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ABSTRACT

This paper explores the use of machine learning in predictive
maintenance, which has been increasingly demanded in re-
cent years to reduce downtime and maintenance burden. The
challenge of different data distributions between training and
test data in machine learning is common in predictive mainte-
nance where equipment operation patterns can change, lead-
ing to reduced operational efficiency. The authors validate a
domain-adaptive anomaly detection method combining CNN
and MMD, which achieves similar accuracy with PCA, SVD,
and other dimensionality reduction methods. The study also
shows that the method maintains accuracy even when the
number of normal data in the target domain is 1/10 of the
source domain.

1. INTRODUCTION

Gearboxes are pivotal in industrial settings, critical for
the functioning of wind turbines, conveyors, and industrial
robots. Their health is vital, given their susceptibility to wear
and corrosion, making their close monitoring essential to pre-
vent unexpected downtime, production loss, and safety haz-
ards. Early identification of gearbox health is therefore cru-
cial.

Traditional gearbox prognostics and health management
(PHM) typically use signal processing techniques applied to

Shinya Tsuruta et al. This is an open-access article distributed under the
terms of the Creative Commons Attribution 3.0 United States License, which
permits unrestricted use, distribution, and reproduction in any medium, pro-
vided the original author and source are credited.

vibrational data(Qiao & Lu, 2015). These techniques, such
as time synchronous average method(Bennett, 1958), gear
mesh frequencies observation(Soualhi et al., 2018), and var-
ious domain approaches, have proven effective but require
domain expertise and intensive feature extraction. Recently,
neural networks, specifically convolutional ones(Jing, Zhao,
Li, & Xu, 2017; Han, Liu, Yang, & Jiang, 2019; Grezmak,
Wang, Sun, & Gao, 2019), have been applied to vibration
signal analysis, with deep learning strategies also gaining
traction(Jiang et al., 2017). These methods, able to perform
automatic feature selection(Saufi, Ahmad, Leong, & Lim,
2019), are attractive due to their efficiency and the high in-
formation density of their extracted features.

However, deep learning’s need for comprehensive data is
a challenge, as obtaining data for every possible work-
ing condition is often unfeasible. To address this, trans-
fer learning has been explored, allowing knowledge from
one machine state to enhance the assessment of others.
Yet, domain discrepancy presents an obstacle in transfer
learning(Costa, Akçay, Zhang, & Kaymak, 2020), and do-
main adaptation (DA) methods must be used to maintain re-
sult accuracy(Siahpour, Li, & Lee, 2022).

In industrial settings, domain adaptation is typically per-
formed on the healthy class, with deep learning methods then
identifying anomalies that do not fall within the expected
range. These outliers can signal necessary maintenance ac-
tions. To address aforementioned issues and challenges, this
work studies the following novelties:

1. To mitigate the challenges of domain discrepancy in
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transfer learning, we integrated domain adaptation meth-
ods within the dimensionality reduction process. This
novel integration is aimed at enhancing the robustness
and accuracy of fault identification across diverse oper-
ating conditions, even in the presence of domain shifts.

2. We pioneered a comprehensive comparative study on the
effectiveness of different dimensionality reduction meth-
ods such as PCA, SVD, Isomap, and t-SNE, in the con-
text of anomaly detection for gearbox health monitoring.

3. We investigated the influence of varying quantities of
normal data in the target domain on the performance of
our proposed approach, providing insights into optimal
data usage for such applications.

The remaining sections of the paper are organized as fol-
lows: Section II reviews related literature, Section III presents
the mathematical background, Section IV introduces the pro-
posed methodology, Section V investigates the corresponding
experimental study, and Section VI concludes.

2. RELATED WORKS

Data-driven methods like deep learning, domain adaptation,
and anomaly detection have gained popularity in intelligent
systems due to advancements in AI. These techniques facili-
tate pattern recognition, dataset alignment, and classification,
and their application has been highlighted in recent literature.

For instance, (Li, Ding, & Sun, 2018) used deep convolu-
tional neural networks (DCNN) for aero-engine life predic-
tion requiring no prior knowledge. (Zhou, Yang, Fujita, Chen,
& Wen, 2020) tackled unbalanced data using a generative ad-
versarial network (GAN), while (Liu et al., 2020) leveraged
DCNN for gear grinding monitoring.

However, deep learning models’ generalization can be com-
promised if training and test data differ, necessitating domain
adaptation techniques. (B. Zhang, Li, Tong, & Zhang, 2017)
used unsupervised domain adaptation for bearing fault de-
tection, aligning training and test data distributions. (Buijs,
Koch, & Dugundji, 2021) applied transfer learning to trans-
portation mode choice with positive results, while (W. Zhang,
Li, Ma, Luo, & Li, 2021) combined transfer learning with
deep representation regularization for life prediction.

Anomaly detection is another effective fault diagnosis tech-
nique. (Purarjomandlangrudi, Ghapanchi, & Esmalifala,
2014) used data mining for bearing fault diagnosis, yielding
a 95% accuracy. (Yang, Ma, Zeng, Peng, & Liu, 2021) im-
proved spacecraft telemetry data anomaly detection using a
long short-term memory (LSTM) architecture.

These techniques have been combined for improved results.
(Mahyari & Locker, 2018) used transfer learning for robotic
predictive maintenance, eliminating false alarms. (Vincent,
Wannes, & Jesse, 2020) proposed a semi-supervised anomaly

detection using relevant labels from a related anomaly de-
tection task. Lastly, (Michau & Fink, 2021) tested unsuper-
vised transfer learning (UTL) on various datasets, showcasing
promising results.

3. PROPOSED METHOD

3.1. Architecture Overview

Our proposed model (Fig.1) operates in two stages with four
primary modules. Stage one involves a deep learning fea-
ture extractor that pulls high-level (HL) features from the
frequency spectrum of collected data. These HL features
are transferred to the domain adaptation module, which cre-
ates domain-invariant features. These features are trained on
source data, encompassing all health classes (H-healthy, B-
between, F-faulty), and target domain with only the healthy
class. The goal is to derive features that are domain-invariant
and indicative of the healthy class. A second stage is intro-
duced to enhance the anomaly detection capacity of these
features. Here, a one-class classifier uses the features for
anomaly detection after a dimension reduction module sim-
plifies the data, retaining necessary information (Fig.2).

3.2. Cross-domain Transfer Learning

The initial stage aims at creating healthy class-discriminative,
domain-invariant features. To ensure healthy class discrimi-
nation, we use the cross-entropy loss function.

Lc =
1

n

n∑
i=1

Nc∑
j=1

1{yi = j} log(y′ij) (1)

where n, Nc, yi, and y′ij are the the number of samples, the
number of classes in each domain, the label corresponding to
the ith sample, and the predicted label corresponding to the
ith sample and jth class, respectively.

To enable knowledge transfer from the source to the target
domain, a domain adaptation strategy is employed. Given
that the source and target data are gathered under varying
regimes, affecting data distribution, we utilize the MMD met-
ric to measure the discrepancy and address this issue. This
MMD term is added to the total optimization goals as a loss
function as follows:

LDA = MMD2(Fsource, Ptarget) (2)

Where the arguments Fsource and Ftarget are the feature rep-
resentations of the data corresponding to the source and target
domains, respectively.
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Figure 1. The schematic overview of the proposed two-stage anomaly detection architecture.

3.3. Network Optimization

The integration of these loss functions forms the network op-
timization goal. The general loss function is formed by inte-
grating equations (1) and (2) as follows:

Ltot = αLc + βLDA (3)

Where α > 0 and β > 0 are the penalty coefficients for Lc
and LDA, respectively.

During training, network parameters for the feature extractor
and one-class classifier modules are optimized and updated
based on the loss function as follows:

θ ← θ − δ(α∂Lc
∂θ

+ β
∂LDA
∂θ

) (4)

where δ indicates the learning rate.

3.4. High-level Anomaly Detection

The HL features collected from stage one are used for
anomaly detection with the one-class classifier module. The
features are mapped into 2D space using a dimensionality re-
duction algorithm before feeding to the module. Two hyper-
parameters are tuned in this stage for the optimization of the
RBF kernel hyper-parameter as follows:

k(Φi,Φj) = e−γ‖Φi−Φj‖2 (5)

where Φi, Φj represents the ith and jth feature samples and
‖.‖ is the L2 norm operator.

Table 1. Detailed Data Collection Information.

Signal Unit Sampling rate
Command position Encoder pulse count 444 µs
Feedback position Encoder pulse count 444 µs
Command velocity rpm 444 µs
Feedback velocity rpm 444 µs

Feedback torque current % of torque rate 444 µs
Total drive time s 444 µs

Table 2. Specification of Network Parameters.

Parameter Value Parameter Value
δ 1e-4 Epochs 500

Neurons of FC layer 128 Drop-out rate 0.5
Batch size for cross-entropy 32 Batch size fo MMD 100

Number of samples 1500

4. EXPERIMENTAL STUDY

4.1. Data Profile

Our study analyzes gearbox data from an industrial system
that’s part of a planetary gearbox system (Fig.3). The studied
gearbox and representative wear faulty condition of the gear
are shown in Fig.4. The dataset includes both of healthy and
faulty data. The faulty data was collected by grinding the gear
tooth to reproduce war conditions.

The dataset consists of cycle features test (FCFT) data as out-
lined in (Liao & Lee, 2009), with our focus on steady state
data over the transient portion. We collected 100 loops of
63 command patterns for each wear/gain condition. The first
48 patterns relate to four main working regimes of 50, 500,
1000, and 3000 rpm. For this study, we omitted some patterns
and considered only forward rotation based on expert input,
analyzing 100 loops of 32 patterns.
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Figure 2. The flow chart explaining the proposed two-stage
anomaly detection methodology.

Table 3. F1 score on each method.

Dimensionality reduction F1 score
PCA 0.98
SVD 0.96

Isomap 0.96
t-SNE 0.811

Each loop comprises command and feedback position, veloc-
ity, and torque current, gathered every 444 µs . Supplemen-
tary data, like encoder temperature and load rate, is also col-
lected. Table 1 summarizes the data collection information.

4.2. Data Preprocessing

Data processing begins by separating different loops and pat-
terns, leading to a 100 loop x 32 pattern matrix. The aim is to
truncate samples to contain only steady state data, achieved
by retaining feedback torque current points corresponding to
samples within one rpm of the working regime velocity. Fur-
ther reduction removes overshoot, eliminating the first 40%
of each sample to retain steady state data.

Post-cleanup, we concatenate the eight patterns from each
loop and then concatenate these 100 loops. This results in
a cleaned torque signal for each wear, gain condition, and
working regime (36 signals in total).

The final step prepares the torque signals for our method. We

Figure 3. The experiment setup for the manufacturing system.

Servo Mortor Healthy Worn

Figure 4. The studied gearbox and representative wear fault
condition.

downsample each signal, taking every 10th data point, and
split it into 500 windows of 2000 time-domain points each.
The windowing step size and overlap percentage are deter-
mined based on the total torque signal length.

4.3. Implementation Details and Tasks

Several dimensionality reduction methods were used to eval-
uate the proposed method. PCA, SVD, Isomap, and t-SNE
were used for dimensionality reduction. PCA and SVD are
linear dimensionality reduction methods, while Isomap is a
nonlinear dimensionality reduction method based on nonlin-
ear distances on the manifold. t-SNE performs dimensional-
ity reduction so that sets that are similar with high probability
are in the neighborhood and sets that are different are in the
distance. From the gearbox data set, 500 rpm and 1000 rpm
data were extracted by preprocessing. The evaluation was
performed with 500 rpm as the source domain and 1000 rpm
as the target domain. The feature extractor module is com-
prised of two consecutive convolutional layers with 30 and
20 filters (filter size = 5), respectively. The leaky rectified lin-
ear unit (ReLU) is utilized as the activation function in both
convolutional layers. The convolutional layers are followed
by a max pooling layer with a pooling size of 2. The detailed
information of the network implementation and parameters
are provided in Table 2.

4.4. Comparison of Dimensionality Reductions

Table 3 shows the F1-score of anomaly detection for each
dimensionality reduction method. There is no significant dif-
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Figure 5. Comparison of Dimensionality Reductions.

Figure 6. Reduction of normal data.

ference among each anomaly detection method, and they all
show high accuracy. Compared to the other dimensionality
reduction methods, t-sne has a lower score because the nor-
mal data in the source and target domains are not aggregated
on the feature map, resulting in many false positives. Table3
shows the inference results for each dimensionality reduction
method. That is, Fig.5 shows the two-dimensional feature
map of the one-class SVM. As shown in the figure, it can be
seen that normal and abnormal data can be separated. In the
inference results using PCA, SVD, and Isomap, the normal
and abnormal data are much further apart on the feature map
compared to t-SNE.

4.5. Reduction of Normal Data

Fig.6 shows the accuracy of anomaly detection when the
number of normal data in the target domain was reduced. t-
SNE showed a higher number of false positives and lower
accuracy. t-SNE showed almost no effect on accuracy when
the number of normal data was reduced to 50 for PCA, SVD,
and Isomap. The t-SNE is prone to over-fitting due to the
nonlinearity in the feature map with dimensionality reduc-
tion, which is easily fitted to the nonlinear normal region by
one-class SVM. On the other hand, the linear dimensionality
reduction method is considered to be more robust because of
the formation of nonlinear normal regions for linear feature
distributions.

5. CONCLUSION

iIn this study, we compared dimensionality reduction meth-
ods in a two-stage deep learning-based transition learning
method and experimentally verified their effectiveness in re-
ducing normal data in the target domain. In the comparison
of dimensionality reduction methods, the results were com-
pared using t-SNE, and all dimensionality reduction meth-
ods showed high anomaly detection performance. In the tar-
get domain normal data reduction study, high accuracy was
maintained in PCA, SVD, and Isomap even when the target
domain normal data was reduced to 1/10 of the source do-
main normal data. Further validation is planned for applica-
tion to industrial equipment with multiple rotation axes, such
as robot manipulators.
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