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ABSTRACT

This paper presents a novel unsupervised approach for detect-
ing anomalies in marine diesel engines using a Transformer
Neural Network based autoencoder (TAE) and residual anal-
ysis with Sequential Probability Ratio Test (SPRT) and Sum
of Squares of Normalized Residuals (SSNR). The proposed
method can capture temporal dependencies in normal time-
series data without the need for labeled failure data. To assess
the effectiveness of the proposed approach, a dataset of faulty
data is generated under the same operational profile as the
normal training data. The model is trained using normal data,
and the faulty data is reconstructed using the trained model.
SPRT and SSNR are then used to analyze the residuals from
the observed and reconstructed faulty data, with significant
deviations exceeding a predefined threshold being identified
as anomalous behavior. The experimental results demonstrate
that the proposed approach can accurately and efficiently de-
tect anomalies in marine diesel engines. Therefore, this ap-
proach can be considered as a promising solution for early
anomaly detection, leading to timely maintenance and repair,
and preventing costly downtime.

1. INTRODUCTION

The maritime industry plays a critical role in global trade and
transportation, over 80% of the volume of international trade
in goods is carried by sea (Stalk, 2021). Ships and equipment
onboard are the backbone of the operation of maritime indus-
try. Onboard ship equipment maintenance is a critical aspect
of ensuring safe and efficient vessel operations. The mainte-
nance of the marine equipment, however, poses a significant
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challenge due to the remote and harsh environment of the sea.
To ensure that equipment performs optimally, ship owners
and operators need to have an effective maintenance strategy
in place that balances safety, cost, and operational efficiency.
In addition to the challenges of maintaining equipment, the
development of autonomous ships adds another layer of com-
plexity. Autonomous ships require higher safety and reliabil-
ity standards for equipment, making the need for an effective
maintenance strategy even more critical.

In this context, it is essential to continue to explore innova-
tive and effective maintenance approaches to ensure the safe
and reliable operation of marine equipment. The develop-
ment of advanced data analytics, the Internet of Things (IoT)
technologies, and machine learning algorithms holds great
promise for improving onboard equipment maintenance and
achieving optimal performance (Knutsen et al., 2022). Over
the recent years, much has been implemented on these top-
ics through two main approaches: data-driven approaches
and model-based approaches (Bernardo & Reichard, 2017).
Especially data-driven approaches applying Deep Learning
(DL) techniques has become a popular direction with suc-
cessful implementation in different domains. Neural net-
works are a type of machine learning algorithm that are mod-
eled after the structure and function of the human brain. Deep
learning, is a subset of machine learning, and neural net-
works make up the backbone of deep learning algorithms
(Kriegeskorte & Golan, 2019). In fact, it is the number of
node layers, or depth, of neural networks that distinguishes a
single neural network from a deep learning algorithm, which
normally have more than three.

Neural networks and deep learning models can be categorized
based on their architecture and working mechanisms. There
are various types of neural networks, such as Convolutional
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Neural Networks (CNN), Recurrent Neural Networks (RNN),
and Autoencoder (AE). On the other hand, new architectures
are actively being developed by researchers. Over the last
couple of years, there has been a surge in the development
of large generative language models like ChatGPT. The key
to their success lies in the Transformer architecture, which
serves as the foundational pillar for these models.

This paper proposes and tests a new method for detecting
anomalies in marine diesel engines using a Transformer Neu-
ral Network. The approach is unsupervised, meaning that the
model is trained on normal operational data and tested on data
from faulty operations. Once reconstruction is complete, hu-
man domain knowledge, SPRT and SSNR are used to evalu-
ate the model’s performance.

The remainder of the paper is organized as follows: Section II
discusses the latest trends in data-driven equipment anomaly
detection. Section III presents the methodology used in this
study. Section IV covers the model and data used in the study,
including the collection process and model training. Results
and analysis are presented in Section V. Finally, Section VI
concludes the paper and proposes future work.

2. RELATED STUDIES

In recent years, data-driven prognostics has gained signif-
icant attention as a research area. (Vanem & Brandsæter,
2021) presents a comprehensive implementation of cluster-
based anomaly detection for marine engine systems. This
study highlights the potential of employing statistical tech-
niques for effective anomaly detection. Concurrently, nu-
merous researchers are also exploring the application of DL
methods in this domain, i.e., (Han, Li, Skulstad, Skjong, &
Zhang, 2020), (Ellefsen, Bjørlykhaug, Æsøy, Ushakov, &
Zhang, 2019) and (Hu, Cheng, Wu, Zhu, & Shao, 2021).
An autoencoder (AE) is a type of artificial neural network
that is used for unsupervised learning of efficient data repre-
sentations. Because of the mechanism, AEs can be used for
anomaly detection, where they are trained on healthy data and
then used to detect any deviations from the normal behavior
of the machinery or system. The key advantage is that AEs
adopt an unsupervised learning architecture, they do not re-
quire large amounts of data to be labeled. (Han, Ellefsen, Li,
Holmeset, & Zhang, 2021) proposed an LSTM-based varia-
tional autoencoder (LSTM-VAE) for fault detection in mar-
itime components. (Listou Ellefsen et al., 2020) proposed a
fault-type independent spectral anomaly detection algorithm
for marine diesel engine degradation based on variational au-
toencoder (VAE). (Hemmer, Klausen, Khang, Robbersmyr, &
Waag, 2020) introduced an unsupervised learning approach
for detecting defects in large, slow-rotating axial bearings by
developing a Health Indicator (HI). The proposed method uti-
lizes variational inference and involves the use of a VAE and
a conditional variational autoencoder (CVAE).

RNN are a type of neural network that are designed to han-
dle sequential data. Unlike feed-forward neural networks
like Multilayer perceptron (MLP), which process input data
in a fixed order and don’t have any memory (Liang, Tvete,
& Brinks, 2019) and (Liang, Tvete, & Brinks, 2020), RNN
maintain an internal state that allows them to process se-
quences of varying lengths and capture the temporal de-
pendencies between successive inputs. (Hu et al., 2021)
introduced a new deep bidirectional recurrent neural net-
works (DBRNNs) ensemble method for Remaining Useful
Life (RUL) prediction of aircraft engines. CNN has shown
promising results in detecting faults based on acoustic sig-
nals, vibration data, and thermal images. For example,
(Massoudi, Verma, & Jain, 2021) used CNN to classify en-
gine sounds based on the type and severity of the fault.

After conducting a literature survey, it appears that the use
of Transformer Neural Network for prognostics or anomaly
detection purposes is not widely explored. To address this
gap, (Zhang, Song, & Li, 2022) proposed a new deep method
for RUL prediction called Dual-Aspect Self-Attention based
on Transformer (DAST) to improve the overall efficiency
of predictive maintenance tasks. The results demonstrated
that DAST outperforms BiLSTM and CNN methods in terms
of RMSE (Root Mean Squared Error) and score values for
most engines. It is important to note that DAST is a super-
vised learning approach that requires labeled data for train-
ing. However, in reality, obtaining sufficient fault or RUL
data can be challenging, which may limit the performance
of the model. In another transformer related study, (Tuli,
Casale, & Jennings, 2022) introduced TranAD, a deep trans-
former network for efficient and accurate anomaly detection
and diagnosis in multivariate timeseries data. TranAD outper-
forms state-of-the-art baseline methods in both detection and
diagnosis performance while offering data and time-efficient
training. The paper uses seven publicly available datasets in
their experiments. The authors acknowledge some concerns
about the lack of quality benchmark datasets for time series
anomaly detection.

3. METHODOLOGY

3.1. Proposed TAE

Transformer is a deep learning model introduced by (Vaswani
et al., 2017). in 2017, and it has gained significant popular-
ity in the field of natural language processing. Transformer
Networks were introduced as an alternative to RNNs for se-
quence modeling tasks. Unlike RNNs, Transformer Neural
Networks (TNN) have a parallelizable architecture, making
them faster for certain tasks. They also require fewer train-
ing iterations and are less prone to the vanishing gradient
problem than RNNs. Although RNNs have been widely used
for sequence modeling, their limitations have led to the de-
velopment of TNN. TNN have shown superior performance
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in several natural language processing tasks, including lan-
guage translation, compared to RNNs. They are faster, re-
quire less training data, and have a better ability to handle
long sequence dependencies (Karita et al., 2019). RNNs use
recurrent connections to process sequential data, while TNNs
rely on self-attention mechanisms to capture dependencies
between all elements in a sequence, without using any con-
nections between the elements themselves. One key chal-
lenge in applying self-attention to sequential data is that the
order of the elements in the sequence is lost when computing
the attention weights. This is because the attention mecha-
nism computes the attention weights based on the similarity
between the query vector and the keys associated with each
element in the sequence, regardless of their position. This
makes it challenging for the model to differentiate between
elements at different positions in the sequence. To address
this issue, the TNN introduces positional encoding. Posi-
tional encoding is a technique that adds a fixed positional
vector to the input embeddings, providing the model with in-
formation about the position of each element in the sequence.
The purpose of this is to provide the model with positional
information, allowing it to distinguish between different ele-
ments in the sequence.

Instead of using TNN for prediction, in this study TNN was
used in an autoencoder manner to reconstruct the data. The
proposed architecture can be seen in 1. The details of the
proposed architecture are illustrated as follows.

1. Feed-forward Neural Network: An FNN is a fundamen-
tal type of artificial neural network that can be used as
a building block for constructing more complex models
such as MLPs. It is characterized by its fully connected
structure, where each unit in one layer is directly con-
nected to all units in the subsequent layer via weight con-
nections.

2. Positional encoding is a way of incorporating position
information into the input embeddings by adding a fixed
vector to each embedding, which varies based on its posi-
tion in the sequence. There are various ways of positional
encoding methods to choose. In this paper, the method
from (Vaswani et al., 2017) is used.

3. Residual connection and layer normalization layer (Add
& Norm): This layer is added after each sublayer in
TNN encoder. The function of residual connections is
to ease the challenge of training deep neural networks.
Meanwhile, layer normalization can quicken the training
progress and promote faster convergence of the model by
normalizing the activation value of each layer.

4. Multihead self-attention layer: The encoder employs
multihead self-attention to extract the significance of
various sensors along the sensor dimension, enabling it
to autonomously learn to prioritize characteristics with
higher weights. As a consequence, there is no need for

human intervention during the training process, resulting
in an automated and efficient feature selection process.

5. Layer normalization and residual connections: Each sub-
layer in the TNN, including multi-head self-attention and
position-wise feed-forward networks, is surrounded by
residual connections and followed by layer normaliza-
tion. Residual connections allow the output of each sub-
layer to be added to its input, which helps to mitigate
the vanishing gradient problem by allowing gradients to
flow directly to earlier layers. Layer normalization, on
the other hand, is a technique that is used to normalize
the activations of each layer. This helps to stabilize the
learning process by reducing the internal covariate shift.

In this study, the proposed TAE used two identical layers,
with each layer consisting of four attention heads. Rather
than using the TNN architecture again for decoding, an
MLP architecture is utilized to reconstruct the original
input data. It is important to note that in this study, the
Transformer model is used in an AE manner. This means
that the decoder does not receive any shifted features as
inputs, but rather only the learned representations from
the encoder. This approach reduces the complexity of
the model and makes the reconstruction process more ef-
ficient.

3.2. Sequential Probability Ratio Test

SPRT is a statistical method (Wald, 1992) used to make de-
cisions about a hypothesis based on a sequential analysis of
data. The method involves taking samples of data sequen-
tially and updating the probability of a hypothesis after each
sample is taken. (Vanem & Storvik, 2017) , (Brandsæter,
Vanem, & Glad, 2019) and (Brandsæter, Manno, Vanem, &
Glad, 2016) have already explored the application of SPRT
on maritime equipment and proved its capability of detecting
anomalies.

The trained model from introduced previously provides a re-
construction x

′

t of the observed signal values xt at each time
step t. The residuals, i.e. the difference between the recon-
structed and the observed value rt = x

′

t − xt are analyzed
sequentially by the SPRT to determine if the signal indicates
a normal or anomalous state of the system. To employ SPRT
for analyzing residual data, it is necessary to define two com-
peting hypotheses: a null hypothesis H0 and an alternative
hypothesis H1. Typically, the null hypothesis asserts that
residuals are normally distributed with mean 0 and some stan-
dard deviation σ which present is the system is in normal
state. While the alternative hypothesis H1 which assumes
that the residuals are normally distributed with specific mean
µ and/or standard deviation σ′ different from the null hypoth-
esis if the system is in the anomalous state. The SPRT is
performed for each feature independently.
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Figure 1. Proposed architecture

H0 : x ∼ N(0, σ)

H1 : x ∼ N(µ, σ′)
(1)

The SPRT can be calculated in the following steps. It is as-
sumed both follow normal distribution, the normal distribu-
tion probability function is:

f(r) =
1√
2πσ2

· exp
(
− (r − µ)2

2σ2

)
(2)

where r is the residuals of reconstructed and observed signal
value. Then, the likelihood ratio can be calculated based on
L1 and L0 when H0 has a mean of 0. If L1 is greater than L0,
it indicates that the distribution aligns more closely with H1

than with H0, and vice versa. The log likelihood ratio can be
calculated as:

log
L1

L0
= log(

n∏
i=1

exp
[
(ri −

µ

2
)
µ

σ2

]
) (3)

=

n∑
i=1

(ri −
µ

2
)
µ

σ2
(4)

In this case, ri represents the residuals at each time step i.
Once the hypotheses are defined and the log likelihood is cal-
culated, the SPRT index can be sequentially calculated and
updated. To achieve this, two threshold values, A and B,
must be specified. The calculated SPRT index at each time
step is then compared with these lower and upper decision
boundaries. At each time step, three possible outcomes can
occur:

• If the value falls below the lower limit (A), it indicates
the acceptance of the normal state (H0). Consequently,
the test statistic is reset.

• If the value exceeds the upper limit (B), it suggests the

acceptance of the anomalous state (H1). Accordingly,
the test statistic is reset.

• When the value lies between the defined threshold val-
ues, it signifies an insufficiency of available information
to reach a conclusive decision.

The thresholds A and B can be calculated based on the fol-
lowing equations:

A = log

(
β

1− α

)
B = log

(
1− β

α

) (5)

where α is the probability of Type I error (false alarm), which
represents the probability of rejecting the true H0. β is the
probability of Type II error (missed alarm), which represents
the probability not rejecting H0 when it is false.

3.3. Sum of Squares of Normalized Residuals

The chi-square distribution, also written as χ2 distribution, is
a continuous probability distribution widely used in statistical
inference and hypothesis testing. It is particularly relevant
in scenarios where the sum of squared independent, identi-
cally distributed random variables is being analyzed. The chi-
square distribution is a special case of the gamma distribution
and is often used in goodness-of-fit tests, independence tests
for contingency tables, and the estimation of confidence in-
tervals.

The chi-square distribution is characterized by its degrees of
freedom, which determine the shape of the distribution. The
degrees of freedom are typically related to the number of
independent observations or constraints in a given problem.
Specifically, the sum of the squares of k independent stan-
dard normal distribution variables follows a chi-square dis-
tribution with k degrees of freedom. This concept forms the
basis of the SSNR. In this study, the assumption is made that
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the SSNR follows a chi-square distribution with k degrees of
freedom equal to the number of features, which is 17.

To assess the significance of the SSNR, a comparison is made
with the corresponding chi-squared distribution. This enables
the determination of the probability of observing an SSNR
value as large or larger than a defined threshold. The thresh-
old for hypothesis testing can be derived using the inverse cu-
mulative distribution function (CDF), which allows the map-
ping of probabilities back to values from the distribution.
Three confidence levels are selected in this study: 99.99%,
99.7%, and 95% for evaluation. The confidence level repre-
sents the threshold probability. For instance, a confidence
level of 99.7% implies a 0.3% chance of making a false
alarm. By considering the given confidence level and degrees
of freedom (equal to the number of features), threshold val-
ues of 47.56, 37.37, and 27.58 are obtained using the inverse
CDF. The selection of a 99.7% confidence level is guided by
the three-sigma rule (Pukelsheim, 1994), which serves as a
widely recognized benchmark. However, in practical appli-
cations, the confidence level can be adjusted to meet specific
requirements. Different applications may exhibit varying de-
grees of sensitivity to inaccuracies in reconstructed signals. A
higher confidence level of 99.99% is also selected based on
the condition of this study.

By applying the threshold to the SSNR, the reconstruction
error can be effectively monitored. The SSNR is defined as
follows:

SSNR =

di∑
i=1

(
ri − µo

σo

)2

(6)

where di is the number of features, ri is the residuals of re-
constructed faulty data, µo is the mean of residuals of recon-
structed normal data, σo is the standard deviation of residuals
of reconstructed normal. Further details regarding the test re-
sults will be discussed in the following sections.

4. EXPERIMENTAL STUDY

4.1. Data collection and processing

The Department of Ocean Operations and Civil Engineering
at the Norwegian University of Science and Technology in
Ålesund has established a hybrid power lab for the purpose
of data collection. The laboratory consists of a compact ma-
rine diesel engine integrated with a generator, a marine bat-
tery system, a marine DC switchboard equipped with essen-
tial power converters, and a comprehensive marine automa-
tion system that supervises the entire operational process.

The data collection process involves running the engine on
an operating profile that emulates an actual ferry crossing on
the west coast of Norway. The ferry departs from shore at
a safe and constant speed, then accelerates until it reaches a

Figure 2. Engine operation profile

suitable speed. The speed is maintained at a constant level
before safely decreasing and finally braking just before dock-
ing. The entire ferry crossing process takes 20 minutes, and
the complete engine operating profile is depicted in Figure
2. Both the normal operation data and the faulty degradation
data are collected while running the engine operating profile.
The only difference between the two data sets is that a fault is
introduced at an unknown time step in the faulty degradation
data. Therefore, the primary objective is to predict the fault
time step on time.

The engine is equipped with two water cooling systems - a
primary and a secondary system, where the latter cools the
former. The primary cooling system is regulated by an in-
ternal bimetal thermostatic valve, which commences opening
at a temperature of 78°C and reaches full opening at 90°C.
On the other hand, the secondary cooling system relies on a
frequency operated fan that circulates air through a heat ex-
changer. A malfunction of the fan is intentionally introduced
to create a fault that subsequently leads to a decline in cooling
efficiency within the secondary cooling system. To prevent
potential issues, the system is equipped with an alarm that
activates when the cooling water temperature exceeds 85°C.
A total of 2336 time steps were recorded over a 1168-second
period, with a frequency of 2Hz.

The process of feature selection is a critical step that can sig-
nificantly impact the performance of a study. In this study,
the feature selection process was initiated by employing the
domain knowledge and expertise of the engine operator to se-
lect 21 input features. To further refine the feature selection, a
correlation matrix was utilized to identify and remove highly
correlated features. The pairs of highly correlated features
were identified by comparing each column of the upper tri-
angular matrix against a threshold value of 0.95. The highly
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correlated features were dropped from the dataset to reduce
redundancy and potentially enhance the performance. After
this step, 17 features are kept. In the present study, the ob-
jective is to investigate the potential of the Transformer al-
gorithm for time series reconstruction. As such, no further
advanced feature selection methods, such as dimensionality
reduction techniques are adopted.

The data used for training has undergone zero-mean and unit
variance normalization. This technique involves scaling the
features to have a zero mean and unit variance, which ensures
that all features are on a comparable scale and prevents the
dominance of features with large variances during the learn-
ing process. Moreover, such normalization can improve the
stability and performance of machine learning models during
training. It is worth noting that the normalization statistics
derived from the normal operation data are also utilized for
the faulty degradation data.

The reconstruction of the data is a time series problem. When
dealing with time series data, it is often useful to divide it into
smaller subsequences or sequences that have a fixed length.
This can be done using a sliding window approach where a
window of fixed length is moved across the time series data
at a fixed stride. At each window position, the subsequence
of data within the window is extracted and added to a list of
subsequences.

4.2. Model training

In the proposed architecture for time series reconstruction us-
ing the TNN, several key hyper-parameters must be defined
to ensure its effective implementation. The number of TNN
layers refers to the number of encoding and decoding lay-
ers in the architecture. Increasing the number of layers can
improve the model’s ability to capture complex temporal pat-
terns but may also increase the risk of overfitting. The number
of heads is the number of parallel attention mechanisms that
are applied in each encoder and decoder layer. Increasing the
number of heads can enhance the model’s ability to attend
to multiple parts of the input sequence simultaneously. The
time sequence length is the length of the input time series
sequence that is fed into the model. This parameter deter-
mines how much historical data the model can use to make
its predictions. The dimension of the feedforward network
(FNN) is the size of the hidden layer in the FNN component
of the TNN. Increasing the dimension of the FNN can al-
low the model to learn more complex relationships between
features but may also increase the risk of overfitting. The se-
lected hyper-parameters are summarized in Table 1. In addi-
tion to that, early stopping technique is involved in the train-
ing process. Early stopping is a regularization technique used
in machine learning to prevent overfitting of the training data.

Table 1. Selected hyper-parameters

Hyper-parameter Value
Learning rate 0.001
Batch size 32
Time sequence length 10
Number of Transformer layers 2
Number of heads 4
Number of epochs 100
Number of FNN layers 3

Figure 3. Observed vs Reconstructed data

5. RESULT ANALYSIS

As previously mentioned, the system triggers an alarm if the
cooling water temperature exceeds 85°C. In this particular
case, a cooling fault occurred due to a malfunction in the fan
at the beginning of the test, resulting in a reduction in cooling
efficiency in the secondary cooling system. The evaluation
of the trained model is carried out by analyzing both the ob-
served and reconstructed data. Figure 3 displays several fea-
tures of the observed (blue) and reconstructed (orange) data,
with the red square indicating the time-step (1658) at which
the system raised an alarm, which persisted until the end of
the test.

In the paper, the evaluation of the model focuses on its ability
to detect anomalies during the anomalies period and prior to
the activation of the actual alarm. This prognostic informa-
tion can provide valuable insights to operators in real-world
scenarios, enabling them to take proactive measures.

5.1. Evaluation on SPRT

As introduced previously, the SPRT is computed using the
log likelihood and two thresholds. The SPRT index is reset
whenever it surpasses both thresholds. In this study, the nor-
mal data set is referred to as the training data, while the faulty
data is referred to as the test data. In this study, the standard-
ization of residuals from the reconstructed test data plays a
crucial role. The residuals of the reconstructed test data are
standardized using the mean and standard deviation derived
from the first 500 time steps of the same data. It is important
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Table 2. Anomalous time step comparison - SPRT

Feature Negative mean change Positive mean change
Feature 1 708 N/A
Feature 2 1043 1786
Feature 3 910 678
Feature 4 846 522
Feature 5 1025 1162
Feature 6 N/A 714
Feature 7 658 1339
Feature 8 1400 603
Feature 9 605 2239
Feature 10 630 972
Feature 11 1314 686
Feature 12 1503 1009
Feature 13 611 1016
Feature 14 1143 600
Feature 15 681 759
Feature 16 955 2276
Feature 17 1204 990
Average 1116 1084

to note that during these initial 500 time steps, the system
is in normal operation mode, with all signals falling within
their respective normal working ranges. This standardization
approach ensures a stable performance of the SPRT.

In this study, two alternative hypotheses are examined: devia-
tions in the positive and negative directions of the mean. The
three-sigma rule is applied in this step, with the alternative
means of -4 and 4 being utilized in the tests. The results of
the negative test are presented in Figure 4 as an example.

For the anomalies detected in the first 500 time steps are taken
as faulty warning. It is worth noting that the SPRT indices are
calculated for all features, with some features indicating er-
rors earlier than others. The average of the identified errors
across all features serves as the final measure for evaluating
the performance of the models. The detailed anomalous time
steps identified by both tests are presented in Table 2. The
average number of detected anomalous time steps from both
tests is 1116 and 1084, respectively. These averages are com-
pared with the time step at which the system alarms are acti-
vated, demonstrating that the detections are timely and accu-
rate.

5.2. Evaluation on Sum of Squares of Normalized Resid-
uals

In addition to assessing the models’ performance using SPRT,
the performance is also evaluated using SSNR, as previously
introduced. To implement SSNR, the test data residuals un-
dergo standardization, adopting the same approach used in
SPRT. The mean and standard deviation of the test data resid-
uals from the first 500 time steps are utilized for standardiza-
tion. A time step is considered a potential warning if its SSNR
value exceeds the average. The SSNR performance is illus-
trated in Figure 5, where it is evident that the SSNR can detect
anomalies well before the system alarm is activated. Figure

Figure 4. SPRT on test data - negative mean change
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Figure 5. SSNR with full scale

Figure 6. SSNR with selected scale

6 provides a closer examination of the SSNR performance.
Similarly, anomalies detected within the first 500 time steps
are considered as faulty warnings. The SSNR frequently indi-
cates faults between time steps 850 and 950. Comparing with
the system alarm time step, the SSNR demonstrates efficient
and timely anomaly detection.

The results obtained from the SSNR analysis highlight the
early anomaly detection capability of the TAE model. It
consistently identifies anomalies between time steps 850 and
950, triggering timely warnings. In comparison to the sys-
tem alarm at time step 1658, the SSNR exhibits efficient and
timely detection of anomalies. These findings suggest that
in real-world scenarios, operators would have ample time to
implement preventive measures and prevent the system alarm
from activating.”

6. CONCLUSION AND FUTURE WORK

This paper proposes a novel approach to detect anomalies in
marine diesel engines. The approach consists of two parts:
a Transformer-based autoencoder and residuals evaluation
methods based on SPRT and SSNR. The data used in this
study consists of normal and faulty data collected under the

same operation profile. The normal data is used to train the
model, while the faulty data is used to test it. In this paper, a
detailed explanation of the proposed architecture is presented,
along with an outline of the optimal combination of hyper-
parameters. The evaluation of the observed and reconstructed
data shows that the proposed TAE demonstrates stable perfor-
mance and can detect anomalies in a timely manner.

In this study, it was found that the potential of TNN is not
fully utilized. Firstly, the amount of training data is limited
to only 20 minutes of operation. Although this is sufficient
to demonstrate the potential of the TNN model, it is likely
that the model’s performance could be further improved with
larger training datasets. One of the major advantages of TNN
over RNN is its ability to be trained in parallel, which could
be exploited with larger datasets. In addition, longer time
sequences could also be explored to see the attention mecha-
nism against the memory of LSTM. Secondly, the data used
in this study only contained one operation profile, which may
not be representative of the full range of working conditions
encountered in marine diesel engines. Thirdly, the study did
not explore other feature selection and dimensionality reduc-
tion techniques, which could further enhance the performance
of the TAE. Additional techniques such as principal compo-
nent analysis or independent component analysis could be
used to reduce the dimensionality of the data, while pre-
serving the most important features. Lastly, the SPRT and
SSNR methods used in this study could be further explored
to improve its effectiveness. Alternative statistical methods or
modifications to the existing methods could be investigated to
improve its accuracy and reliability in detecting anomalies in
marine diesel engines.
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NOMENCLATURE

TAE Transformer neural network base autoencoder
SPRT Sequential Probability Ratio Test
SSNR Sum of Squares of Normalized Residuals
CNN Convolutional Neural Networks
AE Autoencoder
RNN Recurrent Neural Networks
TNN Transformer Neural Networks
LSTM Long Short-Term Memory
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