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ABSTRACT

This paper discusses recent research on the condition mon-
itoring (CM) approach for aluminium electrolytic capacitors
(AEC) used in power electronics equipment such as switched-
mode power supplies (SMPS). Capacitors are identified as the
most critical component with the highest percentage of failure
in AEC. CM offers a better paradigm for AEC due to its long-
lasting ability (endurance). This study proposes accelerated
life testing through electrical stress and long-term frequency
testing for the AEC component. An experiment test bench
was set up to monitor the critical electrical parameters such
as dissipation factor (D), equivalent series resistance (ESR),
capacitance (Cp), and impedance (Z), which serve as health
indicators (HI) for the evaluation of the AECs. Time-domain
features were extracted from the measured data, and the best
features were selected using the correlation-based technique.
This research contributes to developing a cost-effective CM
approach for AECs used in power electronics equipment,
which can reduce downtime and maintenance costs.

1. INTRODUCTION

Prognostics and Health Management (PHM) is a rapidly
growing field that has recently gained significant attention,
particularly for power electronic devices. PHM is the pro-
cess of monitoring a system’s health, identifying any faults,
predicting its remaining useful life, and making recommen-
dations for maintenance or replacement before the system
fails. PHM has become an essential tool for condition-based
monitoring (CBM), predictive maintenance, and the diagno-
sis of power electronic devices in the power electronics indus-
try (Achouch et al., 2022; Fei, Bin, Jun, & Shunhua, 2020;
Cachada et al., 2018; Zonta et al., 2020).

Power electronic devices are critical in many industries, in-
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cluding aerospace, automotive, renewable energy, and elec-
tric power systems. The reliability and availability of these
devices are of utmost importance for the safe and efficient
operation of these systems. However, power electronic de-
vices are susceptible to failure owing to various factors such
as thermal stress, electrical stress, and ageing. The loss of
power to electronic devices can result in significant down-
time, costly repairs, and catastrophic consequences (Wang &
Blaabjerg, 2021).

To overcome these challenges, PHM techniques have been
developed to monitor the health of power electronic devices,
identify anomalies, and predict their remaining useful life.
PHM techniques involve the use of various sensors, data ac-
quisition systems, and analytical tools to gather data on a
device’s operational state. The collected data were then an-
alyzed using feature-engineering processes to extract mean-
ingful features that could accurately diagnose the health sta-
tus of the device. CBM is a critical application of PHM that
allows for real-time monitoring of the device’s health and per-
formance, enabling maintenance actions to be taken before
any failure occurs. Predictive maintenance, on the other hand,
involves using statistical models to predict when maintenance
should be performed based on the device’s usage history and
current health status. Diagnosis, another crucial application
of PHM, involves identifying the cause of failure and deter-
mining the necessary corrective actions.

This paper presents a comprehensive review of PHM tech-
niques for power electronic devices, with particular empha-
sis on CBM, Predictive Maintenance, and Diagnosis. We
also discuss the feature engineering process used to extract
meaningful features from the collected data and the analyti-
cal tools used to analyze the data. This paper aims to provide
an overview of the current state-of-the-art in PHM for power
electronic devices and identify future research directions.

Using filter-based statistical approaches to extract discrimina-
tive features can be beneficial for improving the performance
of a machine learning model. These approaches work by
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analyzing and ranking the relevance of features in a dataset
based on their statistical characteristics, such as correlation
with the target variable or variance (Kushwaha, Buckchash,
& Raman, 2017; Urbanowicz, Meeker, La Cava, Olson, &
Moore, 2018).

By selecting the most informative features and removing ir-
relevant ones, these methods can reduce the data’s dimen-
sionality, improving the learning process’s efficiency and pre-
venting overfitting. Additionally, they can enhance the inter-
pretability and generalizability of the model by focusing on
features that are more likely to have a meaningful relation-
ship with the outcome.

However, it is essential to note that filter-based approaches
are not a one-size-fits-all solution. Their effectiveness may
vary depending on the specific dataset and the learning task.
Moreover, they may not capture complex interactions and
nonlinear relationships among the features, which could be
better handled by more sophisticated techniques such as
wrapper or embedded feature selection methods. Overall,
filter-based statistical approaches can be a valuable tool for
feature selection in machine learning, providing a simple and
fast way to improve performance and interpretability, espe-
cially in cases where the number of features is large, or
the data is noisy (Kareem A.B., 2022; Bayo & Jang-Wook,
2022).

2. RESEARCH MOTIVATION AND LITERATURE

Electrolytic capacitors are one of the most commonly used
components in power electronics circuits, including AC/DC
converters. However, they are also one of the most fault-
prone components, with a high failure rate compared to
other components. Therefore, understanding how to diag-
nose faults in these capacitors is critical to ensure the relia-
bility and longevity of AC/DC converter systems (Jami Torki,
2023; Shahraki, Al-Dahidi, Taleqani, & Yadav, 2023). Faulty
electrolytic capacitors can lead to safety hazards such as elec-
tric shock, fire, and explosions. Therefore, diagnosing and
addressing faults in these capacitors is essential to prevent
accidents and ensure the safety of personnel working with
AC/DC converters. Repairing or replacing faulty electrolytic
capacitors can be expensive, especially in large-scale AC/DC
converter systems. By diagnosing faults in these capacitors
early on, maintenance personnel can take corrective action
before the problem escalates, reducing repair costs and mini-
mizing downtime. Faulty electrolytic capacitors can also im-
pact the energy efficiency of AC/DC converters, leading to
increased energy consumption and reduced performance. Di-
agnosing and addressing faults in these capacitors can help
maintain the energy efficiency of AC/DC converters, reducing
operating costs and minimizing environmental impact (Duan
& Chen, 2023). The papers provide different methods for
studying and monitoring the condition of aluminium elec-

trolytic capacitors. It presents a methodology for studying
the impact of thermal cycling on the wear-out of aluminium
electrolytic capacitors used in automotive cases (R. Cousseau
& Idkhajine, 2013). It proposes a new method for condi-
tion monitoring of aluminium electrolytic capacitors using
accelerated life testing, which has a higher accuracy level
than existing methods (Bhargava C. & Y., 2018). It presents
an experimental offline technique for estimating the condi-
tion of aluminium electrolytic capacitors based on estimating
equivalent series resistance and capacitance values (Amaral
& Cardoso, 2007). It proposes a method for hotspot temper-
ature estimation of aluminium electrolytic capacitors based
on the linear dependence between capacitance and tempera-
ture (Jedtberg H., 2017). These papers collectively suggest
that various methods are available for studying and monitor-
ing the condition of aluminium electrolytic capacitors, which
can predict their lifetime and ensure their reliability.

3. PROPOSED METHOD

3.1. Feature Extraction and Feature Selection

The correlation coefficient is a widely used filter-based tech-
nique for feature extraction and selection. It measures the
linear relationship between a feature and the class labels, pro-
viding insights into how much the feature’s values change as
the class labels change. By considering the correlation coef-
ficient, we can identify the most discriminative features that
exhibit a strong association with the class labels.

Mathematical Expression: Let’s consider a capacitor dataset
with features denoted as X = X1, X2, ..., Xn, and a corre-
sponding class label Y. The correlation coefficient between
a feature Xi and the class label Y can be calculated using a
measure such as Pearson’s correlation coefficient:

Corr(Xi, Y ) = Cov(Xi, Y )/(std(Xi) ∗ std(Y )) (1)

Here, Cov(Xi, Y ) represents the covariance between Xi and
Y, while std(Xi) and std(Y ) represent the standard deviations
of Xi and Y, respectively.

The correlation coefficient ranges from -1 to 1, indicating the
strength and direction of the relationship. A positive corre-
lation coefficient indicates a direct relationship, where higher
values of Xi tend to be associated with higher values of Y.
Conversely, a negative correlation coefficient suggests an in-
verse relationship, where higher values of Xi are associated
with lower values of Y. A correlation coefficient close to 0
indicates a weak or no linear relationship.

To extract discriminative features using the correlation coef-
ficient, you can calculate the correlation coefficient for each
feature and the class label and then rank the features based on
the absolute value of their correlation coefficients. Features
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with higher absolute correlation coefficients are considered
more strongly associated with the class labels and, therefore,
more discriminative.

By applying the correlation coefficient-based feature selec-
tion, you can identify the most relevant features from the ca-
pacitor dataset, which can subsequently be used for machine
learning tasks or further analysis. Table 1 shows the statisti-
cal features extracted from the capacitor dataset for condition
monitoring. These would help in engineering the best fea-
tures for training and testing artificial neural networks.

Table 1. The time-domain statistical features extracted from
the multi-capacitor dataset

Feature Description Definition

Root Mean Square Xrms =

√∑n
i=1(xi)

2

n

Mean x̄ = 1
n

(∑n
i=1 xi

)
Kurtosis Xkurt =

1
N
Σ
(

(xi−µ)3

σ

)
Interquartile range upperquarterQ3 − lowerquarterQ1

Median abs deviation Xmad = 1
n

∑n
i=1 |xi −m|

Skewness Xskew = E
[(

(xi−µ)3

σ

)]
Max Xmax = max (xi)

Min Xmax = min (xi)

Crest Factor XCF = xmax
xrms

Peak factor xPF = xmax√
xs

Wave Factor xWF =

√
1
n

∑n
i=1|xi|2

1
n

∑n
i=1|xi|

Standard error mean Xsem = standarddeviation√
n

Standard deviation SD =
√

1
N−1

∑N
i=1(xi − x)2

Variance V AR =

√
1
N

N∑
i=1

(xi − x̄)2

3.2. Artificial Neural Networks

ANN stands for Artificial Neural Network, which is a compu-
tational model inspired by the structure and functioning of bi-
ological neural networks. It consists of interconnected nodes
called neurons that process and transmit information. ANNs

are widely used in machine learning and have proven to be ef-
fective in various tasks such as classification, regression, and
pattern recognition.

The mathematical expression of an Artificial Neural Network
can be broken down into several components:

Neurons and Activation Function: Each neuron in the net-
work receives inputs, performs a computation, and produces
an output. The output is determined by applying an activation
function to the weighted sum of the inputs. The activation
function introduces non-linearity into the network, enabling it
to learn complex patterns and relationships. Mathematically,
for a neuron i in a given layer, the output can be represented
as:

Output(i) = Act.Function(WeightedSum(i)) (2)

Weighted Sum: The weighted sum is computed by multi-
plying each input by its corresponding weight and summing
them together with an optional bias term. The weights repre-
sent the strength of the connections between neurons and are
adjusted during the training process to optimize the network’s
performance. Mathematically, for a neuron i in a given layer,
the weighted sum can be expressed as:

WeightedSum(i) = (Input(j) ∗Weight(i, j)) +Bias(i)
(3)

where Input(j) represents the j th input to neuron i,
Weight(i, j) represents the weight connecting input j to neu-
ron i, and Bias(i) represents the bias term for neuron i.

An Artificial Neural Network typically consists of multiple
layers of neurons, including an input layer, one or more hid-
den layers, and an output layer. The number of layers and
the number of neurons in each layer depend on the specific
problem and network design. The neurons in each layer are
connected to the neurons in the subsequent layer, forming a
forward propagation of information. The learning process in
an ANN involves adjusting the weights and biases to mini-
mize the difference between the network’s predicted output
and the desired output. This is typically achieved using a
process called backpropagation, which utilizes an optimiza-
tion algorithm such as gradient descent. The objective is to
find the optimal set of weights that minimizes a predefined
loss or error function. The mathematical expression for the
training process involves calculating the error between the
predicted output and the desired output, propagating the er-
ror back through the network, and updating the weights and
biases based on the computed gradients. Table 2 shows the
ANN classifier architecture for this study.
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Table 2. ANN-classifier design architecture

Parameters Description

Learning Rate 0.001
Hidden Layer 25
Max-Iter 50
Activation reLU
Solver Adam
Early Stopping True
Random State 1

4. EXPERIMENTAL TEST BENCH

LCR (Inductance, Capacitance, and Resistance) meters are
commonly used for data collection of electrical signals.
These meters provide a convenient and accurate means of
measuring the impedance characteristics of electronic com-
ponents, such as resistors, capacitors, and inductors. LCR
meters can accurately measure parameters like capacitance,
inductance, resistance, quality factor (Q-factor), and equiv-
alent series resistance (ESR). Connecting the electrical sig-
nal source or device under test to the LCR meter can mea-
sure and record the impedance response across a range of
frequencies. In the experimental process, a capacitor is sub-
jected to a temperature range of 80 to 120 degrees Celsius
using a controlled environmental setup. A HIOKI LCR me-
ter is connected to the capacitor to perform measurements at
varying voltages and frequencies up to 8MHz. The LCR me-
ter is configured to use a slow measurement speed for high
accuracy. The experiment involves gradually increasing the
temperature while taking LCR measurements at specific in-
tervals to monitor changes in dissipation factor, capacitance,
resistance, and reactance properties. The data collected will
provide insights into the capacitor’s performance under dif-
ferent temperature, voltage, and frequency conditions. This
data collection process enables comprehensive analysis and
characterization of the electrical properties of components
and circuits, facilitating design, troubleshooting, and quality
control in various electronic applications. Figure 1 shows the
experimental test bed for the data collection process for the
electrolytic capacitor condition monitoring. Table 3 shows
the test conditions manually set using the LCR software for
the data collection process. The highest and lowest values
that can be precisely measured depend on the meter’s mea-
suring range. To maintain accuracy and prevent overload-
ing the instrument, it is necessary to choose a measurement
range. It is appropriate for the component’s predicted val-
ues is crucial. Using the Speed option, you can regulate the
LCR meter’s measuring speed or rate. Fast measurements
may be necessary for some applications to boost through-
put, whereas longer, more accurate measurements may be re-
quired where accuracy is a higher priority. To accommodate

diverse testing needs, the Speed function often provides nu-
merous speed settings or measurement modes (for example,
rapid, medium, and slow). Use the ”LowZ” (Low Impedance)
mode to test components with low impedance values. Stan-
dard LCR measurements can not be reliable or precise enough
when working with components like low-value capacitors or
inductors. When measuring AEC with low impedance val-
ues, the LCR meter’s sensitivity and accuracy are improved
by the LowZ mode. The LCR meter can reliably measure
components with very low impedance by minimizing its in-
ternal parasitic impedance by turning on the LowZ mode. It is
constructive for measuring tiny SMD (surface mount device)
components or other gadgets with low parasitic resistance.
Table 4 shows the electrical parameters captured during the
data collection. They were manually inputted into the LCR
software as shown in Figure 2. Analyzing and characterizing
the electrical properties of aluminium electrolytic capacitors
used in SMPS output filters is vital for optimizing the power
supply’s performance, efficiency, stability, and reliability. It
also aids in ensuring safety, compliance, and the longevity of
the overall system. Designers and engineers must consider
these factors when selecting capacitors and designing SMPS
circuits to achieve the desired performance and reliability. Ta-
ble 5 shows the fault classification for the ANN classifier.

Figure 1. The experimental test bed of the electrolytic capac-
itor under varying load conditions

Figure 2. A screenshot into the data collection framework for
the electrolytic capacitor
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Table 3. The experimental test conditions for the electrolytic
capacitor

Functions Description

Electrical Parameters Cs–Rs–D–Z

Frequency/Freq-Step 8 MHz/1000 Hz/10 Hz

DC Bias ON 1.0 volts

Signal Level 0.5 Vrms

Measurement Range Auto

Speed SLOW2

LowZ mode ON

Table 4. The electrical parameters assigned for the experi-
ment procedure

Parameters Description Expression

Rs Equivalent Series Resistance ESR = |Z|Cosθ

Cs Capacitance Cs = D
ωR

Z Impedance Z = |Xc|
Sinθ

D Dissipation Factor tanδ = ESR
Xc

5. RESULT ANALYSIS AND DISCUSSION

The proposed method can be summarised into two steps,
namely the feature extraction and selection stage and the deep
learning-based diagnostic framework. The concept of this
research is ensuring the right features from the electrolytic
capacitors are fed to the deep learning algorithm. The Pear-
son correlation technique was used as a filter-based method to
identify features that have a strong linear relationship with the
target variable or class labels. Setting a threshold, such as 0.8,
allows us to select features that have a correlation coefficient
above this threshold, indicating a relatively strong correla-
tion. Figure 3 shows the feature selection visualization using
the Pearson correlation techniques. The number of features
selected was reduced from 14 to 9 based on the threshold set.
The selected features are as follows: Mean, root mean square,
interquartile range, max, min, kurtosis, skewness, peak factor,
and wave factor. The labels for the ANN classifier were set
with respect to the temperature variance of 80, 90, 100, 110,
and 120 degrees which correspond to the label on the confu-
sion matrix as 0, 1, 2, 3, and 4, respectively. A total number
of 7000 samples were set aside for the training, while 3000

Table 5. Fault classification for the experimental setup

Cases (Label) Temperature (◦ C)

Case A (0) 80

Case B (1) 90

Case C (2) 100

Case D (3) 110

Case E (4) 120

samples were set aside for testing the ANN model.

Figure 3. Visualization plot from the features selected

Table 6 shows the global performance assessment for the
ANN classifier model comprising of the accuracy, precision,
recall and f1 score. The mathematical expression for these
metrics is highlighted below:

Accuracy =
TP

TP + FP + TN + FN
(4)

Recall/Sensitivity =
TP

TP + FN
(5)

Precision =
TP

TP + FP
(6)

F1- Score =
2 ∗ Sensitivity ∗ Precision

Precision + sensitivity
(7)

where TP = True positive, FP - False positive, TN = True neg-
ative, and FN = False negative. Figure 4 shows the validation
and loss score plot from the artificial neural network after be-
ing fed the discriminative features from the dataset. The loss
score represents a measure of error for the ANN model be-
tween predicted outputs and the actual target values during
each iteration of the training process. The validation score of
the ANN model represents the assessment or metrics whereby
a portion of the data is set aside as a validation set. The ANN
model performance is later evaluated on this validation set af-
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ter the training process. The validation score helped in detect-
ing overfitting, and hence a k-fold technique was deployed to
ensure the assessment of the ANN model. Further work will
be done in the aspect of increasing the data sample for train-
ing and testing and optimization techniques for the algorithm.
Figure 5 shows the confusion matrix for the ANN algorithm
between the true label and the predicted label.

Figure 4. The loss score against the validation score for the
ANN algorithm

Figure 5. The confusion matrix for the ANN algorithm

Table 6. Global performance assessment of the ANN classi-
fier model

Accuracy Precision Recall F1 Score Cost (secs)

88.57% 88.53% 86.83% 86.32% 27.7833

6. CONCLUSION

In conclusion, this conference paper presented a comprehen-
sive framework for fault diagnostics of electrolytic capaci-
tors using a feature extraction and selection approach cou-
pled with an Artificial Neural Network (ANN) model. The
data acquisition process involves a setup of capacitors ex-
posed to varying temperatures of 80 to 120 degrees in a
chamber acting as a fault sample for the capacitors. The fo-
cus was on utilizing the Pearson correlation as a filter-based
feature extraction method, with a threshold of 0.8, to iden-
tify the most relevant features for fault diagnosis. The re-

sults obtained from the ANN model demonstrated promis-
ing performance. The initial attempt yielded an accuracy of
88.57% for the training dataset and 88.20% for the testing
dataset. These results indicate that the selected features, ob-
tained through the Pearson correlation technique, contained
valuable information for accurately classifying and diagnos-
ing faults in electrolytic capacitors. However, further opti-
mization of the ANN algorithms is still necessary to improve
the accuracy of the fault diagnostics system. These can in-
volve fine-tuning the model’s hyperparameters, adjusting the
network architecture, or exploring advanced training tech-
niques such as regularization or ensemble methods. By op-
timizing the ANN algorithms, it is anticipated that the accu-
racy of the fault diagnostics system can be further enhanced.
This paper’s feature extraction and selection framework lays
a solid foundation for future research in fault diagnostics for
electrolytic capacitors. Using the Pearson correlation as a
filter-based method allowed for the identification of meaning-
ful features, reducing the complexity of the dataset and im-
proving the efficiency of the ANN model. In conclusion, this
research provides valuable insights into developing accurate
fault diagnosis systems for electrolytic capacitors. By lever-
aging filter-based feature extraction and selection techniques,
coupled with ANN models, the diagnostic accuracy can be
significantly improved, leading to more efficient maintenance
strategies and enhanced reliability of electrical systems. Fur-
ther research and optimization efforts on the ANN algorithms
will contribute to achieving even higher levels of accuracy in
fault diagnosis for electrolytic capacitors.
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