

1

MLOps for PHM Systems

Mikael Yemane

Raytheon Technologies - Collins Aerospace, Windsor Locks, CT, 06096, USA

mikael.yemane@collins.com

ABSTRACT

Advances in machine learning (ML) techniques allow

practitioners to generate substantial predictive value from

historical data. Modern sensors generate vast amounts of data

which inform prognostic health management (PHM)

systems. As ML techniques continue to grow in importance

for PHM, the system that manages and deploys ML models

becomes critical for successful production software. Machine

Learning Operations (MLOps) is centered around

implementing continuous integration and deployment

(CI/CD) practices in the context of ML applications. We will

present MLOps designs for deploying machine learning

based PHM software and discuss ML pipelines that automate

data ingestion, model training, testing, deployment, and

monitoring. The principles we will examine ensure model

quality, performance, and software stability. We will call

attention to important design considerations and demonstrate

solutions for the full model lifecycle when building MLOps

pipelines for PHM systems.

1. INTRODUCTION

Machine learning operations (MLOps) paradigms are

revolutionizing data driven industries, allowing for more

reliable and scalable ML software. When Designing ML

systems, it is important to spend time considering model

objectives and how to design a system that will help achieve

such goals. In this paper we will discuss designing state of

the art MLOps systems and its applications in prognostic

health management (PHM). We will emphasize design

considerations when processing raw sensor data and building

machine learning based predictive systems.

2. FROM DEVOPS TO MLOPS

There are many goals when building MLOps systems. Model

performance, stability, and reliability are often top priority.

To discuss MLOps we must start with the ideas borrowed

from Development Operations (DevOps). Many of the

concepts and considerations in DevOps carryover to MLOps.

We will summarize important DevOps concepts then discuss

the specific ML tasks we must consider for MLOps. MLOps

design principles use many of the core principals of DevOps

to deliver reliable software. In a typical DevOps workflow,

we design automated pipelines that initiate the building,

testing, and deployment of software source code. Mojtaba

Shahin et al (2017) provided a thorough review of approaches

for continuous integration, delivery, and deployment. The

expectations for MLOps systems are similar, ML models go

through a process of training, testing, and deployment.

Georgios Symeonidis et al (2022) published an overview of

common tools used and two popular definitions of MLOps

maturity levels. Although MLOps can encompass different

standards and tools the goal is to automate as much of the

process as possible. Both MLOps and DevOps strive for

continuous testing and deployment to support software

stability and rapid development. There is a lot of overlap

between DevOps and MLOps. However, the specifics within

pipeline steps and software requirements are quite different.

In the next few paragraphs, we will discuss the two core

elements of DevOps Continuous integration (CI) and

Continuous Deployment (CD) how they are applied in the

context of MLOps. We will also consider components that

are exclusive to MLOps system designs.

2.1. Continuous Integration

Continuous integration (CI) is focused on pipelines that build

and test software throughout development lifecycle.

Continuously testing the source code as new features are

added leads to cohesive software that can be deployed

rapidly. The software will be built and automatically tested

with every new push to release branches. If all tests pass, then

the overall build will be successful, and the software version

can proceed to the next step in the process. Dev teams must

have a common code repository where all the app features

and tests reside. When new code is committed to the repo it

is important to set requirements such that all unit and

integration test must pass before merging with the main

branch. This will help protect the production code. Code

should be committed often, and builds should be run

regularly to ensure the app functions as expected, this allows

for quick feedback from the automated software tests and

Mikael Yemane. This is an open-access article distributed under the terms

of the Creative Commons Attribution 3.0 United States License, which

permits unrestricted use, distribution, and reproduction in any medium,

provided the original author and source are credited.

4th Asia Pacific Conference of the Prognostics and Health Management,
Tokyo, Japan, September 11 – 14, 2023 OS04-04

2

dependent teams. These concepts directly apply to MLOps

systems. When new features are added, hyperparameters are

updated or any of the code related to the model has changed

developers to set automated tests that validate the model and

associated code. For PHM systems model assertions should

also include schema expectations and task specific assertions.

Assertions based on expected database schemas and data

quality will mitigate and help isolate data processing issues.

This is particularly important when processing raw signal

data. The specific tests will for an individual system will vary

widely depending on the use case. In all cases, proper testing

of our models and data prior to release will allow for more

reliable models and predictions.

2.2. Continuous Delivery/Deployment

Continuous delivery and Continuous deployment (CD) are

the two approaches for deploying software. In both

approaches the goal is to regularly ensure that the software is

ready for deployment and can served at any time. The main

difference is that continuous delivery entails a manual

process of promoting software to production while

continuous deployment is a fully automated process.

Depending on the use case there may be a preference for one

over the other. However, we will focus on continuous

deployment as most practitioners are striving for as much

automation in the software development process as possible.

We suggest striving for automictic deployment of updated

source code once workflow and testing pipelines are

complete. CD principals apply directly to MLOps. The

differences for ML systems will be further discussed in the

model deployment section.

2.3. Data Validation

Data quality is one of the most important factors we can

monitor and control in ML systems. Robust data pipelines

should be a high priority in producing reliable MLOps

pipelines. The most common method for ensuring data

quality is having specific schema requirements and tests that

enforce expected schemas and data properties. Eric Breck et

al (2019) focused on the topic of ensuring data quality. When

ingesting raw sensor data, it is particularly important to

specify constraints and expectations for the input data. This

will help ensure that invalid signals do not reach the model.

It is also suggested that all functions involved in the modeling

process have unit test coverage. Often sample data sets or

simulated data is used to test relevant functions and assertions

are made for the expected results. It is common to aim for 70-

100% code coverage. Assertions can also be placed on code

coverage prior to release.

3. MLOPS SYSTEM DESIGN

When designing MLOps systems there are many important

design considerations. Making the right decisions early in the

design process will help ensure stable deployment of ML

software. Fig 1. an example MLOps design for pushing

models to production. In this section, each of the major

components will be discussed in detail. We will emphasize

requirements that minimize bugs in ML systems and allow

for confident deployments to production.

Figure1. Example MLOps Design

3.1. Model Development

In the model development stage, there is a lot of flexibility.

Many different modeling approaches can be explored. At the

beginning of this stage, we need to define the initial data pull.

If you are dealing with raw signals, there will need to be

refinement and initial standardization of the data. Once the

initial schema is defined, we can begin exploring the data.

When developing a new model for your prediction task it is

important to conduct exploratory data analysis (EDA).

Visualizing your data and generating summary statistics

often helps uncover unique characteristics of the data. These

characteristics can help inform the feature processing and

modeling process. Before developing new models, it is

important to at least have three separate sets of the data. Prior

to generating features for the data, we should have separate

data sets for training, testing, and validation. Feature

generation should be done after splitting the data. This helps

ensure that information form the test and validation sets

aren’t making their way into the training process. Feature

processing and encoding should be conducted based on the

characteristics of the data and goals of the modeling process.

3

Once feature generation is completed on the training set, we

can move to training new models. We then use the test and

validation data to estimate model performance. Various

model types and hyperparameters can be evaluated to decide

on a preferred model. If the model has sufficient performance

metrics on the test and validation data, we can pass the model

through our unit and integration tests. If the model passes all

the tests, we can then mode the model into the staging

environment in preparation for production deployment.

3.2. Model Environments

The three common stages for the model are development,

staging and production. Most software can be deployed

reliably in that set up. However, there are variations with

additional environments. There are different branching

strategies we can consider. Rakshith Subramanya et al (2022)

discussed common branching strategies and the process for

deploying code. For the model environments shown in Fig 1.

we will consider development, release, and main branches.

Where the development branch allows for model

experimentation data modifications, and new features with

minimal constraints. The release branch should contain

planned features for release and is expected to be more stable

and pass all automated tests. The release branch should be

tested regularly and maintained to be ready for production

deployment. The Main branch holds the code that is deployed

live in production. It should be built and deployed regularly

in the production environment serving predictions to

customers or stakeholders.

In the development model environment, we can make various

modifications to the code and test out hyperparameters

without concern of harming production. This model

environment should be where model code in development

branches are tested, model performance is measured, and the

model is considered for progression to the staging

environment. In the staging environment we will load the

model and the model code tied to the release branch to

thoroughly test performance and stability. Unit tests should

also be conducted for code relevant to the model. Any user

interface or API endpoint tied to the ML software should also

be thoroughly tested at this stage. After the model has

completed testing in both the development and staging

environment, we can promote the model to production. In the

production environment we can serve predictions and

monitor live performance. In our example we discussed the

deployment of both the model and associated code. It is

important to note that there are deployment strategies that

focus on deploying one or the other. It is not always required

to pass both the model and associated code through all model

environments. In many cases it is sufficient to only pass the

model object or model code.

3.3. Model Testing

Model testing is dependent on the model use case but

generally we want to consider model performance, stability,

and data validation. Performance is often a high priority so

we should set a threshold for model performance as the object

is passed through the model environments. Performance

metrics vary depending on the task. In the context of

classification metrics such as accuracy, precision, recall, F1,

and F2 scores are potential measurements. For regression

tasks mean squared error (MSE), root mean squared error

(RMSE), mean absolute error (MAE), mean absolute percent

and error (MAPE) are commonly used. There are many other

regression and classification metrics to also consider. Naeem

Seliya et al (2009) published a study on classifier

performance metrics that cover many options. Alexei

Botchkarev (2019) has published a similar analysis looking

at performance metrics in the context of regression

algorithms. The data validation steps discussed earlier should

also be considered. Schama assertions and data quality tests

should also be included in automated tests. There are many

tools used to automate tests.

Some programs may require prediction stability tests to

ensure that there aren’t large variances in predictions while

others should allow to predictions. We an also compare the

performance of the production model to performance of the

model in staging. Performance thresholds for the promotion

of a new model can also be set here. As we design our

pipelines we want to automate as much of the process as

possible with the goal of crating fully automated MLOps

pipelines. Model reproducibility is also something we want

to keep in mind when designing the product. This will help

with debugging and reverting model versions if there are

unforeseen production issues with newer models. Odd

Gundersen et al (2022) published a review of current ML

platforms and conducted an analysis of reproducibility for

each of the platforms discussed.

3.4. Model Deployment

Model deployment is the last stage in an ML model lifecycle.

After the model and associated code have gone through

testing in the development and staging environments the

model should be ready for production deployment. There are

many approaches for serving predictions two common

methods are serving an API endpoint that generates

predictions and creating databases that store predictions that

the app references. The approach will vary depending on

broader software requirements. There are many cloud

systems and tools to choose from. The most widely used

cloud providers are Amazon Web Services, Azure, and

Google Cloud. We recommend designing a system to be

cloud agnostic. It is common for large scale systems to

interact with multiple different cloud services. Nicolas Ferry

et al (2013) and Laura Savu (2011) provide detailed

4

information on cloud deployment models and security

considerations.

We can streamline deployment by scheduling pipelines that

automatically promote source code from the main branch and

reference models in the production model environment. We

can also automate training and testing of resulting models.

We can promote the model and relevant code through the

model environments given performance is above specified

thresholds and all data validation and tests are successful at

each stage. Once a model is released to production it is

important to monitor live performance. Live monitoring

helps identify production issues. Estimating model drift and

setting alerts or automated training jobs in response to drift

can help avoid performance issues in production.

4. CONCLUSION

In this paper we discussed methods for building MLOps

systems. We reviewed the relationship between DevOps and

MLOps, the areas of overlap such as the expectations for

continuous integration, continuous delivery, and continuous

deployment. We also discussed the specifics to be considered

for MLOps systems including data validation, model

development, model testing, model environments, and model

deployment. MLOps designs will vary based on the objective

and use case for each individual team. When building ML

based PHM systems, data validation and model testing will

be paramount. This will minimize software downtime and

help mitigate production issues. MLOps system deigns

should aim for as much automation as possible to improve

the ML development process.

REFERENCES

Mojtaba Shahin, Muhammad Babar, and Liming Zhu (2017).

 Continuous Integration, Delivery and Deployment: A

Systematic Review on Approaches, Tools, Challenges

and Practices. IEEE Access vol. 5, pp. 3909-3943.

doi:10.1109/ACCESS.2017.2685629

Georgios Symeonidis, Evangelos Nerantzis, Apostolos

Kazakis, and George Papakostas (2022). MLOps -

Definitions, Tools, and Challenges. IEEE 12th Annual

Computing and Communication Workshop and

Conference. Las Vegas, NV, USA

doi:10.1109/CCWC54503.2022.9720902

Eric Breck, Neoklis Polyzotis, Sudip Roy, Steven Euijong

Whang, and Martin Zinkevich (2019). Data Validation

for Machine Learning. Proceedings of the 2nd SysML

Conference, Palo Alto, CA, USA

Rakshith Subramanya, Seppo Sierla, and Valeriy Vyatkin

(2022). From DevOps to MLOps: Overview and

Application to Electricity Market Forecasting. Applied

Sciences 2022 vol. 12. doi:10.3390/app12199851

Naeem Seliya, Taghi M. Khoshgoftaar, and Jason Hulse

(2009). A Study on the Relationships of Classifier

Performance Metrics. 2009 21st IEEE International

Conference on Tools with Artificial Intelligence.

doi:10.1109/ICTAI.2009.25

Alexei Botchkarev (2019). A New Typology Design of

Performance Metrics to Measure Errors in Machine

Learning Regression Algorithms. Interdisciplinary

Journal of Information, Knowledge, and Management,

vol. 14, pp. 45-79. doi:10.28945/4184

Odd Gundersen, Saeid Shamsaliei, and Richard Juul Isdah

(2022). Do machine learning platforms provide out-of-

the-box reproducibility? Future Generation Computer

Systems. vol. 126, pp. 34-47

Nicolas Ferry, Alessandro Rossini, Franck Chauvel, Brice

Morin, Arnor Solberg (2013). Towards model-driven

provisioning, deployment, monitoring, and adaptation of

multi-cloud systems. 2013 IEEE Sixth International

Conference on Cloud Computing. Santa Clara, CA, USA

Laura Savu (2011). Cloud Computing, Deployment models,

Delivery Models, Risks and Research Challenges. 2011

International Conference on Computer and

Management (CAMAN)

doi:10.1109/CAMAN.2011.5778816

