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ABSTRACT

Although many hard drive failure prediction methods uti-
lize Self-Monitoring Analysis and Reporting Technology
(SMART) features, they are not collected in IT systems with
demanding performance requirements to meet their specifi-
cation. We present a novel data-driven method for the pre-
diction utilizing disk-level performance metrics collected by
Redundant Array of Independent Disk (RAID) controllers in-
stead of SMART features. The proposed method computes
relational anomaly scores leveraging logical relationships of
Hard Disk Drives (HDDs) based on RAID configuration for
better failure prediction. In addition, it further utilizes er-
ror codes from HDDs to filter out false positives. We evalu-
ate the proposed method on a real-world dataset collected for
this study from 881 disks used in disk arrays of RAID-6 and
1660 disks used in disk arrays of RAID-10 in a data center.
The results show consistent performance improvement by the
logical relationships and error-code-based filtering. In addi-
tion, seven out of nine failures are predicted one day before
the failure at the latest. This result suggests that the proposed
method provides plenty of time for HDD replacement before
a failure occurs.

1. INTRODUCTION

A massive amount of data is generated in various systems.
The total amount of new data generated in 2025 is fore-
casted to reach 175 ZB, which is five times larger than that
in 2018 (Gantz, Reinsel, & Rydning, 2019). Storage devices
are the key component to accommodate the large volume of
data, and Hard Disk Drives (HDDs) will remain as the pri-
mary storage devices because of cost advantage.

In order to prevent data loss, a disk array consisting of mul-
tiple HDDs is virtualized with Redundant Array of Indepen-
dent Disk (RAID) in enterprise IT systems. There are differ-
ent levels of RAID to fulfill different needs of storage sys-
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tems. For example, RAID-10 yields higher durability than
RAID-6, but RAID-10 results in lower capacity than RAID-
6. Although RAID typically increases durability, scenarios
resulting in data loss remain. If the number of failed HDDs
exceeds the limit for recovery, data loss occurs. Due to data
security concerns, when a failure occurs in a disk array, other
still functioning HDDs in the same disk array are replaced
with new ones as preventive measures.

HDD failure prediction is a promising technology to reduce
the running costs of IT systems and environmental load by
the preventive measures since it allows us to replace HDDs
only when necessary. Most HDD failure prediction meth-
ods (Aussel et al., 2017; Featherstun & Fulp, 2010; Ganguly
et al., 2016; Hamerly, Elkan, et al., 2001; Li et al., 2014;
Murray, Hughes, & Kreutz-Delgado, 2003; Yang et al., 2020;
Zhang, Huang, Zhou, Xie, & Schelter, 2020) rely on Self-
Monitoring Analysis and Reporting Technology (SMART)
features. However, due to demanding performance require-
ments, SMART features are not always available in enterprise
IT systems. On the other hand, two types of data representing
HDD’s status, i.e., disk-level performance metrics collected
by RAID controllers and error codes from HDDs, do not re-
quire additional workload on disks for the collection. There-
fore, HDD failure prediction utilizing them is applicable to a
wide range of enterprise IT systems. An example of the error
code sequence from an HDD is shown in Table 1. It shows er-
ror codes were issued before the HDD failed, indicating they
capture disk degradation.

HDDs in the same disk array have logical relationships since
they are virtualized as a single logical unit. The relationships
appear as similar patterns in some of the disk-level perfor-
mance metrics. For example, either RAID-1 or RAID-10 si-
multaneously write a pair of HDDs, and that leads similar
pattern in their metrics related to writing data. Time series
of average write response time, one of the disk-level perfor-
mance metrics, from two HDDs in the same disk array are
shown in Fig. 1. The HDD of the upper chart failed at the
right-most of the chart, and the other remains normal. Both
of the series similarly increase at the same time, but the in-
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Table 1. An example of the error code sequence from an
HDD.

Time Message
2021-05-29 Unrecovered read error03:38:09
2021-05-29 Unrecovered read error03:38:31
2021-05-29 Unrecovered read error03:38:38
2021-05-29 Data access failures occurred

03:38:41 frequently and exceeded the threshold.
2021-05-29 The failed drive was removed

03:38:41 from the RAID array.

crease of the failed HDD at the nearest time of the failure is
significantly larger than that of the normal HDD. Due to their
similar patterns during the healthy condition, their difference
around the failure more emphasizes the abnormal increase
than their individual metrics. This observation implies that
the logical relationships by RAID configuration improves the
accuracy of failure prediction.

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28

Failed disk

14 15 16 17 18 19 20 21 22 23 24 25 26 27 28
Day

Normal disk

Figure 1. The motivated example. Both charts show the aver-
age write response time of HDDs in the same disk array. The
scales of both charts are the same. The right-most time is of
the HDD failure. They usually synchronize with each other,
but the failed disk shows a higher value near the failure time.

In order to predict HDD failures without SMART features,
this study proposes a two-step unsupervised anomaly detec-
tion method utilizing the logical relationships of disk-level
performance metrics collected by RAID controllers and error
codes from HDDs. The proposed method computes anomaly
scores for each HDD. Then it adjusts the scores in the same
disk array based on themselves, suppressing false positives
because of sudden changes in disk-level performance metrics.
In addition, the proposed method only detects an anomaly in

an HDD when error codes from the HDD are issued in ad-
vance. This error-code-based filtering further reduces false
positives since the error codes provide conclusive evidence
for disk degradation. When the proposed method detects an
anomaly in an HDD, it is regarded as an early indication of a
failure, and the replacement of the HDD is recommended.

2. RELATED WORK

HDD failure prediction has been studied for decades, and
the studies mainly rely on SMART features. Hamerly et
al. (2001) proposed two Bayesian approaches to the predic-
tion, viewing the problem as anomaly detection. Murray et
al. (2003) compared the performance of Support Vector Ma-
chines (SVMs), unsupervised clustering, and non-parametric
statistical test. Li et al. (2014) employed Classification and
Regression Trees for accurate, stable, and interpretable pre-
diction for HDD failure. It was evaluated on a real-world
dataset containing 25,792 drives. Zhang et al. (2020) ad-
dressed unsatisfactory results because of a small amount of
data during training or the disks which have not appeared
in training, employing a Long Short-Term Memory (LSTM)
based siamese network. Featherstun and Fulp (2010) used
all the data collected by syslog, a standard Unix logging fa-
cility. The data contains SMART features as well. Ganguly
et al. (2016) combined multiple data sources, i.e., SMART
features and Windows performance counters. Aussel et al.
(2017) evaluated machine learning models on a large-scale
and heterogeneous dataset from over 47,000 HDDs with 81
models from 5 manufacturers. Lu et al. (2020) performed
large-scale disk failure analysis based on 380,000 HDDs dis-
tributed across 64 data center sites. They collected SMART
features, disk-level performance metrics, server-level perfor-
mance metrics, and disk spatial location data. The analysis
was conducted with supervised methods for HDD failure pre-
diction. The result shows that the supervised methods yield
competitive performance without SMART features. Unlike
the above studies, this study explores the feasibility of un-
supervised HDD failure prediction without SMART features.
In addition, this study utilizes error codes and logical rela-
tionships instead of physical relationships, i.e., location, for
better prediction.

3. METHODOLOGY

The proposed method consists of RAID-configuration-based
anomaly detection and error-code-based filtering. Its en-
tire pipeline is shown in Fig. 2. RAID-configuration-based
anomaly detection computes relational anomaly scores indi-
cating the abnormality and detects an anomaly when it ex-
ceeds its pre-determined threshold. When an anomaly in an
HDD is detected, the error-code-based filtering checks if any
error code has been issued to the HDD before. If it has been
issued, the detection is regarded as negative, and the proposed
method continues monitoring the HDD.

2



Asia Pacific Conference of the Prognostics and Health Management Society 2023

Metrics in 

a disk array

...

Error-code-based

filtering

RAID-configuration-based

anomaly detection

...

Error-code history

...

Detection

results

Figure 2. The entire pipeline of the proposed method. Detec-
tion results by RAID-configuration-based anomaly detection
is updated by error-code-based filtering.

The pipeline computing relational anomaly scores is shown
in Fig. 3. It consists of two functions, i.e., the individual
scoring function and the relational scoring function. The indi-
vidual scoring function computes a score based on disk-level
performance metrics for each HDD. The score called individ-
ual score represents the abnormality of the HDD at the time
stamp associated with the metrics when logical relationships
between HDDs in the same disk array are not incorporated.
The relational scoring function adjusts individual scores asso-
ciated with the same time stamp in the same disk array. The
adjusted score is the relational anomaly score.

The individual scoring function is realized with the distance-
based method called kNN (Angiulli & Pizzuti, 2002). kNN
assigns an anomaly score by taking the average distance over
K-nearest-neighbors in the training set. Let x′ ∈ Rd be d
dimensional metrics from an HDD at testing and xk ∈ Rd be
kth nearest neighbor of x′ in the training set. The individual
score a′I is defined as:

a′I =
1

K

k∑
i=1

∥∥x′ − xi
∥∥2
2
. (1)

Since the main concern of this study is whether the logi-
cal relationships of RAID help improve HDD failure predic-
tion, kNN is used due to its simplicity; however any unsuper-
vised anomaly detection method is applicable to the individ-
ual scoring function.

The relational scoring function computes distances of the in-
dividual scores from their mean at the same time stamp as
relational anomaly scores. Given a disk array, let N be the
number of HDDs in the disk array and a′In be the individual
score of the nth HDD. The relational anomaly score a′Rn is

defined as:

a′Rn = a′In −
1

N

n∑
i=1

a′Ii. (2)

4. EXPERIMENTS

We evaluate the proposed method on a private dataset and
compare it to its three variants to examine the benefits of ad-
justing individual scores based on RAID configuration and
error-code-based filtering. The first variant does not employ
error-code-based filtering. The second variant only relies on
individual scores by kNN. The third variant only relies on er-
ror codes. The first two variants predict HDD failure based on
anomaly scores. On the other hand, the third variant predicts
HDD failure when an error code is issued. The third variant
does not consider the category and occurrence frequency of
the codes for prediction since the proposed method does not
consider them for filtering.

4.1. Dataset

The dataset consists of time series of disk-level performance
metrics and error code sequences of HDDs used in a data
center. All the HDDs are Small Computer System Interface
(SCSI) devices. The disk-level performance metrics used in
this experiment are shown in Table 2. The total number of
metrics is 10. Their readings were collected every three min-
utes. Training data consists of time series of the metrics from
19 normal HDDs. The HDDs were sampled from different
disk arrays of RAID-6. The data collection period for each
HDD ranges from 13 to 15 days. Testing data consists of time
series of the metrics and error code sequence from 43 disk ar-
rays of RAID-6 and 106 disk arrays of RAID-10. Since HDD
failures rarely occur, the testing data collected for a longer pe-
riod than that of the training data. The data collection period
is 4.5 months. The total number of HDDs used in the disk ar-
rays of RAID-6 and RAID-10 are 862 and 1660, respectively.
The number of failed HDDs in the disk arrays of RAID-6 and
RAID-10 are two and seven, respectively.

Table 2. The disk-level performance metrics used in this ex-
periment.

Index Name
1 Write Count
2 Write Average Response Time
3 Write Max Response Time
4 Write Transfer Rate
5 Read Count
6 Read Average Response Time
7 Read Max Response Time
8 Read Transfer Rate
9 Busy Ratio
10 Busy Time
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Figure 3. The pipeline computing relational anomaly scores.

4.2. Experimental setting

The HDD prediction is evaluated segment basis rather than
time-stamp basis. The time series of the metrics are divided
into time series segments at the time of failure as shown in
Fig. 4. Each segment is regarded as a sample for evaluation.
The number of nearest neighbors K is set to 10. Area Un-

HDD 1

HDD 2

HDD 3

HDD 1 is failed.

Time

Time series of 

Figure 4. Sample generation for the segment-basis evalua-
tion. The horizontal axis shows the entire period of testing
data collection. Each time series segment divided by the time
of failure forms a sample. This example generates four sam-
ples.

der the Curve (AUC), precision, recall, and F1-score are used
as evaluation metrics. Let TP be the number of true posi-
tive, FP be the number of false positive, TN be the number
of true negative, FN be the number of false negative, True
positive rate TPR is defined by:

TPR =
TP

TP + FN
. (3)

It is the same as recall r. False positive rate FPR is defined
by:

FPR =
FP

FP + TN
. (4)

Precision p is defined by:

p =
TP

TP + FP
. (5)

F1-score f1 is defined as:

f1 =
2× r × p

r + p
. (6)

AUC is the area underneath the entire Receiver Operating
Characteristic (ROC) curve. Suppose TPR is a function of
FPR. AUC is computed as:∫ 1

0

TPR(FPR)dFPR. (7)

The same value is used as the threshold for each of the HDDs.
Due to the small number of failures, it is difficult to determine
an appropriate threshold. Thus we report the theoretical best
values of the evaluation metrics, adjusting the threshold for
each evaluation metric on the testing data. Remaining time
from the detection time until the failure is also evaluated for
each failed HDD. For this evaluation, the threshold is set to
give the maximum precision subject to 100% of recall.

4.3. Results

Performance comparison of different methods of computing
anomaly scores is shown in Table 3. The proposed method is
denoted by ‘relational + log’. Its variant without error-code-
based filtering is denoted by ‘relational’. The method only re-
lying on individual scores by kNN is denoted by ‘individual’.
The proposed method shows the best results for all the eval-
uation metrics. The performance improvement by the unique
components in the proposed method is consistent over differ-
ent evaluation metrics. The proposed method performs better
than its variant without error-code-based filtering. The vari-
ant without error-code-based filtering performs better than the
method relying only on individual scores.

To better illustrate the consistent performance improvement,
ROC curves of different methods on RAID-10 and RAID-6
are shown in Fig. 5 and Fig. 6, respectively. The consis-
tent performance improvement is attributed to a consistently
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Table 3. Performance comparison of different methods of computing anomaly scores. P, R, and F1 represent precision, recall,
F1-score, respectively. The bold letters indicate the best results.

Method RAID-6 RAID-10
AUC P R F1 AUC P R F1

individual 0.989 0.500 1.000 0.500 0.895 0.075 1.000 0.128
relational 0.990 0.500 1.000 0.500 0.950 0.077 1.000 0.132

relational + log 0.998 1.000 1.000 0.667 0.990 0.214 1.000 0.343

higher true positive rate at the same false positive rate. For
any false positive rate, the proposed method consistently out-
performs its variant without error-code-based filtering, and
the variant consistently outperforms the method only relying
on individual scores.
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Figure 5. ROC curves on RAID-6.
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Figure 6. ROC curves on RAID-10.

The performance comparison of the proposed method and its
variant only relying on error codes is shown in Table 4. This
table also indicates the effect of disk-level performance met-
rics on failure prediction. Since error codes appear before

failures for all the cases, precision at 100% recall is com-
pared. The proposed method shows the best results for both
RAID levels, and the precision is more than twice that of the
variant, indicating the positive effect of the disk-level perfor-
mance metrics.

Table 4. The effect of disk-level performance metrics. Preci-
sion at 100% recall is compared. The bold letters indicate the
best results.

Method Precision
RAID-6 RAID-10

log 0.167 0.080
metrics + log 0.400 0.184

Distribution of remaining time from the detection time until
the failure is shown in Table 5. Seven out of nine failures are
predicted one day before the failure at the latest. This result
suggests that the proposed method provides plenty of time for
HDD replacement before a failure occurs.

Table 5. Distribution of remaining time from the detection
time until the failure.

Remaining time RAID-6 RAID-10 Total
∼ 1 month 2 2 4

1 month ∼ 2 weeks 0 1 1
2 weeks ∼ 1 week 0 0 0
1 week ∼ 3 days 0 1 1
3 days ∼ 1 day 0 1 1

1 days ∼ 12 hours 0 2 2

5. CONCLUSION

This study has proposed a two-step unsupervised anomaly de-
tection method utilizing the logical relationships of disk-level
performance metrics collected by RAID controllers and er-
ror codes from disks instead of SMART features. Evaluation
of the proposed method on the private dataset has verified
the benefits of incorporating RAID configuration and error
codes from HDD into HDD failure prediction. The proposed
method leaves plenty of room for improvement. For exam-
ple, a more complex method is applied to compute individ-
ual scores instead of kNN, and the error-codes-based filter-
ing incorporates the category and occurrence frequency of the
codes into the prediction. Although further evaluation of the
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proposed method with a more significant amount of data is
necessary due to the small volume of data for evaluation, we
hope that our observations from experiments facilitate a new
research direction of HDD failure prediction, not relying on
SMART features.
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