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ABSTRACT 

Electric vehicles (EVs) are becoming more popular due to 

concerns about fuel shortages and environmental pollution. 

Lithium-ion batteries are the preferred power source for EVs 

because they have high energy and power densities. Ensuring 

the efficient, safe, and reliable operation of these batteries has 

been a significant focus of research in recent decades. One 

major concern that can affect Li-ion battery performance is 

thermal runaway, which can cause dangerous battery fires. 

Internal short circuits (ISCs) are believed to be the root cause 

of thermal runaway incidents in batteries, making early 

detection of spontaneous ISCs a critical diagnostic task. This 

study presents a new and simple early ISC detection method 

for a Li-ion cell based on the augmentation of the state space 

of an Extended Kalman Filter (EKF) that includes voltage 

and surface temperature observations. The framework allows 

for an estimation of the cell's internal ISC state while 

remaining computationally efficient. The proposed approach 

is demonstrated in a simulated environment using dynamic 

stress tests that reflect a practical battery working cycle. The 

results demonstrate that the method can promptly detect ISC 

occurrences. 

1. INTRODUCTION  

In the recent years, LIBs have gained widespread popularity 

as portable energy sources in EVs among various types of 

batteries due to their significant advantages such as high 

energy density, high power density, and long lifetime 

(Goodenough & Kim, 2010). However, as rechargeable 

batteries, LIBs are subject to irreversible processes occurring 

during charging and discharging cycles, such as forming a 

solid-electrolyte interphase (SEI), severely impacting the 

electrochemistry of batteries. These processes typically result 

in continuous capacity fade, which eventually not only leads 

to battery failure but also a higher likelihood of severe safety 

problems, such as, catastrophic thermal runaway (TR) 

accidents. Therefore, a reliable battery management system 

(BMS) which can continuously monitor the health status of 

LIBs and diagnose any faults promptly to maintain the safe 

and reliable operation of appliances is necessary.  

Internal short circuit (ISC) has been identified as the primary 

cause of thermal runaway (TR) in EVs during daily use. 

Although the exact mechanism of its formation has not been 

fully understood yet, based on its slow progression at an early 

stage, the early detection of ISC on BMS to prevent severer 

accidents is crucial and has therefore been the focus of many 

research efforts (G. Zhang et al., 2021) (Xiong et al., 2018) 

(Feng, Pan, et al., 2018). Nonetheless, it is a tough task for 

BMS to timely trace ISC progression by only observing the 

raw signals of sensors. Even though the thermal and electrical 

signals are affected by the presence of an ISC, these signals 

show a significant change only when the ISC has reached a 

middle or late stage, which prevents making early detection. 

Different approaches have been studied in recent years to 

cope with this challenge (Asakura et al., 2010, 2012; 

Hermann & Kohn, 2013; Ikeuchi et al., 2014; Keates et al., 

2010). Considering the application on BMS, a fast, simple 

integrated, and accurate diagnostic tool is developed in this 

work employing a model-based algorithms, specifically the 

extended Kalman filter (EKF) allowing to track in real-time 

the ISC evolution. To be specific, the voltage and temperature 

measurements obtained from BMS sensors can reveal hidden 

signals that are not immediately apparent. By analyzing these 

signals, it is possible to accurately determine the presence of 

Internal Short Circuit (ISC) in a LIB cell.  

There are some research groups who worked on EKF-based 

ISC detection methods in the past years. In Yang’s research, 

the soft ISC resistance value is estimated based on its 

relationship with the EKF algorithm’s estimated SOC and 

calculated SOC (Yang et al., 2022). Similarly in the research 

of Hu et al. (Hu et al., 2020) the RLSVF algorithm has been 

applied to estimate the ISC current based on the SOC 

estimator. Feng et al. points out that the SOC difference and 

the heat negation power can be seen as ISC indicators, and 

results show that it can effectively detect the ISC (Feng, He, 

et al., 2018). However, the performance of these approaches 
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may be impacted by the low reliability of the open-loop state 

of charge (SOC) estimator. Overall, most of these proposed 

methods require post-processing based on the estimated 

value, are restricted by the working environment, cannot 

identify the level of soft ISC, or require an additional 

algorithm for the BMS to achieve the detection.  

This paper presents a novel method that applies the EKF 

algorithm  based on an equivalent circuit model (ECM)-ISC 

coupled with a thermal model to estimate the equivalent ISC 

resistance (RISC), relying on both electrical and thermal 

observations of the battery cell. From the value of the 

estimated RISC, the ISC not only can be identified, but also 

quantified. In the remainder of the paper, first the ECM-ISC-

thermal plant model of battery cell is described and some ISC 

simulation results are shown in Section 2. Secondly, the EKF 

model-based detection method is explained and its detection 

performances are analyzed in Section 3. Finally, the 

conclusion are drawn in Section 4. 

2. BATTERY CELL MODEL  

2.1. ECM-ISC Model  

Battery ECM has been widely applied for battery modelling 

because it is a good compromise between accuracy and 

complexity (Meng et al., 2019). This model consists of a 

variable voltage source, that is representative of the open-

circuit behaviour of the cell, e.g., the so-called open-circuit 

voltage (OCV), which is usually approximated as a function 

of the cell SOC; a simple resistance element, to mimic the 

effect of voltage drops due to the linear polarization of the 

cell, and a theoretically infinite series of  resistance-capacity 

networks to catch the slow voltage decays or relaxations 

related to diffusion processes happening within the cell; 

usually considering more than four RC subcircuits will not 

further improve the accuracy of the model (Plett, 2015). In 

this paper, we will consider two RC subcircuits for the cell 

modelling. As commonly done in the scientific literature 

(Feng et al., 2014; Kim et al., 2012; Zhao et al., 2015), by 

adding in parallel to the terminals of the ECM cell model an 

equivalent ISC resistance, the ISC effect on the cell 

measurements can be effectively mimicked. The graphical 

representation of the coupled ECM-ISC battery cell model is 

reported in Figure 1, where also the main parameters and 

variables of the model are outlined. Note that by assigning 

the value of the equivalent ISC resistance from 1000 Ω to 

1 Ω , the levels of ISC can be simulated from no ISC, early 

ISC to moderate ISC (Lai et al., 2021). 

The continuous-time equations governing the electrical 

dynamic of the ECM battery cell model are indicated 

hereafter: 

𝑧(𝑡) = 𝑧0 −
1
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𝑣𝑡(𝑡) = OCV(𝑧(𝑡)) − 𝑅𝑖𝑅(𝑡) − 𝑅0𝑖(𝑡) (4) 

where 𝑧 is the battery cell SOC, 𝑧0is the initial battery SOC, 
Q is the nominal capacity of the cell, 
𝑅1, 𝑅2, 𝐶1, 𝐶2 and 𝑖𝑅1

, 𝑖𝑅2
 are the resistances, capacities 

and the polarization current flowing in the two RC 

subcircuits, respectively; 𝑣𝑡  is the battery cell terminal 

voltage.  

We observe that when the value of 𝑅𝐼𝑆𝐶  decreases, more 

current than the one required by the load is drawn by the 

battery cell, indeed, according to the Kirchhoff's current and 

voltage laws we have that 𝑖(𝑡) = 𝑖𝑡(𝑡) + 𝑖𝐼𝑆𝐶(𝑡)  and 

𝑖𝐼𝑆𝐶(𝑡) = 𝑣𝑡(𝑡)/𝑅𝐼𝑆𝐶. 

 

 

Figure 1. ECM battery cell model coupled with the ISC 

resistance in parallel. 

2.2. Thermal Model 

The thermal behavior of cell can be modelled employing a 

simplified version of the energy balance equation (EBE) 

proposed in the works of (Bernardi et al., 1985; Rao & 

Newman, 1997) similarly to what done in (Lai et al., 2021). 

The heat generated by the cell is mostly due to the losses 

occurring the resistance elements, and thus can be modelled 

according to:  

𝑄𝑖𝑛 = ∫(𝑅0𝑖
2 + 𝑣𝑡

2/𝑅𝐼𝑆𝐶)𝑑𝑡 . (4) 

Assuming that the heat dissipates only through free 

convection with the surrounding air, the heat dissipated is 

simply given by: 

𝑄𝑜𝑢𝑡 = ∫ℎ(𝑇𝑠 − 𝑇𝑎)𝐴 𝑑𝑡 . (5) 

The EBE thus implies that the temperature evolution over 

time for the considered system is regulated by: 
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�̇�𝑠 =
�̇�𝑖𝑛 − �̇�𝑜𝑢𝑡

𝑚𝑐𝑚

 (6) 

Combining Eq (5)-(7), the surface temperature evolution of 

battery cell can be expressed by: 

𝑑𝑇𝑠(𝑡)

𝑑𝑡
=

=
1

𝑚𝑐𝑚

(𝑅0𝑖
2(𝑡) +

𝑣𝑡(𝑡)
2

𝑅𝐼𝑆𝐶

− ℎ(𝑇𝑠(𝑡) − 𝑇𝑎𝑚𝑏)𝐴), 

(7) 

where 𝑚 is the mass of the cell, 𝐴 is the outer surface area of 

the cell and 𝑐𝑚 is the specific heat capacity of the cell; ℎ is 

the air-free convection coefficient. This simple model can be 

employed if the temperature gradient within the battery cell 

can be assumed negligible, which is reasonable when 

considering small size battery cell.  

2.3. Simulation results 

In this section, the ECM-ISC-thermal model is simulated 

using MATLAB Simulink to show what is the effect of 

triggering an ISC on the outputs of the cell. In this work the 

ECM model of the ICR18650-22F battery cell, whose 

electrical characteristics (SPECIFICATION OF PRODUCT 

(Tentative) for Lithium-Ion Rechargeable Cell Energy 

Business Division, 2008) are reported in Table 1, is 

considered. Note that the size of this battery cell is relatively 

small.  

 

For modelling this battery cell, the OCV(𝑧) curve obtained at 

ambient temperature considering constant 1C discharging 

shown in Figure 2 (Safdari et al., 2022) is used. With concern 

to the thermal model parameter, the heat transfer coefficient 

ℎ is set as 10 W/m2K, which is a typical value for air-free 

convection (Kosky et al., 2013); the heat capacity 𝑐𝑚 is taken 

from a previous study on the LCO 18650 battery cell (X. 

Zhang et al., 2019), and is 896 J/kg/K; finally, the ambient 

temperature is assumed to be 298K. 

The input load current used during the simulation is indicated 

in Figure 3. This is a 360 s Dynamic Stress Test (DST) 

current cycle, and is commonly employed when simulating 

the battery cell to obtain outputs that are representative of real 

life behaviours (Tian et al., 2014).  

The ECM parameters adopted are shown in Table 2, and have 

been measured by a previous work (Tian et al., 2014) for the 

considered battery cell. 

 

 

Figure 2. OCV-SOC characteristic for the ICR18650-22F 

battery cell when discharging at 1C. 

 

Figure 3. A periodic dynamic current profile for battery cell 

 

Table 2. ECM parameters of ICR18650-22F battery cell. 

 

Parameter Value 

𝑅0 0.00867 Ω 

𝑅1 0.0124 Ω 

𝑅2 0.0123 Ω 

𝐶1 2239 F 

𝐶2 41831 F 

As also done in other works dealing with ISC detection 

methods, the ISC is suddenly triggered in the battery cell 

while it is discharging to assess the detection performance of 

the filter. The simulation is stopped when the cell is fully 

discharged or when the cell reaches a threshold temperature 

value of 50°C. Figure 4 illustrates the monitored terminal 

Table 1. ICR18650-22F battery cell characteristics. 

 

Name Value 

Nominal Capacity 2.2 Ah 

Nominal Voltage 3.6 V 

Weight 44.5 g 

Size Ø18.4 mm × 65 mm 

Maximum Continuous 

Discharge Current 
4.4A 

Operating temperature 

range 

Charge: 0 to 45℃  

Discharge: -20 to 

60℃ 
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voltage, surface temperature and SOC of the cell when 

different ISC intensities are triggered, i.e., absent (𝑅𝐼𝑆𝐶 =
1000Ω), soft (𝑅𝐼𝑆𝐶 = 100Ω) and moderate (𝑅𝐼𝑆𝐶 = 10 Ω).  

 

Figure 4. Battery behaviors simulated under various ISCs. 

 

As Figure 4 demonstrates, it can be seen that the lower the 

ISC resistance, the faster the rise of temperature and the 

decrease of the terminal voltage. It is worth pointing out that 

even when the ISC is moderate (𝑅𝐼𝑆𝐶=10 Ω), the temperature 

increase is quick.  

3. ISC DETECTION METHOD AND DIAGNOSIS RESULTS 

In this section it is shown how to use the EKF algorithm to 

jointly estimate the state and the equivalent ISC resistance of 

the ECM-ISC model. The estimated equivalent ISC 

resistance can then be exploited to perform ISC detection. In 

the following, the method used is briefly discussed and the 

results obtained are analyzed.   

3.1. ISC detection method based on EKF  

To implement EKF algorithm, Eq. (1)-(3) and Eq. (7) should 

be rewritten into a state-space formulation. In the ECM-ISC 

cell model there are four states, which can be gathered in the 

state vector 𝐱𝑘 = [𝑧𝑘, 𝑖𝑅1,𝑘 , 𝑖𝑅2,𝑘 , 𝐺𝑘]
𝑇
, where 𝐺 = 𝑅𝐼𝑆𝐶

−1  is the 

equivalent ISC conductance. Note that 𝐺  is considered in 

place of 𝑅𝐼𝑆𝐶 in the state vector to ease the calculation of the 

Jacobian matrices of the EKF algorithm; however, the 

correlation between 𝐺 and 𝑅𝐼𝑆𝐶 is straightforward. To allow 

the joint estimation of 𝐺, the input vector 𝐮𝑘 = [𝑖𝑡,𝑘  , 𝑣𝑘]
𝑇
 is 

considered, like this the state-space realization of the 

stochastic ECM-ISC cell model indicated by Eq. (8) is 

obtained. In addition, the discrete-time noisy measurement 

equations are also specified by Eq. (9).  These equations can 

be employed in a EKF to estimate the ECM-ISC cell model 

states. The estimation results are discussed in the next section.  

𝐱𝑘+1 = [

𝑧𝑘+1

𝑖𝑅1,𝑘+1

𝑖𝑅2,𝑘+1

𝐺𝑘+1

]

=

[
 
 
 
 
1 0 0 0

0 𝑒
−

𝛥𝑡
𝑅1𝐶1 0 0

0 0 𝑒
−

𝛥𝑡
𝑅2𝐶2 0

0 0 0 1]
 
 
 
 

[

𝑧𝑘

𝑖𝑅1,𝑘+1

𝑖𝑅2,𝑘+1

𝐺𝑘

]

+

[
 
 
 
 
 −

𝛥𝑡

𝑄
0

1 − 𝑒
−

𝛥𝑡
𝑅1𝐶1 0

1 − 𝑒
−

𝛥𝑡
𝑅2𝐶2 0

0 1]
 
 
 
 
 

[
𝑖𝑡,𝑘 + 𝐺𝑘𝑣𝑡,𝑘 + 𝑤1,𝑘

𝑤2,𝑘
] 

= f(𝐱𝑘 , 𝐮𝑘 , 𝐰𝑘),  

(8) 

 

𝐲𝑘+1 = [
𝑣𝑡,𝑘+1

𝑇𝑠,𝑘+1
] = 

[

OCV(𝑧𝑘) − 𝑅1𝑖𝑅1,𝑘
− 𝑅2𝑖𝑅2,𝑘

− 𝑅0(𝑖𝑡,𝑘 + 𝐺𝑘𝑣𝑡,𝑘) + 𝑛1,𝑘        

𝑇𝑠,𝑘 + [
1

𝑚𝑐𝑚
(𝑅0(𝑖𝑡,𝑘 + 𝐺𝑘𝑣𝑡,𝑘)

2 + 𝐺𝑘𝑣𝑡,𝑘
2 − ℎ(𝑇𝑠,𝑘 − 𝑇𝑎))] Δ𝑡 + 𝑛2,𝑘

] 

= h(𝐲𝑘 , 𝐱𝑘 , 𝐮𝑘 , 𝐧𝑘).  

(9) 

3.2. ISC detection results  

When simulating the online estimation of the ISC, first 

measurements of the EKF are generated by adding to the 

outputs of the ECM-ISC cell model (e.g., the voltage and the 

surface temperature) white noises, whose covariances are 

𝜎𝑛1
= 10 mV  and 𝜎𝑛2

= 0.5 K , respectively, to be more 

representative of real measured signals. The same covariance 

values have been used in (Bizeray et al., 2015) when 

estimating the battery cell internal state variables using EKF. 

The sampling time of the simulation is set to 100 ms, which 

is a reasonable value compared to commercial BMS 

applications (Comparison Chart - Orion BMS, n.d.).  

In Figure 5 are shown the EKF estimation results when the 

ECM-ISC cell model is affected by a moderate ISC (𝑅𝐼𝑆𝐶 =
10Ω ). The results indicate that the EKF can promptly 

estimate the value of the equivalent ISC conductance with 

great accuracy, while also estimating the other internal states. 

This could be exploited in a BMS to perform early detection 

of the ISC state directly using the estimate of the equivalent 

ISC conductance, which can be also easily converted into the 

equivalent resistance.  

 

  C         d   C         d

  C         d
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Figure 5. Detection results of the moderate ISC. 

4. CONCLUSION  

This paper proposes a novel method for early detecting 

internal short circuits (ISC) in Lithium-ion battery cells, that 

could be integrated into a BMS to improve safety. The 

method proposed is tested employing an equivalent circuit 

model (ECM) coupled with a thermal model to simulate the 

behavior of an ICR18650-22F battery cell with moderate and 

soft ISC under dynamic stress test (DST) working cycles. By 

measuring the surface temperature and terminal voltage of 

the battery cell, the proposed extended Kalman filter (EKF) 

model-based detection method can successfully detect the 

ISC and provide fast and accurate feedback of the equivalent 

ISC conductance 𝐺𝐼𝑆𝐶  that can be used as the ISC state 

indicator for diagnostic purposes.  

Nevertheless, there are some limitations in this work that 

need to be addressed in future research. A more realistic 

electrochemical model should be applied in place of the 

simple ECM model to better simulate real-world voltage 

measurements. Secondly, the proposed method employs a 

very simple thermal model that is only valid if small battery 

cells are considered. A more advanced 3D thermal model 

should be used instead when dealing with larger battery cells 

to correctly model the system behavior. Overall introducing 

a more realistic battery cell plant will introduce mismodelling 

errors and the performance of the proposed method should be 

tested. 
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