
 

Deep Neural Network for Fault Diagnosis of Power Transformers 

using Dissolved Gas Analysis 

Sunuwe Kim1, Beomchan Jang1, Byeng D. Youn1, Daeil Kwon2, and Byeong-Cheol Park3

1Department of Mechanical and Aerospace Engineering, Seoul National University, Seoul, 08826, Republic of Korea 

lunashisun@gmail.com, 

bob1333@snu.ac.kr, 

bdyoun@snu.ac.kr  

2Department of System Design and Control Engineering Ulsan National Institute of Science and Technology, Ulsan, 44919, 

Republic of Korea 

dkwon@unist.ac.kr 

3Convergence Energy Group Creative Future Laboratory, Korea Electronic Power Corporation, Daejeon, 34056, Republic 

of Korea 

bcpark1@kepco.co.kr

ABSTRACT 

The dissolved gas analysis, produced by deterioration of 

insulating oil, is the most popular diagnostic tool to detect 

various incipient faults in power transformers. So far, the 

handcrafted DGA features, such as DGA composition ratios 

(i.e., C2H2/C2H4, C2H4/C2H6, CH4/H2), have been often 

used as the input features of shallow learning or used to 

identify diagnostic criteria (i.e., Dornenburg Ratio, Rogers 

Ratio, IEC ratio) for the fault diagnosis of power transformers. 

However, a false alarm rate is relatively large due to the 

limitations of the handcrafted features because they are made 

up of two or three gas combinations that can classify the fault 

types in a low dimensional space that can be analyzed by the 

human inspection. To enhance DGA-based diagnostic 

accuracy, a novel method using deep neural network (DNN) 

is proposed to determine high-level features without relying 

on the handcrafted features. Specifically, many layers of 

nonlinear transforms in a DNN convert the raw DGA data 

into a highly invariant and discriminative representation 

without losing high-dimensional information that human 

cannot analyze in high dimensional space. This makes health 

classification more effective. A proposed method is validated 

from the reference database of IEC TC 10, which is the visual 

inspection data of transformer faults. The results indicate that 

the proposed DNN approach achieves higher accuracy than 

the existing methods based on shallow learning with the 

handcrafted features. 

1. INTRODUCTION

The stable operation of the power system depends on the 

reliable operation of the various individual components 

within the power grid network. Power transformer plays a 

vital role in the transmission and distribution levels of a 

power system and its unexpected breakdown could cause a 

plant shutdown with substantial societal expenses. It is thus 

of great importance to accurately detect incipient faults of the 

power transformer. 

The transformer transforms the alternating current supplied 

to one winding by the electromagnetic induction action to the 

alternating current voltage of the same frequency to the other 

winding, and the inside of the transformer is composed of 

winding, coil, and insulating oil. The major role of 

transformer insulation oil is electrical insulation and cooling. 

The objective of insulation is to insulate the transformer outer 

case and the winding inside the transformer, and the cooling 

is to cool the heat generated during the transforming process. 

This insulating oil is decomposed by aging or due to the harsh 

operating conditions such as, too high temperature, too high 

voltage or exposed to high current external faults etc. From 

the decomposed oil, the gas generated from the condensate is 

called dissolved gas and it is used as the most important factor 

in diagnosing the incipient faults of the transformer. The 

dissolved gas analysis is well-known method to diagnose six 

widely known incipient faults (Partial Discharge (PD), Low 

Discharge (D1), High Discharge (D2), Thermal Fault 1 (T1), 

Thermal Fault 2 (T2), Thermal Fault3 (T3)). Traditionally, 

for transformer incipient faults detection, a knowledge-based 

rules are applied to make handcrafted features from the 

dissolved gas profile. These handcrafted features, such as 

DGA composition ratios (i.e., C2H2/C2H4, C2H4/C2H6, 

CH4/H2), have been often used as the input features of shallow 

learning or used to identify diagnostic criteria (i.e., 
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Dornenburg Ratio, Rogers Ratio, IEC ratio) for the fault 

diagnosis of power transformers. However, handcrafted 

features not only have relatively large false alarm rate, but 

also complicated to rule out and laborious to design 

appropriate features. Thus, it would be of great value to 

automatically learn features from low-level features or 

signatures from raw sensor measurements. 

Instead of training shallow learning algorithm (KNN, SVM, 

Random forest, Naïve Bayesian etc.)  by designing 

appropriate input features with statistical method or the 

knowledge based method, deep Learning can learn the 

features automatically. Deep Learning, known as a state of 

the art in machine learning, represents high-level features 

from low-level features through multiple layers of hidden 

layers. This ability can be seen from the deep learning 

research area, which shows that speech recognition, natural 

language process, and image recognition have achieved 

remarkably higher performance and proven outstanding 

performance. 

To enhance diagnosis of accuracy in power transformer, 

inspired by the success of deep learning, we applied this deep 

learning technique to determine high-level features without 

relying on the handcrafted features. 

The remaining of the paper is organized as follows. Section 

2 presents related work; Section 3 describes our Experimental 

setup and model design; Section 4 presents our experimental 

results to demonstrate its applications. Finally, we conclude 

the study in Section 5. 

2. RELATED WORK

The following section outlines the study of handcrafted 

features through dissolved gas and feature learning through 

deep learning. 

2.1. Handcrafted Features from Dissolved Gas 

Concentration 

Transformer fault diagnosis extracts handcrafted features that 

are related to faults types. Domain experts extract 

handcrafted features through manual process which were 

analyzed by the transformer faults and eight types of 

dissolved gas concentration (H2, CH4, C2H2, C2H4, C2H6, CO, 

CO2, TCG). Specifically, these handcrafted features are made 

up of two or three gas combinations that can classify the fault 

types in a low dimensional space that can be analyzed by the 

human inspection. The boundary surface formed in the lower 

dimension helps to diagnose intuitively. However, since it is 

not a high-level features represented by using all eight types 

of dissolved gas, there are limitations in fault diagnosis. 

2.2. Feature Learning in Deep Learning 

In deep learning, feature learning transforms a raw data input 

to a highly invariant representative features that can be 

effectively exploited in machine learning tasks. This method 

could be done by using “dropout” and “Relu”, and can be 

applied to supervised learning or unsupervised learning, 

learning through the hidden layers of the neural network. 

Both are known to be robust in regularization. 

2.2.1. Dropout 

It is one of the most powerful regularization techniques at this 

time. Dropout improves the generalization error of large 

neural network. In the learning phase of Deep Neural 

Network, dropout drastically improves regularization by 

randomly omitting a fraction of the hidden units in hidden 

layers. 

2.2.2. Rectified Linear Unit 

This is also the most powerful activation function at this point 

in place of sigmoid function. The use of the rectifier as a non-

linearity has shown to enable training deep supervised 

learning faster and efficient for gradient propagation, no 

vanishing gradient problems occurs. As a result, it has a 

powerful for regularization and representation. 

3. EXPERIMENTAL SETUP AND MODEL DESIGN

The most fundamental problem in building diagnostic model 

through data-driven method in engineering system is the lack 

of labeled training data. In this study, the unlabeled data of 

88,000 which were obtained from the Korea Electric Power 

Corporation were labeled using the Duval triangle known as 

the international diagnostic method. Classes are classified 

into seven categories, PD, D1, D2, T1, T2, T3 and normal 

state. The test data which were to be verified IEC TC 10 

database, the labels T1 and T2 were classified in the same 

category, thus it is assumed that T1 and T2 is true when the 

test data was diagnosed in the diagnostic model. We 

compared shallow learning and Deep Neural Network.  

DNN was used as a supervised learning, and we designed 4 

layers to learn feature learning. The first layer is the input 

layer, the next four hidden layers were Relu function, and the 

last layer was output layer, applied softmax regression. 

Dropout was applied only to the 4th layer. For the input 

values, 8 raw data (H2, CH4, C2H2, C2H4, C2H6, CO, CO2, 

TCG) were used as dissolved gas and they were all 

normalized. In the case of shallow learning (KNN, RBF-

SVM, Linear SVM, Naïve Bayesian, Random Forest), we 

constructed a model using  
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features which were used for Duval triangle and the other 

shallow learning algorithm that were only used raw data same 

as the initial setting of DNN 

4. RESULTS

The following sections describes the results of shallow 

learning and the results of Deep Neural Network. 

4.1. Shallow Learning Accuracy 

In the first experiment, we evaluate the fault diagnosis of 

power transformer using shallow learning results presented 

in Table 1. Shallow learning (1) using handcrafted features of 

R1, R2, and R3 as input values and shallow learning (2) using 

raw data as input values were compared. We used KNN, 

Linear-SVM, RBF-SVM, Naïve Bayesian, Random Forest 

for shallow learning. From fig we observe that shallow 

learning algorithms using handcrafted features have better 

accuracy. 

4.2. Deep Neural Network Accuracy 

We evaluate the DNN diagnostic accuracy proposed in this 

study with the results of the shallow learning with 

handcrafted features that we have conducted. To analyze the 

results in more detail, we show the confusion matrix for the 

IEC TC 10 database using RBF-SVM (Table 2) and DNN 

(Table 3). The two confusion matrices indicate that many of 

the prediction errors are due to confusion between these four 

incipient faults “T1 or T2”, “T3”, “D1”, “D2”. This is 

because “T1 or T2” and “T3” are relatively similar, also “D1” 

and “D2”. However, from the results we can observe that the 

DNN model outperforms the RBF-SVM due to the feature 

learning through non-linear activation function of Relu and 

dropout method. 

5. CONCLUSION

In this paper, we have proposed a DNN approach, which 

extracts high-level features from raw data. Although it is 

impossible to visualize high-level features like image data, 

the experimental results have shown that DNN outperforms 

shallow learning with the handcrafted features. 

Experiments with larger test datasets are needed to further 

study the robustness of the proposed technique. Further 

improvements will be adapted by using unsupervised pre-

training and repeating pooling raw data into high-level 

features. 
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