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ABSTRACT

An effective way to detect broken-bar faults of squirrel-cage
induction motors is to extract the characteristic frequency
component in the stator current as a fault signature, or so-
called motor current signature analysis (MCSA). However,
for inverter-fed motor drive systems, the motor is typically
operating under varying-speed, varying-load, and noisy envi-
ronments, which makes the fault signature extraction a very
challenging problem. In this paper, we propose a sparsity-
driven and graph-based method to extract the fault signature
effectively, where the fault signature is modeled as a sparse
component in the frequency domain for each short-time win-
dow measurement while gradually changing from window to
window in the time-domain. Compared to the conventional
short-time Fourier transform-based method, our method is
more robust to noise and varying speed operations. Exper-
iments are carried out to demonstrate the effectiveness of the
proposed method.

1. INTRODUCTION

Squirrel-cage induction motors are widely used in various
kinds of fields such as water pump, power fan, and indus-
trial drive, etc, for their low price and high efficiency. How-
ever, squirrel-cage induction motors are typically operating
in very severe environments and consequently subject to dif-
ferent types of faults. Besides insulation faults and electric
faults (short circuit), mechanical faults such as bearing faults
and broken-bar faults are also very common after years of
operations due to wearing bearings and pulsating forces on
rotor bars. Once a mechanical fault occurs, excessive vibra-
tion, poor starting performance, and torque fluctuation will
be induced during operation, accelerating the system failure
if the motor is not well maintained. Therefore, it is very im-
portant to monitor the motor health condition such that timely
maintenance and predictive maintenance can be made for safe
operations.
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For line-fed induction motors under steady operation con-
ditions, it is straightforward to extract fault signatures. Al-
though multiple symptoms can be utilized to detect mo-
tor faults, a widely used non-invasive method is to moni-
tor the stator current and further to detect the fault signa-
ture via motor current signature analysis (MCSA). In gen-
eral, when a motor fault occurs, the rotating magnetic field
is no longer symmetric as desired. Consequently, rotating-
speed-dependent frequency components are generated in the
stator current. Therefore, these frequency components can
be treated as fault signature for motor health monitoring, and
different types of faults correspond to different characteris-
tic frequency. Since the motor is operating at steady state,
the frequency spectrum change be easily achieved by Fourier
transform based methods.

While nowadays inverter-driven instead of line-fed induction
motors are becoming more and more popular in industrial
applications with the development of AC drive and control
technologies for the sake of efficiency, it is challenging to
extract the motor current fault signature due to the follow-
ing reasons: 1) the amplitude of stator current varies due to
load variation; 2) the rotating speed is also variable in a large
range; and 3) the inverter may introduce extra interference
to the current measurement. In this situation, conventional
Fourier transform-based methods are either no longer appli-
cable or with poor performance in motor fault detection and
health monitoring.

Researchers have been developing rotor fault detection meth-
ods for motors operating at non-stationary conditions for
decades, mainly based on short-time Fourier transform
(STFT). For example, in (Fernandez-Cavero, Morinigo-
Sotelo, Duque-Perez, & Pons-Llinares, 2017), an adaptive
transform utilizes a function called the time-frequency atom
that allows for precise observation of fault components in
transient regimes. These methods allow tracking the fault-
related frequency by performing relevant time-frequency (t-
f) transform. The drawback is that the energy of the fault-
related frequency component is much lower than the fun-
damental one, which makes it difficult to differentiate due
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to spectral leakage (Garcia-Calva, Morinigo-Sotelo, Garcia-
Perez, Camarena-Martinez, & de Jesus Romero-Troncoso,
2019). In recent years, sparsity-driven methods have been
applied in fault signature extraction(Liu & Lu, 2015; Kelkar,
Liu, Inoue, & Kanemaru, 2023) to achieve improved detec-
tion performance. These methods make use of sparsity to
either achieve a super spectral resolution(Liu & Lu, 2015) or
compensate the influence of the varying load(Kelkar et al.,
2023). However, all these sparsity-driven methods assume
the fault frequency is time-invariant, which may be not true
for practical inverter-drive motor systems.

In this paper, we study the broken-bar fault signature un-
der varying speed conditions. In order to effectively extract
broken-bar fault signature of induction motors under varying
operation conditions, we model the stator current as a graph
with nodes represented by sliding small time windows of the
stator current. A weighted adjacency matrix represents the
pairwise proximity between nodes (time windows) is then es-
timated and utilized for further analysis. Following the idea
of graph model, we propose a graph-based method to extract
the fault signature by solving an optimization problem with
constraints imposing sparsity and smoothness of the fault sig-
nature in the stator current spectrogram. Compared to the
conventional short-time Fourier transform-based method, our
method is more robust to noise and varying speed operations.
Experiments are carried out to demonstrate the effectiveness
of the proposed method.

2. GRAPH-BASED FAULT SIGNATURE EXTRACTION

2.1. Fault Signature

For a healthy induction machine, its stator current contains
a fundamental frequency component and harmonics of the
fundamental frequency in inverter-fed applications. When a
rotor bar is broken, additional frequency components fb are
induced in the stator current

fb = (1± 2κs)fs, (1)

where fs is the fundamental supply frequency; s is the slip;
and κ = 1, 2, · · · . MSCA-based broken-bar fault detection
techniques focus on detecting the dominant frequency com-
ponent or so-called characteristic frequency component in the
stator current, which is

fb1 = (1− 2s)fs. (2)

We ignore the detailed physical model of electric machines,
which can be found in many literatures such as (Krause,
Wasynczuk, Sudhoff, & Pekarek, 2013), and focus on the
signal processing part of the fault detection. The three-phase
stator current for a faulty induction machine can be simplified

as

ia(t) =I1 cos(ωst) + Ibrb cos(ωbrbt+ ϕbrb), (3)
ib(t) =I1 cos(ωst− 2π/3)

+ Ibrb cos(ωbrbt+ ϕbrb − 2π/3), (4)
ic(t) =I1 cos(ωst+ 2π/3)

+ Ibrb cos(ωbrbt+ ϕbrb + 2π/3), (5)

where I1 and Ibrb represents the amplitude of the fundamen-
tal component and the fault component, respectively; ωs and
ωbrb = (1−2s)ωs is the angular frequency of the power sup-
ply and of the fault component, respectively; and ϕbrb is the
phase angle of the fault component. In inverter-fed drive ap-
plications where the motor operation speed is variable, both
ωs and ωbrb may be changing along with time.

2.2. Graph Model of Fault Signature

A commonly used approach to processing a non-stationary
signal is to represent it in the time-frequency domain using
the short-time Fourier transform (STFT). In particular, the
non-stationary signal is partitioned into short-time pieces us-
ing overlapped sliding-time windows. Each windowed piece
of signal is analyzed using the fast Fourier transform (FFT),
providing frequency spectrum information within the local
time duration.

By performing STFT on the stator current of a single phase
or a combination of three-phase current, a matrix of signal
spectrogram is obtained as Y = [Y1, ...,Ym, ...,YM ], in
which the column vector Ym represents the frequency spec-
trum of the mth windowed signal of the stator current. Each
row of Y corresponds to a fixed frequency value. To avoid re-
dundancy, we only consider frequency range [0, Fs/2], where
Fs is the frequency sampling rate of stator current measure-
ments. Since both the operating speed and the load are chang-
ing, the fault signature frequency is not a constant, meaning
that the fault signature component in the spectrogram matrix
does not lie in any single row vector of a certain frequency,
but a slowly changing curve related to the motor speed.

Motivated by recent progress in graph signal processing, we
treat the current spectrogram as a graph signal observed from
graph G = (V,A), where V = {v1, ..., vm, ..., vM} is the
set of nodes, represented by sequential moving time windows,
and A ∈ RM×M is the graph shift, or a weighted adjacency
matrix that represents the pairwise proximity between nodes.
Associated with the mth node (time window) of the graph,
a N -dimensional frequency spectrum vector Ym ∈ CN is
achieved by analyzing the time-domain measurements ym ∈
R2N via Fourier transform (FT) or other methods such as
minimum-variance(MV)-based spectral analysis (Liu, Inoue,
& Kanemaru, 2022) for better denoising performance. We
can estimate the graph shift A through the STFT frequency
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spectra as

Ai,j =
|YH

i Yj |√
YH

i Yi

√
YH

j Yj

, for |i− j| < d, (6)

where the superscript H indicates the matrix Hermitian trans-
pose, d is the maximal distance of connected neighborhood
nodes in the graph. When stator current measurements are
taken in overlapped time windows, the measurements should
have strong pairwise correlations in the frequency domain.

Therefore, the spectrogram matrix of the stator current at
varying speed and varying load can then be treated as a noisy
graph signal with an unknown frequency shift due to the vary-
ing operation, i.e.,

Ym = Xm +Nm, for m = 1, ...,M, (7)

where X = [X1, · · · ,Xm, · · · ,XM ] represents the denoised
spectrogram and Nm is signal noise.

2.3. Graph-based Fault Signature Extraction

Inspired by recent research work on graph-model based
signal denoising(Chen, Sandryhaila, Moura, & Kovacevic,
2014; Liu, Chen, & Boufounos, 2020), we extract the fault
signature by solving an optimization problem as

min
X

M∑
m=1

1

2
∥Xm −Ym∥22 + λR1(X) + βR2(X), (8)

where λ and β are hyper-parameters, R1(X) and R2(X) are
regularizing terms. R1(X) imposes sparsity of the graph sig-
nal using L1 norm as

R1(X) = ∥X∥1 =

M∑
m=1

|Xm|1. (9)

R2(X) promotes smoothness of graph signals, i.e., neighbor-
ing nodes should share a similar fault signature in the fre-
quency domain. R2(X) can be expressed as

R2(X) =
1

2
∥X− ĀX∥2F , (10)

where Ā is a normalized graph shift matrix whose entries are
computed as Āi,j =

Ai,j∑
j Ai,j

to ensure that the sum of each

row of Ā equals to 1; the subscript F denotes the Frobenius
norm.

The goal is to recover a clean spectrogram X which possibly
includes the fault signature from the noisy spectrogram Y.
The intuition behind the proposed graph-based denoising ap-
proach can be explained in two aspects: 1) the characteristic
frequency component (or the fault signature) and the oper-
ating frequency component in each time window are sparse

(non-zero) components while other frequency components
will be zeros, resulting a sparse frequency spectrum and 2) the
rotor fault frequency component and the operating frequency
component in consecutive time windows are smoothly chang-
ing and have strong pairwise correlation. Once we obtain
continuously changing sparse frequency components forming
a curve in the spectrogram besides the operating frequency
components, we declare that we successfully extract the fault
signature.

To solve the optimization problem, we adopt the aug-
mented Lagrangian scheme, and apply the alternating direc-
tion method of multipliers (ADMM) to solve it (Wang, Yin,
& Zeng, 2019). The whole fault signature extraction process
can be summarized as in Algorithm 1, where I is an identity
matrix and Sλ

ρ
is a soft-thresholding function (Donoho, 1995)

defined as

Sλ
ρ
(z) = max(|z| − λ

ρ
, 0)z/|z|. (11)

When the input z is a vector or a matrix, the soft-thresholding
function works as an element-wise operator on each entry.

Algorithm 1 Graph-model-based fault signature extraction

1: Input : Time-domain stator current y, parameters λ, β,
and ρ.

2: Compute Y using STFT or MV-based method.
3: Estimate A and Ā.
4: Initialize k = 1, Z(0) = 0, and W(0) = 0.
5: while Xk is not converged do

X(k) ←[(ρ+ 1)I+ β(I− Ā)T (I− Ā)]−1

[Y + ρ(Z(k−1) −W(k−1))],

Z(k) ←Sλ/ρ(X
(k) +W(k−1)),

W(k) ←W(k−1) +X(k) − Z(k),

6: end while
7: Output : X̂ = X(k).

3. EXPERIMENTS

3.1. Set up

To validate our method, we perform experiments on a 1HP
three-phase squirrel-cage induction motor. The experimental
setup is shown in Fig. 1(a), where the motor is driven by a
three-phase inverter. A servo-motor is mounted on the induc-
tion motor shaft and well aligned to work as a controllable
load, whose speed and torque can be controlled precisely for
the experiment purpose. The three-phase stator currents are
measured using three current sensors and recorded using a
computer interface for further analysis.

For comparison, we use two rotors of the same specifications,
and manually produce a broken-bar fault on one of the two ro-
tors by drilling a hole on a rotor bar. Pictures of the healthy
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(a)

(b) (c)

Figure 1. (a) Experimental setup, (b) Healthy rotor, and (c)
Faulty rotor.

rotor and the faulty rotor are shown in Fig. 1 (b) and (c)
respectively. Considering practical varying toque, varying-
speed operations, we perform two experiments. In the first ex-
periment we manually control the load torque (servo-motor),
and in the second one we manually control the motor speed
by varying the operating frequency, both following random
and smooth speed patterns.

3.2. Varying load operation

An example of the time-domain stator current of the motor
operating at varying load condition is shown in Fig. 2 (a),
where we record about 53 second time-domain data with a
sampling rate of 2kHz. We plot its Fourier spectrum of fre-
quency from zero to 100Hz in Fig. 2 (b). It is clear that due
to the varying load, the stator current amplitude changes from
time to time. As a result, the characteristic frequency (fault
signature) is not a constant frequency any more, but slowly
changing from time to time.

To analyze the spectrogram with respect to time, we consider
three different methods: (1) short-time Fourier transform (2)
minimum variance-based spectral analysis, and (3) sparsity-
driven graph-model-based method. For fair comparison, we
use the same sliding time window of 2.5 seconds long, with
2 seconds overlap from window to window. For the graph-
model-based method, we set parameters β = 0.01, ρ = 0.02,
and λ = 0.004 ×max(|Ym|). The results are shown in Fig.
3 (a), (b), and (c), respectively. While the spectrogram is
denoised using MV-based spectral analysis, it was cleaned
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Figure 2. Stator current of varying load operation in (a)time-
domain and (b) frequency-domain using Fourier transform.

further more by using the sparsity-driven graph-model-based
method. We also show the ideal spectrogram according to
Eq. (2) in Fig. 3 (d). We observe that the sparsity-driven
graph-model-based result agrees with the ideal spectrogram
very well.
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Figure 3. Spectrogram of stator current using (a) Short-time
Fourier transform, (b) Minimum-variance based method, (c)
Graph-based fault signature extraction, and (d) Ideal situation
using Eq. (2).

3.3. Varying frequency operation

When the operating frequency is changed by the controller,
the motor speed is also changing accordingly. An example
of the time-domain stator current of the motor operating at
varying frequency condition is shown in Fig. 4 (a) with the
frequency spectrum using the Fourier transform in Fig. 4 (b).
We observe that both the operating frequency and the charac-
teristic fault frequency vary slowly from time to time.

Similarly, the spectrogram using three aforementioned meth-
ods are shown in Fig. 5 (a), (b), and (c), respectively. Again,
our sparsity-driven graph-based method achieved the best
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performance in extracting the fault signature. For compari-
son, we also show the spectrogram of a healthy motor oper-
ating at varying frequency conditions in Fig. 5 (d). It is clear
that only the dominant operating frequency component can
be detected.
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Figure 4. Stator current of varying frequency operation in (a)
time-domain and (b) frequency-domain using Fourier trans-
form.
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Figure 5. Spectrogram of stator current using (a) Short-time
Fourier transform, (b) Minimum-variance based method, and
(c) Graph model-based-based method, all for faulty motor ex-
cept (d) Graph-model-based method for healthy motor.

4. CONCLUSION

We studied broken-rotor-bar fault detection for the inverter-
fed squirrel-cage induction motor under varying speed and
varying load conditions, and defined a fault signature using
complex space vector notation. To extract the fault signa-
ture, we proposed a graph-based method by solving an opti-
mization problem with constraints imposing smoothness and

sparsity of the fault signature. Experimental results demon-
strate that our proposed method can effectively extract fault
signature under varying speed and varying frequency opera-
tions. The newly revealed fault signature detection method is
applicable for both line-fed and inverter-fed induction motor
drives.
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