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ABSTRACT 
Product quality is one of the most important factors to be 
considered in manufacturing industries. Autonomous 
production line rapidly increases its productivity; however, 
quality check becomes a difficult problem and a smart system 
for quality assurance is indispensable in the modern 
production line 
In this study, we developed a transmission error based 
machine learning algorithm to check the quality of planetary 
gear assemblies and identify the defective parts in the 
planetary gear sets.  

1. INTRODUCTION

In the modern era, most of manufacturing processes rely on 
automated systems. These systems have successfully 
increased the production speed and satisfied customers’ 
demand. However, as production technology evolves, 
customers’ requirements are also rapidly increased. One of 
the most important requirements is the quality of product. 
However, manually checking the quality of every 
manufactured product is time consuming and the accuracy is 
not always good. Therefore, a fast and accurate automatic 
diagnosis system is necessary to satisfy customers’ and 
manufacturers’ requirement. 

In this study, we focus on the quality of planetary gear 
assembly of which faults results in noise or vibration and 
reducing product reliability. It was difficult to identify 
defective parts using traditional noise and vibration analyses. 
Moreover, it was virtually impossible to disassemble the 
planetary gear sets to identify those at the end of the 
manufacturing line. In this reason, we developed a diagnosis 
system of assembly quality of a planetary gear sets by 
checking transmission error of the gear sets and machine 
learning processes for the in situ diagnosis.  

2. THEORY

2.1. Artificial Neural Network 

The artificial neural network (ANN) is the one of the most 
popular method which has been a useful tool in classification 
(Dreiseitl, & Ohno-Machado, 2002) and regression problems 
(Wimarshana, Ryu, & Choi, 2014). This is an algorithm 
based on the human nervous system and brings it to 
mathematical model. It is an algorithm that learns many 
experiments or simulation data through feedback and adjusts 
the weights to derive nonlinear and complex correlations that 
are difficult for human to construct as shown in Figure 1 (Han, 
Seo, & Choi, 2015). In the back-propagation process, weight 
changes continuously to reduce error which is difference of 
real output and output of the previous function. 

Because of the activation function in hidden layer, the 
complex interaction in data can be formulated and this helps 
the algorithm effectively handle massive data. 

Figure 1. Structure of artificial neural network. 
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3. ANN TRAINING PROCEDURE

3.1. Factor Screening 

Transmission error (TE) is delay between angular velocity of 
input and output of a gear set (Tamminana, Kahraman, and 
Vijayakar, 2007). In this research, TE is used to distinguish 
faulty products. In this process, we identify a few dominant 
factors from the TE signals using t-test among hundreds 
signal factors achieved from a gear sets.  

3.2. Finding Optimum Structure 

Setting a model structure is very important due to its 
influence on the accuracy of the model. In this research, the 
number of hidden layers is set to 1. Although there are several 
existing methods to select the number of hidden neurons 
(Sheela and Deepa, 2013), we developed an algorithm that 
determines the optimum number of neurons. 

The t-test based screened factor combination is also decided 
with this algorithm. An optimum ANN structure was selected 
based on its prediction accuracy and robustness. 

4. RESULTS AND DISCUSSION

For the verification of the algorithm, we divided the data into 
training and test sets. As a result, 97% of good assemblies 
were judged as good; however, 73% of defective ones were 
judged as defective. The reason for inaccuracy in the 
diagnosis of defective assemblies may be due to the limited 
number of defective samples. As the defective sample size 
increases, we expect more accurate diagnosis will be 
achieved by the machine learning process.  

5. CONCLUSION

Quality inspection is essential in modern manufacturing 
industry. Especially, fast and accurately diagnosing the 
health of a product is the top priority of the quality inspection. 

In this study, quality inspection was carried out by a TE 
method other than the vibration measurement method. This 
approach overcomes the limitations of the existing method 
and shows reasonable accuracy to establish a useful database. 

We utilize ANN capable of predicting the property of interest 
from a great amount of complex data to build the quality 
inspection model with statistical factor screening process. 
This model is used as a mean of accurate fault diagnosis tool 
of planetary gear sets. 
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