
A Method for Executing Digital System Models and Digital Twins at
Scale to Enrich Fleet Health Management

Daniel M Newman1

1 The Boeing Company, St. Louis, Missouri, 63134, United States of America
daniel.m.newman@boeing.com

ABSTRACT

The digitization of the aviation industry brings the promise
of increased transparency into the engineering design across
aircraft lifecycles. With an increased focus on Model-Based
Engineering, design engineers are constructing interopera-
ble, standardized simulation models which can be leveraged
across the Digital Thread. This advancement presents an op-
portunity to improve health management and prognostics by
directly comparing these models against in-service data. This
paper proposes a method for leveraging engineering Digital
System Models and Digital Twins at-scale to facilitate and en-
rich health management activities. Supporting considerations
include specifying model standards and ingesting fleet-level
data using cloud computing.

1. INTRODUCTION

The transformation of the aviation industry into a digital-
based engineering paradigm brings the promise of in-
creased access to design data across the product lifecycle
(Hatakeyama, Seal, Farr, & Haase, 2018). This improved
transparency will be foundational to more efficient products
from design to manufacture, delivery, and support. Two key
technological concepts underpin this transformation: the Dig-
ital Twin and the Digital Thread. As an aspirational goal, the
Digital Twin is a perfect digital replica of a specific asset,
containing all of the relevant information to support design,
production, delivery, operations and maintenance throughout
its lifecycle. This is enabled by the Digital Thread, which
connects product data across its lifecycle and enables con-
sumption of these data for a variety of uses.

The Model-Based Systems Engineering (MBSE) diamond vi-
sualizes the flow of engineering data and describes the digi-
tal artifacts generated through product development and into
support and sustainment. This concept, shown in Figure 1,
demonstrates how digital engineering tools are associated

First Author et al. This is an open-access article distributed under the terms of
the Creative Commons Attribution 3.0 United States License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the
original author and source are credited.

Figure 1. Model Based Engineering Diamond

with physical assets throughout the design lifecycle. These
virtual assets can be described as Digital Twins of their phys-
ical counterparts, linked together by the Digital Thread. Im-
portantly, this digital connectivity applies not only from phys-
ical assets to ther digital twins, but also horizontally from de-
sign to support and sustainment. Creating these connections
is critical to developing improved descriptive and prescriptive
analytics.

Realizing the MBSE Diamond requires the development
of an integrated system which facilitates the execution of
various models and provides data interoperatbility between
them (Mihai et al., 2022). This in turn mandates standard-
ization for model development to ensure various models may
be integrated into an overall MBSE architecture. This work
serves as a pilot investigation into the specific methods re-
quired to implement a standardized model execution frame-
work.

2. DIGITAL SYSTEM MODELS AND DIGITAL TWINS

In order to leverage MBSE for health management, two crit-
ical components at the heart of Model-Based Engineering:
Digital System Models (DSM) and Digital Twins (DTw) must
be defined. These definitions, found in Table 1, illuminate
distinctions and similarities betwen the Digital Twin and Dig-

1

4th Asia Pacific Conference of the Prognostics and Health Management,
Tokyo, Japan, September 11 – 14, 2023 OS04-01



Asia Pacific Conference of the Prognostics and Health Management Society 2023

Term Definition
Digital System Model A calibrated digital surrogate of a product, at the level of fidelity

currently available that is intended to be the enduring, authoritative
source of truth for data-driven decisions

Digital Twin A virtual representation of the properties and behaviors of a spe-
cific instance of a physical system or process that enables predic-
tion and optimization of performance and maintains synchronization
with that physical system or process through its operational life

Table 1. DSM and DTw Definitions

Figure 2. Baseline Digital System Model

ital System Model. Both the Digital System Model and Dig-
ital Twin are meant to be compared with operational data to
inform in-service decision-making. While the Digital System
Model simulates the calibrated representation of the product,
the Digital Twin simulates the behaviors of a specific instance
of that product. For this reason, it is reasonable to say that
the Digital Twin inherits from the Digital System Model to
form the initial understanding of the specific instance under
study. The DTw-specific condition/state can be realized as
asset-specific operational parameters or states. While these
values are represented in the underlying DSM, they are fine-
tuned via the DTw as the asset goes throughout its operational
life.

This work seeks to describe how a Digital System Model
and Digital Twin may be evaluated against in-service data.
A simple input/output interface, shown in Figure 2, sum-
marizes this interaction. Any Digital System Model can
be framed as a function which accepts some combination
of Time-Dependent and Time-Invariant Inputs. The model
then performs internal calculations to return a combination of
Time-Dependent and Time-Invariant Outputs. On an aircraft,
Time-Dependent Inputs may be populated by recorded time-
series sensor data such as temperatures, pressures, altitudes,
etc. By comparison, Time-Invariant Inputs may be configura-
tion parameters (number of passenger seats, product variant
type, etc.), health-related parameters (heat exchanger foul-
ing, mechanical wear coefficient, etc.), or constant-valued
sensor data (temperatures, pressures, altitudes, etc.). The
Time-Dependent inputs and outputs are represented with dot-
ted lines to indicate that not all Digital System Models make
use of dynamic behavior.

Based on this understanding of the Digital System Model, a
rudimentary extension of the DSM forms a representation of
the Digital Twin as shown in Figure 3. This figure shows

Figure 3. Baseline Digital Twin Realization

Figure 4. Baseline Digital Twin: Heat Exchanger

how the Digital Twin “closes the loop” between the recorded
inputs and the simulated outputs to calibrate specific Time-
Invariant Inputs. Critical to this feedback loop is the Time-
Invariant Input Calibration step, where the simulated outputs
are compared to the inputs to evaluate goodness-of-fit. Once
the inputs are calibrated to a desired level of accuracy, the
Digital Twin returns these asset-specific values to the user,
where they may be recorded for future reference.

Defining the Digital System Model and Digital Twin in this
way brings clarity to how the Digital Twin inherits and ex-
pands upon information from the underlying Digital System
Model. To demonstrate this interaction, consider the ba-
sic implementation of a heat exchanger Digital Twin in Fig-
ure 4. The underlying heat exchanger DSM contains the time-
invariant calculations to determine the output temperature of
the hot fluid, Ta,out based on mass flow rates, ṁa, ṁb, and
temperatures Tb,in, Ta,in. Using this outlet temperature, the
Digital Twin calibrates the thermodynamic efficiency, η by it-
eratively executing the Digital System Model. Once this cal-
ibration is complete, the Digital Twin returns the simulated
outlet temperature and calibrated thermodynamic efficiency
for the specific asset based on the specified inputs.

2



Asia Pacific Conference of the Prognostics and Health Management Society 2023

ID A DSM Should... Rationale
1 Be executable from a Command-Line Interface This facilitates standardization of DSM/DTw execution
2 Be executable as a self-contained model with no

external software dependencies
This ensures a DSM/DTw may be executed in any soft-
ware/hardware environment, decoupled from licensed
software

3 Accept parameter inputs as command line argu-
ments and/or a path to a file containing parameter
input data

This is to ensure a consistent means of providing input
data

4 Return only the labeled output data via the
command-line

This ensures standardization for the output interface of
the model

5 Assume input data is in the correct engineering
units

This requirement ensures no preprocessing is required to
perform unit conversions for execution

6 Assume input data parameter names exactly
match model variable names, including case sen-
sitivity

This requirement ensures no preprocessing is required to
rename variables prior to execution

7 Be fully executable at the designed level of fidelity
based on inputs provided via the described inter-
faces

This requirement ensures that all required inputs are ac-
cessible via these documented interfaces

Table 2. Digital System Model Requirements

2.1. Digital System Model Interface Requirements

In order to execute Digital System Models at scale, it is nec-
essary to define and document the interface requirements to
ensure they are compatible with an execution framework as
part of the Digital Thread. Defining the interface in this way,
ensures scalability while enforcing minimal additional bur-
den on the discipline engineers developing models. These
requirements are provided in Table 2.

The first requirement relates to the method of execution; the
DSM must be callable as an executable. This is closely re-
lated to requirement Two, which dictates that no external soft-
ware dependencies may be required to execute the model. As
an example, if a model is compiled as an executable named
“MassSpringDamper,” it must be callable like so:

$ ./MassSpringDamper

Combining these requirements essentially means that the
DSM must be a self-contained, compiled executable file. This
requirement exists for several reasons. First, it explicitly
eliminates the need for external software licenses to execute
the models. Second, it ensures parallelization using clustered
computing methods available through frameworks such as
Apache Spark and Apache Beam. Third, it limits the number
of artifacts required to track and deploy through the model ex-
ecution process. In summary, these two requirements greatly
facilitate the scalability of the Digital System Models by re-
ducing licensing cost, facilitating large-scale computation,
and limiting the number of files to track.

Next, Requirements 3 and 4 describe the low-level input/out-
put interface for the Digital System Model. In order to exe-
cute the DSM at-scale, the execution framework must be able
to supply inputs in the correct format and retrieve outputs for

analysis. First, the input parameters may be supplied in mul-
tiple ways via the command line: as additional arguments or
as part of a data file whose path may be passed as an argu-
ment. The DSM must be capable of processing these raw
inputs to populate the necessary internal input variables with-
out any external software. Similarly, the DSM must return
all relevant output variable data via the command line. These
outputs must be clearly labeled so that the user may under-
stand what values are associated with specific variables.

Using the previous example of the “MassSpringDamper”
model, assume the DSM requires variables MASS,
SPRING RATE, DAMPING COEFFICIENT, and In-
put Force. To provide these variables to the model according
to Requirement 3, the DSM may be invoked as follows (In a
Unix environment):

$ ./MassSpringDamper --MASS 10. \
--SPRING_RATE 2 \
--DAMPING_COEFFICIENT 4 \
--Input_Force 100.,100.,

The DSM then returns an output in a format like so:

Velocity: 0.00,0.98,...,0.00,0.00,
Position: 0.00,0.05,...,50.00,50.00,

In this example, the DSM returns a time-series output for the
Position and Velocity of the mass. If the inputs were enumer-
ated in a file named “Inputs.csv,” the model may similarly be
executed like so:

$ ./MassSpringDamper \
--filepath Inputs.csv

to achieve the same output result.

3



Asia Pacific Conference of the Prognostics and Health Management Society 2023

Requirements 5, 6, and 7 describe integration of the Digital
System Model with the Digital Thread. When executing the
DSM, the formatting of the input data must be exactly cor-
rect to calculate a result at the desired level of fidelity. This
begins with the units of the input data; the Digital Thread
must provide inputs with the correct engineering units. Sec-
ond, the names of the input parameters must exactly match
the variable names used in the DSM. As the discipline engi-
neer builds this model, they must assume both of these re-
quirements are met upon execution. This assumption relies
on accurate documentation, which will be discussed in the
next section. Finally, Requirement 5 provides general guid-
ance to the nature of DSM execution. In order for a data sci-
entist to execute the model at the intended level of fidelity, all
of the required inputs must be accessible via the command-
line interface as described in Requirement 3.

3. EXECUTING DIGITAL SYSTEM MODELS AT-SCALE

With a generalized set of interfacing requirements estab-
lished, it is possible to develop a strategy for executing DSMs
at-scale. This model execution framework relies on con-
suming Digital System Models and in-service data formatted
properly according to the previous section.

The high-level workflow involved in perfoming this scalable
model execution is shown in Figure 5. This process begins
in the original modeling environment which the design engi-
neers used to create the physical equations representing the
system or component under consideration. Two examples
— Python and Matlab/Simulink — are shown. Both envi-
ronments facilitate the export and compilation of decoupled,
generic executables in-line with the DSM requirements as
part of this execution framework. While many other engineer-
ing design software packages exist, both Python and Matlab
represent a significant portion of engineering models and are
extremely flexible in their implementation and interoperatbil-
ity with other packages.

Using tools such as Docker, it is possible to cross-compile
these models to execute in a desired operating system (e.g.
Windows or Linux). These compiled executable files are
then deployed using standard parallelization libraries such as
Apache Spark and Apache Beam in conjunction with cloud
and clustered computing. This step facilitates scalability
bounded only by the available cloud computing infrastruc-
ture. This significantly increased throughput enables model
execution at a scale consistent with the demands of aircraft
fleet health management.

Lastly, this workflow uses standard JSON payloads to store
the input and output of the Digital System Models. This
JSON structure has the following format:

1 {"assetId": "Asset123",
2 "episodeId": 123,

Figure 5. Model Execution Workflow

3 "filePath": "path/to/input_data.csv",
4 "argument1": 1,
5 "argument2": 2,
6 "argument3": 3}

where assetId identifies the specific asset associated with the
data, episodeId identifies the instance, such as specific flight,
from which the data originates, filePath identifies any csv-
formatted input data, and the arguments contain parametric
data relevant to the current episode. This format relies on
the input-output interface defined in Section 2.1 and enables
parallelizeable execution.

After the parallelized, scaled execution is completed, these
outputs are stored in the cloud using the data aggregation
method of choice for data science activities. For example,
these JSON payloads may be stored in a Google BigQuery
database for easy access.

In summary, using the DSM interface requirements as a base-
line, this work proposes a workflow to execute large numbers
of models at scale. Using parallel computing and efficient,

4



Asia Pacific Conference of the Prognostics and Health Management Society 2023

Figure 6. 737NG ECS Model

decoupled models, they may be executed against in-service
data at a scale consistent with fleet-level health management
activities.

4. CASE STUDY: 737NG ENVIRONMENTAL CONTROL
SYSTEM

The methods presented in this work were employed to facil-
itate increased understanding of failure data of the 737NG
Air Cycle Machine with the assistance of an Environmental
Control System (ECS) Pack model of the 737NG (Jennions,
Ali, Miguez, & Escobar, 2020) in conjunction with in-service
data. This model, pictured in Figure 6, uses the Matlab Sim-
scape libraries to simulate the thermodynamic behavior of the
air conditioning system on the 737. Executing this model at
scale first requires identifyign the input/output interface and
exporting the Matlab model to a single executable.

This model requires several steady-state inputs to execute.
Some inputs are recorded by the in-service aircraft, while oth-
ers must be inferred. Based on these boundary conditions,
the model simulates the thermodynamics of the ECS heat
exchangers and Air Cycle Machine, including inlet and out-
let temperatures and pressures. These model parameters are
summarized in Table 3. Inputs include Ram air inlet condi-
tions and bleed air properties in addition to fouling factors for
the heat exchangers and air cycle machine. Based on these in-
puts, the temperatures at each component and the pack outlet
are calculated. Note that the fouling factors are not recorded
in flight parametric data and must be inferred based on the
other available information. This inference may be set up
similarly to the example given in Figure 4, where the genetic
algorithm is used for optimization in this example.

With the basis model and interface parameters defined, the
Matlab/Simulink C-Coder application facilitates the export
and compilation of the Digitial System Model as described
in Section 2.1. This process decouples the model from the
Matlab environment and ensures compatibility with the in-
terface requirements. This, in turn, facilitates execution on a
large volume of fleet-level aircraft data.

Once the model is exported, it may be invoked in the com-

mand line with the input parameters as arguments (in a Unix
environment):

$ ./B737_Model --Ram_Alt 9133 \
--BAS_Po 137895 --Cabin_Po 84116 \
--Target_T_Constantvalue 295.37 \
--Ram_Ma 0.71 --CHX_n 0.95 \
--RHX_n 0.95 --SHXRAM_n 0.95 \
--PHXRAM_n 0.95 --ACM_nm 0.8 \
--BAS_To 452

The model then returns the simulated outputs via the com-
mand line like so:

Cabin_A_T: 295.370000
PHXRAM_Hi_T: 452.000000
PHXRAM_Ho_T: 282.456881
SHXRAM_Hi_T: 319.940136
SHXRAM_Ho_T: 262.263248
ACM_Ti_T: 277.731433
ACM_To_T: 230.877365

By aggregating a large volume of input conditions from
various flights, this compiled model can be integrated into
the scalable execution framework introduced in Section 3.
Using the Baseline Digital Twin Realization in Figure 3
as a reference, the unrecorded model inputs (CHX n,
RHX n, SHXRAM n, PHXRAM n, and ACM nm) are
calibrated based on the recorded model outputs (Cabin A T,
PHXRAM Hi T, PHXRAM Ho T, SHXRAM Hi T,
SHXRAM Ho T, ACM Ti T, and ACM To T). The
recorded model inputs (Ram Alt, BAS Po, Cabin Po,
Target T Constantvalue, and Ram Ma) are used as the
baseline inputs for each episode. This process generates
additional, model-based data beyond the recorded values.
These data are then used to enrich the dataset to predict
component health.

With the digital twin strategy established, a dataset of 44
flight sequences from 41 different aircraft is used to demon-
strate the use of this methodology for health management-
related activities. These flight sequences are correlated with
maintenance data to determine when the Air Cycle Machine
was replaced on a given Pack for the aircraft. In total, 2350
flights were analyzed. Of which, 1400 occurred near compo-
nent removal, while 950 were considered “healthy.”

Executing this model at scale reveals the benefits of the cloud
computing framework. The execution time of the 737 ECS
Digital System Model in the local Simulink environment is
compared against the parallelized cloud computing environ-
ment in Figure 7. As the number of simulations increases in
the local environment, the simulation time increases substan-
tially. By comparison, parallelization substantially reduces
the time required to execute a large number of simulations in
the cloud computing envrionment, increasing the throughput

5



Asia Pacific Conference of the Prognostics and Health Management Society 2023

Name Input/Output Description Recorded?
Ram Alt Input Aircraft Altitude (m) Yes
BAS To Input Bleed air outlet temperature (Kelvin) Yes
BAS Po Input Bleed air outlet pressure (Pa) Yes
Ram Tat Input Ram inlet temperature (Kelvin) Yes

ACM Ti T Output Air Cycle Machine turbine inlet temperature (Kelvin) Yes
ACM To T Output Air Cycle Machine turbine outlet temperature (Kelvin) Yes

PHXRAM Hi T Input Primary Heat Exchanger inlet temperature (Kelvin) Yes
PHXRAM Ho T Output Primary Heat Exchanger outlet temperature (Kelvin) Yes
SHXRAM Hi T Output Secondary Heat Exchanger inlet temperature (Kelvin) Yes
SHXRAM Ho T Output Secondary Heat Exchanger outlet temperature (Kelvin) Yes

Cabin Po Output Pack outlet pressure (Pa) No
Cabin A T Output Pack outlet temperature (Kelvin) Yes

CHX n Input Condenser fouling factor No
RHX n Input Reheater fouling factor No

SHXRAM n Input Secondary Heat Exchanger fouling factor No
PHXRAM n Input Primary Heat Exchanger fouling factor No

ACM nm Input Air Cycle Machine mechanical fouling factor No

Table 3. 737 NG Parameters

Figure 7. Model Execution Time Comparison

and facilitating execution of this small-scale fleet-level exper-
iment.

Using this representative dataset, a random forest classifica-
tion model was trained to predict whether a 10-flight win-
dow, sampled from either an “unhealthy” (positive) sequence
or “healthy” (negative) sequence would end with component
removal. This process was executed twice: once with only
the recorded parameters and once with the recorded param-
eters in addition to values generated from the model simula-
tion. Using cross validation to determine hyperparameters,
the testing results are shown in Figure 8. As shown, the ad-
ditional information generated by the DTw improves the bal-
anced accuracy of the removal model. While both models
performance is insufficient for deployment, this demonstrates
the intended use-case for this methodology.

5. CONCLUSION

This work has presented a comprehensive strategy for the de-
velopment and utilization of Digital System Models and Digi-

Figure 8. 737 ACM Removal Model Performance

tal Twins for aircraft health management. Using this stragety
ensures that the models may be used at-scale for fleet-level
prognostics development. A Simulink model of the 737NG
Environmental Control System Pack was used to show how
this approach may be used to assist with these prognostics
activities.

REFERENCES

Hatakeyama, J., Seal, D., Farr, D., & Haase, S. (2018). Sys-
tems engineering v in a model-based engineering envi-
ronment: Is it still relevant? In 2018 aiaa space and
astronautics forum and exposition (p. 5326).

Jennions, I., Ali, F., Miguez, M. E., & Escobar, I. C. (2020).
Simulation of an aircraft environmental control system.
Applied Thermal Engineering, 172, 114925.

Mihai, S., Yaqoob, M., Hung, D. V., Davis, W., Towakel, P.,
Raza, M., . . . others (2022). Digital twins: a survey
on enabling technologies, challenges, trends and future

prospects. IEEE Communications Surveys & Tutorials.

6


