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ABSTRACT

We propose simulation-based nonlinear model predictive
control as a first step towards autonomous decision-making
for stable operation of large complex dynamical systems such
as chemical plants. The effect of abrupt external disturbances
should be quickly eliminated, taking into account such com-
plex dynamic responses, to maintain stable production. In
this paper, we propose a control system to eliminate these
effects. The system uses engineering models, including dy-
namic simulators, based on chemical engineering knowledge.
Dynamic simulators are generally not differentiable with re-
spect to actions; however, differentiable models are advanta-
geous for fast nonlinear optimization. To take advantage of
both reliable dynamic simulators and differentiable models,
we introduce neural ordinary differentiable equation models
and clone the behaviour of simulators on them. The cloned
differentiable neural replica model is then incorporated into
a gradient-based nonlinear model predictive control. Evalua-
tion of this method in a real methanol distillation plant con-
firms that it can significantly remove abrupt heavy rain dis-
turbances compared to existing methods.

1. INTRODUCTION

Many automatic controllers, such as proportional-integral-
derivative (PID) controllers (Knospe, 2006) and model pre-
dictive controllers (MPC) (Qin & Badgwell, 2003), are used
in complex process plants, including chemical plants, to en-
sure stable production.

PID control is limited to maintaining a single process variable
(PV) to a single setpoint variable (SV) by adjusting a single
manipulated variable (MV); however, they are still the major-
ity of automatic controllers installed in these plants. Fig. 1
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Figure 1. Process flow of a methanol distillation plant.

shows the process flow of a methanol (MeOH) distillation
plant, a standard binary distillation process structure. The
dotted lines represent PID loops; this plant has seven PID
controllers to continuously separate MeOH and water (H2O)
from their mixture liquid.

To maintain multiple PVs by manipulating multiple MVs,
MPC, commonly known as a major method of advanced pro-
cess controls (APC) (Bauer & Craig, 2008), is proposed.
MPC repeatedly uses prediction models to predict the com-
plex future responses of the plant, evaluate the sequence of
actions that triggered the responses, and improve the actions.

Several chemical plants are equipped with detailed dynamic
simulators for training human plant operators (Klatt & Mar-
quardt, 2009). These simulators can accurately reproduce and
predict the nonlinear behaviour of the real complex plant and
therefore have the potential for use in MPC. For several non-
linear MPC methods, the partial derivatives of the actions are
necessary to efficiently compute the optimal actions. How-
ever, dynamic simulators, especially the simulator products
popular in many industrial applications, are generally not dif-
ferentiable, making the integration of these existing simula-
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tors with MPC difficult. Dynamic simulator vendors have of-
fered the MPC products in conjunction with their simulator
products; however, Henson (1998) suggests that open litera-
ture on these MPC systems is unlikely to be found because
the dynamic model equations are inaccessible to control sys-
tem engineers other than the vendors.

In this paper, to exploit arbitrary dynamic simulators for
MPC, we use the neural ordinary differential equation mod-
els (Chen et al., 2018) to construct a differentiable prediction
model as a replica of the dynamic simulator and incorporate
it with nonlinear MPC. The proposed method only uses the
input/output of the dynamic simulators; therefore, it can be
applied to dynamic simulators in general. We evaluated our
method on the actual MeOH distillation plant and performed
that our system significantly rejected abrupt heavy rain dis-
turbance.

2. RELATED WORK

2.1. Dynamic simulation

Dynamic simulators can calculate changes in the internal
state of a dynamical system over time based on state tran-
sition rules. For example, ordinary differential equations,

dx

dt
= f(x, u), (1)

where t, x, u, and f are time, state, action, and state transition
function, respectively, are commonly used to model the rules.
Then, temporal changes in the situations are calculated by
solving the equation using the integration

xt =

∫ t

0

f(xτ , uτ )dτ, (2)

where t is the current time step. Numerical integration algo-
rithms, including Runge-Kutta methods, are commonly used
to solve them. The models based on scientific and engineer-
ing knowledge can accurately reproduce and predict various
situations due to environmental and operational changes. Ad-
ditionally, by calculating various internal states, including
the composition and enthalpy of materials flowing in various
parts of the plant, the detailed states can be observed.

2.2. State observer

For the simulation calculation in Eq. (2), the initial state x0 is
required. The state xwould include unobservable or difficult-
to-observe states such as feed composition, heat transfer coef-
ficients to air, other simulation parameters, and the actual en-
vironmental situations. A state observer is a standard method
to estimate these simulation conditions and the internal states
(Soroush, 1997; Kubosawa et al., 2022a). In state observers,
the action input to the actual plant is also simultaneously in-
put to the prediction model, and the simulation conditions are

adjusted to minimize the residual between the actual and pre-
dicted observable response. When the residual is close to
zero, the estimated simulation conditions and the predicted
internal states would reflect the actual situation; thus, the pre-
dicted states including the simulation conditions can be used
for the initial state of the simulation.

2.3. Optimal control

Optimal control is a set of problems to achieve the given
desired situation by manipulating the target dynamical sys-
tems. The preferences of situations are expressed quantita-
tively as an evaluation function, and the problem is to find the
sequence of actions that minimizes the evaluation function.
Both reinforcement learning (RL) and MPC are solutions to
these problems with different approaches (Görges, 2017).

2.3.1. Reinforcement learning

RL is a machine learning method and is mainly studied
in the field of artificial intelligence (Bertsekas, 2019). RL
constructs optimal controllers before applying them to ac-
tual control; thus, RL can be considered as an off-line
optimization-based method. Using real dynamical systems
or their simulators, RL tries variable actions in variable sit-
uations and collects input/output data and evaluation value
(reward) of each situation. RL alternates between estimating
the total future reward (value) of each situation using the col-
lected data and improving its policy (controller). Since RL
is a data-driven control method, it can be applied to arbitrary
dynamical systems where only input/output is accessible. In
addition, RL can consider situations far in the future, as long
as data can be collected. These advantages led to the success
of AI in Go games, which originated in AlphaGo. However,
RL consumes large amounts of data, so training takes a long
time. If the reward setting is changed, RL again requires long
training.

In chemical plant operation, Kubosawa et al. (2022b) intro-
duced an RL-based control framework that formulated state
observer, operation planner, and disturbance rejection func-
tionalities as RL tasks and implemented them as RL agents.

2.3.2. Model predictive control

MPCs are control theory methods studied in systems engi-
neering, automatic control and industrial applications (Qin
& Badgwell, 2003). An MPC controller calculates the op-
timal action on the spot in the plant; therefore, MPC can be
considered as online optimization-based methods. In MPC,
the candidate action sequence is used to predict a fixed pe-
riod of future responses, evaluated using the prediction with
a given cost function, and improved by minimizing the cost
with some methods iteratively online. Unlike RL, the future
situations considered by MPC are limited to a given and fixed
finite period called the horizon. Several methods have been
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proposed, including linear, nonlinear and stochastic MPCs.

In the early days of MPC, linear models were commonly used
to implement the algorithm on computers that were less pow-
erful than modern ones, yet linear models are still a popu-
lar choice. To build these models from the data, engineers
perform many step response tests using the working plant to
collect data and fit the model. Additionally, the plant state
or operating condition may change over time or be affected
by changes in the external situation; therefore, if the plant
state changes to a different state from the data collected situa-
tions, the model would hardly be available if the nonlinearity
in the state transition is affected. In such cases, the engineer
should perform step response tests and all modelling proce-
dures again; however, these tests take a long time and could
disturb production. These difficulties can be eliminated if the
nonlinear and differentiable plant models for nonlinear MPC
can be used without the tests.

3. METHOD

To use dynamic simulator for differentiable prediction model,
we introduce neural ordinary differential equation model
(Neural ODE or NODE) (Chen et al., 2018) to clone the be-
haviour of the simulator. We use the NODE model for the
nonlinear MPC algorithm. The overall architecture is shown
in Fig. 2. The NODE model is first trained on simulation data
and then combined with MPC.

In chemical engineering and control engineering in general,
ordinary differential equations, a type of continuous-time
model, are commonly used to model plant behaviour. We
focused on this point and used NODE models, which express
the state transition function f of Eq. (1) by a neural network.
For the numerical integration algorithm we used conventional
RK4. Training data for the NODE model is collected from
the dynamic simulator using given operational scenarios and
simulation conditions. The NODE model is then trained to
minimize the mean squared error between its prediction and
the simulation data.

The objective cost function of the MPC is defined as

J =

∫ tf

t0

L(xτ , uτ )dτ + φ(xtf ), (3)

where t0, tf , L, and φ are the initial time, final time, stage
cost function, and terminal cost function, respectively. For
example, given the target desired state vector x̂, the stage cost
function can be the form of

L(xτ , uτ ) =
∑
i

w(i)(x(i)τ − x̂(i)τ )2, (4)

where i and w(i) ∈ [0, 1] are the vector index denoting the
i-th state variable in the state vector and the weight of the i-
th state variable defining the severity of the residual in each

Figure 2. Overall architecture of the proposed method.

state variable, respectively. The terminal cost function φ can
be defined in the same manner. The stage cost function de-
fines the cost of each time step during the period of action
sequence computation, and the terminal cost function defines
the total future cost beyond the period. The algorithm finds
the optimal sequence of actions {uτ}

tf
τ=t0 that minimizes J .

For the nonlinear MPC algorithm, we used a gradient-based
MPC (Käpernick & Graichen, 2014), which we implemented
it independently. Additionally, to update the action input u,
we omitted the line search procedure and used the Adam op-
timization algorithm (Kingma & Ba, 2014) using the partial
derivative ∂H/∂u, where

H(x, u, λ) = L(x, u) + λ>f(x, u) (5)

is the Hamiltonian with co-states λ which have the same di-
mensionality as the states.

To estimate the initial state x0 and the simulation conditions,
as in state observers, MPC-like algorithms can be used. These
methods are referred to as moving horizon estimation (MHE)
(Morari & Lee, 1999; Johansen, 2011). In a simple case,
the cost can be defined as the sum of the residuals between
the actual and predicted observable states of the past finite
period up to the present. The predicted last state including
the simulation condition can be used as x0 for MPC.

4. EXPERIMENTS

We conducted two experiments to compare the performance
of the existing RL-based method (Kubosawa et al., 2022b)
and the proposed method. The experiments are performed on
the actual MeOH distillation plant (Fig. 3) and its dynamic
simulator implemented with the commercial product. The
quality of the top product (MeOH) and bottom product (H2O)
is highly dependent on the temperature at each stage of the
tower, so the quality of the product is maintained if the oper-
ators maintain the temperatures. The tower is heated by the
reboiler at the bottom and cooled by the reflux poured from
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Figure 3. The MeOH distillation plant used for the evaluation
experiment.

Figure 4. The estimated heat transfer coefficients to air in
the experiment using the existing RL and simulation-based
method and actual plant data.

Figure 5. Simulated tower stage temperatures. The bottom
stage has the highest temperature (brown) and the top stage
has the lowest temperature (blue).

the top, so the reboiler and reflux are the main control points
of the process. In the experiments, the manipulation points
are the SVs of the two PID controllers (FIC) on the reboiler
steam and the reflux flow. The control interval is set to 5
min. The experimental task is to reject abrupt heavy rain dis-
turbances that cause a temperature drop during steady-state
operation. The heavy rain disturbance in the real plant is arti-
ficially simulated by spraying water from the top of the tower
for 40 min. Note that this task requires adjusting the two
PID SVs to maintain the PVs of the six temperature sensors
on the tower simultaneously, so conventional PID controllers
designed for single-input, single-output tasks are unlikely to
perform this task.

Figure 6. Proposed SVs of reboiler and reflux by the RL
agent.

Figure 7. Simulated top and bottom product purity.

4.1. Existing RL-based method

The RL-based disturbance rejection method uses a dynamic
simulator as the actual plant for training. The RL agent ob-
serves the actual observable states (simulated states for train-
ing) and the target states (reference trajectory) and outputs
SVs for achieving the target states. The reward function for
training is set to minimize the residual between the current
actual state and the target state, and to maintain the top and
bottom product quality (MeOH purity) on the simulator. The
product qualities are not continuously measured in the real
plant, so they are unobservable to the agent and are only used
for the reward function during training.

Due to the limited opportunities for experiments on the actual
plant, we used the simulator for this experiment. On the simu-
lator, the heat transfer coefficients to air at the top and bottom
of the tower are abruptly increased to emulate the heavy rain
disturbance that occurred in the other experiment with the real
plant. The coefficients are unobservable to the agent, which
is the same situation as in the real plant case.

In this experiment, the time evolution of the coefficients used
was estimated by a state observer consisting of a dynamic
simulator and a reinforcement learning agent (Kubosawa et
al., 2022a) pre-trained with the simulator, based on the actual
data collected from the experiment described on § 4.2. These
values are shown in Fig. 4. In the real plant, water is sprayed
to emulate a heavy rain disturbance during the blue-shaded
period in the figure and others. Shortly after the start of the
spraying the lower coefficient value starts to increase and af-
ter the spraying stops the value starts to decrease.

The change in tower temperature is shown in Fig. 5. After
starting the spray, the temperature of the middle stage, shown
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as the purple line, starts to decrease, then that of the bottom
stage. To maintain the temperature of each stage, the RL
agent proposed SVs as shown in Fig. 6. The top and bottom
product purity is shown in Fig. 7 and the grey shaded area
represents acceptable quality. After starting the spray, the
agent increased the reboiler SV and decreased the reflux SV
for heating. The agent preferred decreasing reflux to increas-
ing reboiler. The agent eventually recovered the temperatures
and maintained the upper product cleanliness; however, the
lower product cleanliness was outside the range for a long
time due to the slow response to the temperature decrease.

4.2. Proposed MPC-based method

In the experiment with the proposed MPC method, we used
the actual plant. The disturbance setting is mentioned in
the previous sections. We set the horizon to 10 min for the
MHE and 60 min for the MPC. Both procedures are run every
minute and the proposed SVs are applied to the plant every 5
minutes. Fig. 8 shows the tower temperature. Compared to
the RL case on Fig. 5, the bottom temperature (blown line)
maintained a slightly higher value. The proposed SVs by the
proposed method are shown on Fig. 9. The proposed method
preferred to increase the reboiler than to decrease the reflux,
in contrast to the RL agent. However, this difference had a
significant effect on the bottom product purity. Fig. 10 shows
the actual sampled and measured MeOH purity of the top and
bottom products. The bottom purity was immediately higher
than the acceptable range; however, the violated amount is
small.

5. DISCUSSION

In the evaluation experiments, both methods eventually re-
covered the initial temperatures; however, the RL agent re-
sponded more slowly than the proposed method and conse-
quently the quality of the bottom product deteriorated signifi-
cantly. In response to unobservable and unpredictable distur-
bances, MHE and MPC would be advantageous.

RL can certainly consider situations far in the future, but if
the disturbance patterns or plant states differ from the train-
ing situations, these considerations, i.e. the optimization
(training) results, are of little help, because RL are meth-
ods based on training in advance. This is referred to as the
“simulation-to-reality (Sim2Real) gap” problem. The exist-
ing RL-based methods (Kubosawa et al., 2022b) addressed
the issue to some extent, but the fast response to these distur-
bances still needs to be improved. In such an improvement,
adjustments in the reward function are a common approach;
however, time-consuming training is required to obtain the
changed behaviour of the agent due to the reward change,
whereas in MPC the behavioural changes can be obtained in-
stantly, which is a practical advantage for engineering. Online
optimization methods with accurate models, such as the pro-

Figure 8. Actual tower stage temperatures.

Figure 9. Proposed SVs by the proposed MPC.

Figure 10. Actually measured top and bottom product purity.

posed neural replica models, would be promising for rapid
adaptation to real situations. As NODE is a continuous-
time and continuous-state model, discontinuous state transi-
tions involving mode changes are considered inappropriate
for modelling; however, in practice its expressiveness would
vary depending on the size of the neural networks, so its prac-
tical performance in such situations should be evaluated.

As a related recent method to address Sim2Real problems,
Jiahao et al. (2023) introduced online training of the NODE
dynamics model for MPC. To train the model efficiently, they
also integrated NODE with knowledge of the target dynam-
ics. To reduce the Sim2Real gap, they adaptively update the
dynamics model with observed data during control of the tar-
get actual system.

6. CONCLUSION

To reject the effect of abrupt disturbance and maintain stable
production in chemical plants, we proposed an MPC-based
method using dynamic simulators. The proposed method and
its related RL-based method are experimentally evaluated,
and it is demonstrated that the proposed method significantly
rejects the effects of the disturbance in the actual plant. We
would improve and implement the method in chemical plants
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and other fields of control applications.
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