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ABSTRACT 

Autoencoder is an unsupervised feature engineering 

technique, which is an emerging technique in the prognostics 

and health management (PHM) domain. However, since 

neural network based techniques such as auto-encoder have 

many hyper-parameters belonging to the number of hidden 

units, the number of layers and activation functions, 

substantial efforts are required in a heuristic way to make the 

autoencoder learn proper features. In this paper, we propose 

a novel method to regularize an auto-encoder by exploiting 

domain knowledge, such as mechanical engineering 

expertise. The proposed autoencoder learns robust features in 

a fast and efficient manner, therefore resulting in minimal 

consideration for the hyper-parameters. In the proposed 

method, some of the hidden units of the autoencoder are 

forcibly pre-trained by back-bone signals, such as 1X 

sinusoidal wave of vibration, and the remaining hidden units 

efficiently learn the features of fault signals by minimizing 

the redundancy of learned features. The domain knowledge 

based regularization reduces the degree of freedom (DOF) of 

the autoencoder model as well as guide the model to learn the 

more physically reasonable features. Various fault data 

measured from a journal bearing rotor testbed are used for 

demonstration of the proposed method. 

1. INTRODUCTION

As part of efforts to find fault-related features, feature

engineering based on unsupervised learning has been actively 

studied in the PHM domain [1]. Unsupervised learning has 

its main purpose in determining latent variables of high 

dimensional data and determining latent variables having a 

strong correlation with target task, such as fault diagnosis. 

Unsupervised learning treats two stages of feature extraction 

and selection, which have been used in the conventional 

PHM domain, as an automated sense without knowledge of 

the relevant domain. This is an inexpensive and convenient 

method compared to existing methods, but there is also a 

blind spot. If the intention of the user is not sufficiently 

reflected in the learning method, the possibility of learning 

incorrect latent variables increases. This is especially true in 

neural network based learning methods such as autoencoder 

because the high complexity and nonlinearity of the neural 

network can result in learning results falling into the local 

minima or overfitting the data. 

Various studies have been conducted to overcome the 

limitations of unsupervised learning. Overfitting for a 

learning model means that the model only works well for 

training data and not for new inputs, and the methods for 

resolving it are called regularization. Methods for 

regularization of neural networks have been studied, 

including a norm penalty to limit network capacity, drop-out 

to exclude some units from training randomly, and early 

stopping to stop training on appropriate epochs before 

overfitting. Especially, there are special regularization 

methods only work for autoencoder, such as, sparse 

autoencoder, contractive autoencoder, and denoising 

autoencoder. 

The regularization of the autoencoder shown in the above 

paragraph is implemented so that the autoencoder can obtain 

useful expressions (latent variables) for data obtained from 

various domains in general viewpoint. However, from the 

perspective of regularization imposing prior knowledge in 

order to obtain "useful expressions" from data [6], more 

knowledge of target data and tasks can be used for better 

feature learning. For example, some latent variables are 

imposed on a neural network in advance for the training. 

When a dataset has a set of optimal latent variables, the best 

feature learning method results we can expect is to identify 

all the latent variables. However, the latent variables obtained 

by the autoencoder vary depending on the network 

architecture, learning late, and class balance in dataset. 

However, if the user is able to use a useful expression, i.e. 

knowing part of the latent variable, and using it to force the 

autoencoder to search for the remaining latent variables, the 

learned latent variables will be obtained more optimally. 

One concrete example of the idea proposed above is that, 

in many engineering systems, fault signals have somewhat 

similar characteristics to normal signals. For example, if a 

stationary vibration signal generated by a specific system is 

measured close to a sine wave when the system is normal, the 
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sine wave is distorted or a ripple is added when the system is 

faulty. The point is that it is important to teach the 

autoencoder some explicit latent variables (in this case, 

normal - sinusoidal signal) beforehand to learn all the latent 

variables of the rest of the fault signals. This is like the 

problem of finding axes of the feature space where latent 

variables exist with single axis is already known (assuming 

this axis is close to truth). In this case, we will define latent 

variables more accurately than finding all the axes from the 

beginning. 

In order to implement the proposed concept to autoencoder, 

in this paper, we pre-train autoencoder using only normal 

data with some hidden units are deactivated thereafter, train 

all classes of data including faulty data with all hidden units 

are activated. This method captures the latent variables 

existing in the normal data prior to the main training and then 

induces additional hidden units which newly activated in the 

main training to learn the latent variables existing in the 

faulty data. This will be explained in more detail in Section 

3. 

The remaining of this paper are organized as follows. 

Section 2 reviews the basic principles and behavior of 

autoencoder and a notion of manifold learning. Section 3 

describes the proposed learning method of the autoencoder 

and provides a simple example and a condition for this 

method to work well. Section 4 shows and analyzes the 

performance of the proposed method for normal and fault 

data in real engineering systems. Finally, we conclude with a 

discussion in Section 5. 
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