also highlights the initial training data required for 
the recurrent LSSVR algorithm. A set of 85 samples were 
used to initialize the algorithm.  
 

 
Figure 6-2 Plot of Side Band Ratio (SBR) feature representing fault 
growth with GAG cycles representing time 
 
After a cold start, the algorithm tunes its parameters 
according to the incoming feature data. Results for the 
short-term prediction horizon at GAG cycle 164 are 
presented in Figure 6-3. 
 

 
Figure 6-3 Prognostics results for short-term horizon (20 steps). The 
multiple trajectories successfully track the actual feature progression 
 

This step onwards, the trajectories serve as training 
data for the long-term prognosticator which uses an 
exponential kernel function for training purposes. 
The results from the long-term predictor are shown 
in Figure 6-4. 
 
Based on these projected trajectories and the user-
defined failure thresholds, the algorithm estimates 
the RUL distribution, most probable Time of Failure 
(ToFmp) and the confidence bounds associated with 
TOFmp. An RUL distribution drawn from results 
compiled at the same GAG-cycle is presented in 
Figure 6-5. 
 

 
Figure 6-4 Prognostics results for long-term prediction till 
failure. The results are based on data gathered till GAG Cycle 
164 
 

 
Figure 6-5 Probability Distribution for RUL. The actual failure 
time lies within the estimated distribution and is reasonably close 
to the predicted time of failure 
 
7. CONCLUSION 

An intelligent architecture for data-driven failure 
prognosis has been presented based on a recurrent 
treatment of the Least Squares SVR machines. It is 
shown that a Bayesian Inference model coupled 
with the LSSVRs can be used to derive failure 
evolution trajectories and also to adaptively tune the 
parameters of the LSSVR model. Further, sampling 
the output of the recurrent B-LSSVR using an 
Importance Sampling technique solves the curse of 
dimensionality associated with Prognostics while 
preserving prediction accuracy. Finally, for real-
time on-line application, the prognostics architecture 
is extended using an efficient second stage LSSVR 
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based regression scheme that allows us to construct long-
term prediction trajectories for fault evolution, evaluate a 
posterior prediction distribution and extract statistical 
information such as the most likely ToF and uncertainty 
bounds associated with it. Test results performed on data 
set from a progressing crack in a gear-plate suggest that 
the architecture can be successfully applied to complex 
non-linear systems experiencing non-gaussian noise. A 
more comprehensive statistical characterization based on 
performance metrics suggested for prognostics systems is 
in the works. 
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