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ABSTRACT

Regressive Remaining Useful Life Prediction and Survival
Analysis are two lines of research with similar goals but dif-
ferent origins; one from engineering and the other from sur-
vival study in clinical research. Although the two research
paths share a common objective of predicting the time to an
event, researchers from each path typically do not compare
their methods with methods from the other direction. Given
the mentioned gap, we propose a framework to compare
methods from the two lines of research using run-to-failure
datasets. Then by utilizing the proposed framework, we com-
pare six models incorporating three widely recognized degra-
dation models along with two learning algorithms. The first
dataset used in this study is C-MAPSS which includes simu-
lation data from aircraft turbofan engines. The second dataset
is real-world data from streamed condition monitoring of tur-
bocharger devices installed on a fleet of Volvo trucks.

1. INTRODUCTION

In prognostics and health management (PHM), accurately
predicting the failure time of devices is paramount. Estimat-
ing functional lifetime can help industries minimize down-
time, optimize their maintenance plans and resource alloca-
tion, thereby reducing costs. Different statistical and machine
learning techniques can be used to achieve this goal, two
most important of which are regressive Remaining Useful
Life (RUL) prediction (Altarabichi et al., 2020; Karlsson et
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al., 2023) and Survival Analysis (SA) (Alabdallah, Ohlsson,
Pashami, & Rögnvaldsson, 2022).

The Survival Analysis originates from the medical domain,
and the regressive Remaining Useful Life (RUL) prediction
originates from the Through-life Engineering Services field.
Although with completely different origins, both approaches
are applicable to Predictive Maintenance with slightly differ-
ent problem formulations. Survival models generate survival
curves, also referred to as survival functions, and are primar-
ily developed to handle censored data. Censored data repre-
sents samples that have not encountered the event of inter-
est, such as failure, within the study period. For instance,
(Voronov, Frisk, & Krysander, 2018) used survival analy-
sis to predict the battery lifetime in heavy-duty trucks due
to the dataset’s high censoring rate (80%). Another exam-
ple can be seen in (Yang, Kanniainen, Krogerus, & Emmert-
Streib, 2022), where the survival analysis is used to estimate
mobile work assets’ survival probabilities and hazard func-
tions. They used Kaplan Meier from non-parametric methods
to find the survival functions that provide information about
the remaining useful life of assets. On the other hand, RUL
prediction models usually ignore censored data and settle for
point-wise lifetime estimation from regressors (Rahat et al.,
2022). Given the differences in the problem formulation, the
researchers in each field tend to consider only studies in the
same field, and there are few attempts to cross borders and
compare models from both fields.

In order to bridge the identified gap, we propose a straightfor-
ward yet impactful framework for transforming run-to-failure
historical data, which is a commonly used data format in re-
maining useful life (RUL) prediction, into a Survival Analy-
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sis formulation. Then we compare six models with different
configurations. Two learning models, namely Random Forest
(RF) and Gradient Boosting Trees (GBT), are utilized to train
both regression and survival models. Additionally, two con-
figurations are taken into account for the regression models,
involving linear and piecewise linear degradations.

Due to the existence of censored samples in survival anal-
ysis, it is not possible to use most of the standard machine
learning evaluation measures. Alternatively, Harrell’s Con-
cordance index (C-index) is commonly used since it can con-
sider censored samples by limiting the evaluations to the pos-
sible pairs. However, it is known that C-index is susceptible
to various bises (Hartman, Kim, He, & Kalbfleisch, 2023; Al-
abdallah et al., 2022) e.g., it has an upward bias when there is
a high degree of censoring in the test data (Uno, Cai, Pencina,
D’Agostino, & Wei, 2011). Considering the issues with C-
index, in this work, we resort to evaluate the models using
Mean Absolute Error (MAE) which is inherently an unbiased
measure. The application of MAE to measure the perfor-
mance of regressive RUL models is straightforward. How-
ever, to be able to apply this measure to the output of the sur-
vival models, we compare the actual failure time of the units
with the median survival time calculated from the projected
survival curve. This procedure is explained in detail in the
methodology section.

The following describes our two main research questions:

1. What are the performance differences among the RUL
prediction and Survival Analysis models, incorporating
three widely recognized degradation models and two
learning algorithms, in predicting time to an event?

2. How does changing the number of censored samples im-
pact the models’ performance?

2. PROBLEM FORMULATION AND METHODOLOGY

Assume Xu
t ∈ RD is an observation where D is the num-

ber of covariants, t ∈ T indicates time, and u ∈ U rep-
resents the unit number. We consider temporal data from a
machine as stand-alone observations; therefore, each row of
the data is an independent data point regardless of its unit
number. Given that without loss of generality, we can refor-
mulate a data point as Xi where i represents the index of that
data point in the dataset. Furthermore, treadouti and tfailurei

represent readout time and failure time for the ith data point,
respectively. Consequently, we define:

tlifetime
i = tfailurei − treadouti (1)

and
tobservedi = min(tlifetime

i , EOS − treadouti ) (2)

Where tlifetime
i ∈ T illustrates the lifetime of a sample (also

known as remaining useful life), EOS ∈ T is an arbitrary
end of study time, and tobservedi ∈ T is the observed time
for the ith observation according to the EOS, and min is a

Algorithm 1 Converting Survival Curve to RUL

Require:
Xtest

i - test sample
SurvivalModel - previously trained survival model

Ensure:
t′ - predicted remaining useful life where t′ ∈ R+

1: S(t)←SurvivalModel(Xtest
i )

2: if S(t) does not include 0.5 then
3: S(t)← Extrapolate(S(t))
4: end if
5: Return t′ where s(t′) = 0.5

function that returns the smallest input value.

We formulate the data points for the regression model using
(Xi, yi) where yi = tlifetime

i . On the other hand, similar
to (Fotso et al., 2019) the survival analysis data points are
characterized as (Xi, ei, yi) where ∀i:

• Xi is a D dimensional feature vector.
• ei is event indicator such that ei = 1, if we observe the

event and ei = 0, in case of censoring.
• yi = tobservedi .

We further formulate the target regression yi for the two
degradation models (linear, piecewise), as well as the survival
model as follows:

ylineari =

{
tlifetime
i , if tlifetime

i ≤ EOS
ø, otherwise

(3)

The linear degradation model requires an exact target value.
As a result, it ignores censored samples with a lifetime greater
than the end of the study, as shown in Eq. (3).

ypiecewise
i =

{
tlifetime
i , if tlifetime

i ≤ EOS
EOS, otherwise

(4)

While the piecewise degradation model includes censored
samples by considering an early RUL value equal to EOS (see
Eq. (4)).

ysurvivali = tobservedi (5)

The value of target regression yi for survival model is shown
in Eq. (5) which is equal to tobservedi . This value can be
calculated from Eq. (2).

esurvivali =

{
1, if tlifetime

i ≤ EOS
0, otherwise

(6)

Finally, Eq. (6), esurvivali provides the event indicator flag
required for training the survival models.
The most common output of the survival analysis is called
survival curve S(t), or survival function, which represents
the probability that the event of interest has not occurred by
some time t.

In order to facilitate a comparison between the outcomes of a
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regression and a survival analysis model, we calculate the me-
dian survival time of the input sample from its estimated sur-
vival curve. This is equivalent to the point where the survival
function crosses 0.5, i.e. the probability of failure becomes
greater than the probability of surviving (Goel, Khanna, &
Kishore, 2010).

The procedure for this conversion is provided in Algorithm 1,
where we first predict the survival function for a test sample.
Then we extrapolate the curve if it does not cross the median
point. Lastly, we find the corresponding point when the sur-
vival curve crosses the median point and return the mentioned
point in time as the estimated remaining useful life value.

Figure 1 visualizes a projected survival curve. Note that the
curve concludes prior to 0.5 (curve fraction), which happens
due to considering a specific study period (EOS) and the
fact that the survival models do not extrapolate beyond the
duration of the study period. In such cases, we extrapolate
our survival curve using ”xgbse.extrapolation” implementa-
tion (Vieira, Gimenez, Marmerola, & Estima, 2021), which
considers a constant risk extrapolation strategy.

Figure 1. Extrapolation

3. DATASET

In this study, two time-series run-to-failure datasets from the
field of prognostics and health management (PHM) have been
selected. The first dataset is publically available and contains
synthetic degradation data from commercial turbofan engines
simulated by NASA (Saxena, Goebel, Simon, & Eklund,
2008). Within the provided dataset known as C-MAPSS,
multiple engines are operated concurrently. If the engine’s
deterioration surpasses a certain threshold, it is considered
a failure. The original dataset contains four distinct experi-
ments labeled FD001 to FD004 with varying fault modes and
conditions. In each experiment, both training and test data
sets were gathered. In this work, we only used data from one
of the experiments (FD001) and kept the original train test
split.

The second dataset contains operational signal measurements
showing the degradation of 461 Turbocharger devices in-

stalled on a fleet of Volvo trucks. The dataset has 30746
samples and 264 columns. The dataset is recorded in a sim-
ilar format to the C-MAPSS dataset, i.e. each sample rep-
resents one readout (observation) from a truck at a specific
time. For the rest of the paper, we will refer to this dataset as
the Turbocharger dataset. It is not possible for us to release
the Turbocharger dataset for confidentiality reasons, but the
code used for running the experiments for both Turbocharger
and the C-MAPSS dataset is the same.

A turbocharger plays an essential role in boosting engine
power and efficiency by increasing air intake and improv-
ing combustion. When a turbocharger fails, engine perfor-
mance is compromised, resulting in reduced power output,
decreased fuel efficiency, and increased emissions. Further-
more, this decline in performance often leads to complete
stoppages, as it is unsafe to operate a loaded truck with a
faulty turbocharger. Predicting turbocharger failure ensures
uninterrupted system performance, optimizing power output,
and maintaining optimal fuel economy. Several prior stud-
ies investigated the predictive maintenance of turbocharger
devices (Revanur, Ayibiowu, Rahat, & Khoshkangini, 2020;
Rahat, Pashami, Nowaczyk, & Kharazian, 2020; Rahat et al.,
2022).

3.1. Considering Temporal Information of Dataset

Run-to-failure is a time-series data including temporal infor-
mation. There are various ways to include temporal infor-
mation in the model, e.g., windowing. Here, we treat each
machine’s readouts as a standalone independent sample. As
an example, assume there are 100 units in a dataset, and each
unit has a fixed temporal length of 20 i.e., we have 20 readouts
per unit over time. Considering each readout as a standalone
unit will give us 2000 independent units. This means the pro-
posed model considers the history of the units by assuming it
is a standalone machine. This approach is similar to applying
windowing with window length = 1.

4. EXPERIMENTS AND RESULTS

The ”train FD001.txt” data originally contains 20631 rows
and 26 columns, including unit number and time in cycle,
where the former shows the engine number and the latter
shows the operational cycle number (time steps). The rest of
the columns include three operational settings and 21 sensor
measurements. We skipped six of the sensor measurement
columns that exhibited a very low or literally zero variance
for the training of the models. Similarly, we skipped the op-
erational settings. This left us with 15 columns in the test
and training files. The train and test data each contain 100
engines, and the number of samples in the test data is 13096.

In the Turbocharger dataset, removing the independent and
redundant columns gives us 256 features. Then we split the
data into train and test by randomly picking 300 vehicles for
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training, and the remaining 161 vehicles are used for test. The
number of samples in the training and test split is 20068 and
11114, respectively.

We ran the same experiment twice, once with C-MAPSS and
then with the Turbocharger dataset. In each experiment, we
train six models as follows:

1. A Random Forest regressor that receives covariate fea-
tures and estimated RUL as a target. The target label is
calculated using a Linear Degradation.

2. Random Forest regressor that receives covariate fea-
tures and estimated RUL as a target. The target label is
calculated using a Piecewise Linear Degradation. The
early RUL value is set equal to EOS for each experiment.

3. A Random Survival Forest (Ishwaran, Kogalur, Black-
stone, & Lauer, 2008) model that receives covariate fea-
tures and event indicators and estimates a survival func-
tion.

4. A Gradient Boosting regressor that receives covariate
features and estimates RUL as a target. The target label
is calculated using a Linear Degradation and the model
minimizes a Squared Regression loss.

5. A Gradient Boosting regressor that receives covariate
features and estimates RUL as a target. The target label is
calculated using a Piecewise Linear Degradation. The
early RUL value is set equal to EOS for each experiment.
The model minimizes a Squared Regression loss.

6. A Gradient Boosting survival (Friedman, 2001) model
that receives covariate features and event indicators and
estimates a survival function. The model minimizes a
partial likelihood loss of Cox’s Proportional Hazards
model.

We use the Random Forest and Gradient Boosting implemen-
tations in the scikit-survival (Pölsterl, 2020) and scikit-learn
(Buitinck et al., 2013) packages. The parameters used for the
Random Forest models are as follows: The number of trees
in the Forest (n estimators) is 100, The minimum number of
samples required to split an internal node (min samples split)
is 10, and The minimum number of samples required to be at
a leaf node (min samples leaf) is 15. The training parameters
for the Random Survival Forest are exactly the same as the
one reported before, and we employed the same package im-
plementation for both regression and survival models. This
ensures that the comparison between models is not affected
by employing different package implementations or parame-
ters.

The parameters used for the Gradient Boosting Regressor are
as follows: The number of boosting stages (n estimators) is
100, The learning rate is 10, and The Maximum depth of
the individual regression estimators (max depthint) is 3. We
used Squared Regression loss for the regressor models. The

training parameters for the Gradient Boosting Survival model
are exactly the same as the one reported before, except us-
ing Cox’s Proportional Hazards loss. We employed the same
code implementation for both regression and survival models.

Aligned with the goal described in the research questions,
we altered the number of censored samples in the dataset by
changing the study duration and analyzed its impact on the
performance of the models. The end of the study (EOS) pa-
rameter indicates the study duration, and for the C-MAPSS
dataset, it has been changed from 70 to 290. For the men-
tioned EOS range, the percentage of the censored data varied
between 0.66 to 0.01. We calculated the percentage of the
censored data by dividing the number of samples flagged as
censored (ei = 0) by the total number of samples. Both the
EOS and the percentage of the censored samples are repre-
sented on the x-axis of the plot in Figure 2.

The linear degradation model ignores the censored data;
therefore, the number of its training samples is essentially
less or equal to the number of training samples of the other
two models. The readers can get the number of training sam-
ples for the linear degradation model by multiplying the total
number of samples by one minus the censoring percentages
provided in the plots. For example, according to Fig 3, the
censored data percentage for the EOS = 160 is 0.23. This
means that the number of training samples for the models that
use linear degradation is 20631× (1− 0.23) = 15886. Note
that 20631 is the total number of training samples in the first
dataset. Similarly, the percentage of the censored samples for
the Turbocharger dataset starts at 0.54 and ends at 0.0, mean-
ing the end of life for all the samples is observed. We did not
report the EOS range for the Turbocharger dataset for confi-
dentiality reasons.

Figure 2. Model performances on the CMAPSS dataset
across varying study periods

Figure 2 demonstrates the performances of different learning
and degradation models on the CMAPSS dataset in terms of
MAE with different amounts of censored data. Similar results
for the turbocharger dataset are depicted in Fig 3. Equation 7
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Figure 3. Model performances on the Turbocharger dataset
across varying study periods

represents Mean Absolute Error (MAE) where ŷi is the pre-
diction of the model and yi is the true RUL.

MAE =
1

n

N∑
i=1

|yi − ŷi| (7)

Table 1. Average and Standard Deviation of MAE for differ-
ent models across varying study periods

Learning Model Degradation Model C-MAPSS Turbocharger

RandomForest Regressor, LinearDegradation 44.4 ± 11.92 13.68 ± 3.99
Regressor, PiecewiseDegradation 40.18 ± 8.61 12.34 ± 2.85

RandomSurvivalForest 38.74 ± 7.88 13.06 ± 4.97
GradientBoosting Regressor, LinearDegradation 45.3 ± 12.02 14.46 ± 3.2

Regressor, PiecewiseDegradation 41.46 ± 9.29 13.62 ± 2.45
GradientBoostingSurvival 42.0 ± 10.76 13.38 ± 3.82

Table 1 summarizes the average and standard deviation of
mean absolute error (MAE) over varying study periods. The
reported average and standard deviation values are calculated
over 23 runs for the C-MAPSS dataset and nine runs for the
Turbocharger dataset.

5. DISSCUSSION

After analyzing the plots depicted in Figures 2 and 3 and Ta-
ble 1, we have derived the following findings and observa-
tions: It is apparent that the inclusion of censored samples in
the training data has significantly enhanced the performance
of Survival Analysis models and the Random Forest model
incorporating Piecewise Linear degradation compared to the
Linear Degradation model. In other terms, the linear degrada-
tion model consistently performs worse than both the piece-
wise linear and survival degradation models in both datasets.
Next, you can observe that as the study duration increases
(i.e. the percentage of censored data decreases), the Mean
Absolute Error (MAE) in all six models reduces. This im-
provement in the models’ performances is happening due to
providing more information to the models and having fewer
censored samples. Moreover, with a decrease in the num-
ber of censored data, all degradation models tend to converge

and produce very similar results. Overall, in both datasets,
the Random Forest model slightly outperforms the Gradient
Boosting model. The Piecewise Linear and Survival Degra-
dation models exhibit similar performance, with the former
demonstrating slightly better results in the real Turbocharger
dataset and the latter performing slightly better in C-MAPSS.
Finally, we observed that there is very low fluctuation in
Mean Absolute Error values across multiple runs. We inter-
pret this as having a robust performance from the models. It
is worth mentioning that the effect of the censored percent-
age on error is more consistent throughout the curves of the
CMAPS dataset in comparison to the turbocharger dataset.
We argue that this is due to the fact that CMAPSS is a well-
curated simulated dataset, while our real-world turbocharger
dataset contains a considerable amount of noise.

6. CONCLUSION

This paper proposed a framework to compare Remaining
Useful Life Prediction and Survival Analysis Methods for
Predictive Maintenance. We experimented with two learn-
ing models of Random Forest and Gradient Boosting Trees
once in the context of survival analysis and then regression.
The regressors used two degradation configurations: linear
and piecewise linear with early RUL. To answer the research
questions, we can iterate that both survival analysis and piece-
wise linear degradation models almost consistently outper-
formed the linear degradation model in both datasets. We
believe this is due to ignoring censored samples in the train-
ing of the linear degradation model. It seems that informa-
tion from censored samples has been able to boost the perfor-
mance of the survival analysis and piecewise linear models
and reduce their MAE. We also noted that performances of all
models converge to similar values as we remove the censor-
ing impact (i.e., decreasing the number of censored samples
in the data). On the other hand, it is noted that having too
many censored samples impacts the survival models’ perfor-
mance conversely. The other somewhat unexpected conclu-
sion from the results is that models that used Random Forest
slightly outperformed their Gradient Boosting counterparts.
The Random Survival Forest model proved the lowest MAE
in the C-MAPSS dataset, while the Random Forest regressor
with piecewise linear degradation model outperformed others
in Turbocharger dataset.
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valdsson, T. (2020). Stacking ensembles of heteroge-
nous classifiers for fault detection in evolving environ-
ments. In 30th european safety and reliability con-
ference, esrel 2020 and 15th probabilistic safety as-
sessment and management conference, psam15 2020,
venice, italy, 1-5 november, 2020 (pp. 1068–1068).

Buitinck, L., Louppe, G., Blondel, M., Pedregosa, F.,
Mueller, A., Grisel, O., . . . Varoquaux, G. (2013).
API design for machine learning software: experiences
from the scikit-learn project. In Ecml pkdd workshop:
Languages for data mining and machine learning (pp.
108–122).

Fotso, S., et al. (2019). PySurvival: Open source pack-
age for survival analysis modeling. Retrieved from
https://www.pysurvival.io/

Friedman, J. H. (2001). Greedy function approximation: a
gradient boosting machine. Annals of statistics, 1189–
1232.

Goel, M. K., Khanna, P., & Kishore, J. (2010). Understand-
ing survival analysis: Kaplan-meier estimate. Interna-
tional journal of Ayurveda research, 1(4), 274.

Hartman, N., Kim, S., He, K., & Kalbfleisch, J. D. (2023).
Pitfalls of the concordance index for survival outcomes.
Statistics in Medicine.

Ishwaran, H., Kogalur, U. B., Blackstone, E. H., & Lauer,
M. S. (2008). Random survival forests.

Karlsson et al., N. (2023). Baseline selection for integrated
gradients in predictive maintenance of volvo trucks’
turbocharger. In Vehicular 2023-iaria.

Pölsterl, S. (2020). scikit-survival: A library
for time-to-event analysis built on top of
scikit-learn. Journal of Machine Learn-
ing Research, 21(212), 1-6. Retrieved from
http://jmlr.org/papers/v21/20-729.html

Rahat, M., Mashhadi, P. S., Nowaczyk, S., Rognvaldsson, T.,
Taheri, A., & Abbasi, A. (2022). Domain adaptation in

predicting turbocharger failures using vehicle’s sensor
measurements. In Phm society european conference
(Vol. 7, pp. 432–439).

Rahat, M., Pashami, S., Nowaczyk, S., & Kharazian, Z.
(2020). Modeling turbocharger failures using markov
process for predictive maintenance. In 30th european
safety and reliability conference (esrel2020) & 15th
probabilistic safety assessment and management con-
ference (psam15), venice, italy, 1-5 november, 2020.

Revanur, V., Ayibiowu, A., Rahat, M., & Khoshkangini, R.
(2020). Embeddings based parallel stacked autoen-
coder approach for dimensionality reduction and pre-
dictive maintenance of vehicles. In Iot streams for
data-driven predictive maintenance and iot, edge, and
mobile for embedded machine learning: Second inter-
national workshop, iot streams 2020, and first interna-
tional workshop, item 2020, co-located with ecml/pkdd
2020, ghent, belgium, september 14-18, 2020, revised
selected papers 2 (pp. 127–141).

Saxena, A., Goebel, K., Simon, D., & Eklund, N. (2008).
Damage propagation modeling for aircraft engine run-
to-failure simulation. In 2008 international conference
on prognostics and health management (pp. 1–9).

Uno, H., Cai, T., Pencina, M. J., D’Agostino, R. B., & Wei,
L.-J. (2011). On the c-statistics for evaluating overall
adequacy of risk prediction procedures with censored
survival data. Statistics in medicine, 30(10), 1105–
1117.

Vieira, D., Gimenez, G., Marmerola, G., & Estima, V. (2021).
Xgboost survival embeddings: improving statistical
properties of xgboost survival analysis implementa-
tion.

Voronov, S., Frisk, E., & Krysander, M. (2018). Data-driven
battery lifetime prediction and confidence estimation
for heavy-duty trucks. IEEE Transactions on Relia-
bility, 67(2), 623–639.

Yang, Z., Kanniainen, J., Krogerus, T., & Emmert-Streib, F.
(2022). Prognostic modeling of predictive maintenance
with survival analysis for mobile work equipment. Sci-
entific Reports, 12(1), 1–20.

6


