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ABSTRACT 

Large complex engineered systems collect large amounts of 

varied data sets, making it often difficult to process and 

analyze these for diagnosing, isolating, and predicting faults 

during operation. To recognize symptoms with standard 

testing tools, infer potential faults and eventually diagnose 

causes needs constant maintenance support. This problem is 

particularly faced in the aerospace industry, where it is 

essential to analyze and maintain assets to prevent potential 

failures or loss both technological and human. Recent usage 

of Cloud computing provides infinite computing resources to 

quickly process and troubleshoot, reducing ‘time-to-fix’ 

problems. Exploiting artificial intelligence (AI) algorithms, 

with Cloud resources, can help build an integrated fault 

diagnostic platform to provide resilient and scalable 

resources for data acquisition, processing and decision 

making. This paper presents an industrial perspective and 

problems when using machine learning methods for fault 

diagnosis, particularly using Cloud resources in the aerospace 

industry. Special attention is paid to the benefits; with 

potential future research on technical diagnosis being 

enumerated. 

1. INTRODUCTION

Faults detected in modern technological services and 

associated data processing can immensely impact the correct 

functioning of technical systems. Any disruption is of major 

concern, not only to system users, but also to manufacturers, 

suppliers, operators, and maintainers of the system. For safety 

critical applications, such as in the aerospace industry, any 

potential faults can have adverse effects on safety, operation 

and directly reduce the profitability of all elements of the 

value chain. Therefore, it is important to detect and resolve 

any such disruptions that can influence customer 

requirements (Womack et al, 2015). As the number of assets 

and novel technological innovations diffuse within the 

service industry, together with an aggressive operating 

environment; a variety of failure modes appear to manifest 

themselves (Cao et al 2012, Zio 2009 and Khan et al 2014a). 

Although failure modes can be diagnosed and isolated, the 

growing maintenance costs in today’s engineering industry 

has prompted a need for further research in novel methods to 

reduce maintenance, repair, and overhaul of complex high 

value assets (Lightfoot et al, 2013). As a consequence, recent 

efforts are being concentrated on the integration of anomaly 

detection, diagnostics and prognostic technologies across 

systems and platforms. Such capabilities can help maintain 

system performance in a cost-effective manner, whilst 

identifying ongoing issues to mitigate potential risks, and 

providing data exchange (and processing) within diagnostic 

technologies as a high priority research topic. However, the 

size of data exchange has continued to increase, along with 

disparate information sources (Xu, 2012). Coupled with 

complexities of contextual components for correlating 

information, existing approaches appear limited to deal with 

issues of during the design phase of the system lifecycle. 

Furthermore, modern day system complexities bring various 

challenges of system health data storage, its availability, 

interpretability, interoperability, time to process and more. 

Considering higher levels of interdependencies between 

assets, it becomes difficult (if not impossible) to identify root 

causes of system failures and to make real time decisions to 

compensate for them. Yet, the underlying engineering 

environment is expected to support both the technological 

platforms as well as system availability requirements (Khan, 

2015). Additionally, fault prediction algorithms for real-time 

data processing, visualization and high volume big data 

transfers bring unprecedented demands on underlying 

networks to support their high capacity and rapid 

provisioning requirements for distributed end-to-end 

connectivity. With increasingly complex and diverse large-

scale applications, the computing infrastructure needs to 

quickly process and make intelligent predictions on the 

system health data.  

The Cloud computing paradigm is a promising environment 

delivering IT-as-a-service for industries and researchers to 

deploy their applications. However, as an enabler, it has also 
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led to increased challenges in Big Data and Internet of Things 

applications, as the need for diverse data volumes and devices 

grows (Buyya et al, 2009 and Foster et al, 2008). Research 

challenges in finding effective means on how to manage 

massive data volumes has had an impact on space availability 

and driving up the processing costs and maintenance of 

results. Particularly in the aerospace sector, data from long 

term archiving and retrieving processes are used in 

combination with computer aided design and computer 

oriented languages to help reduce and find the possibility of 

faults. Aerospace companies have been collecting health and 

usage monitoring, operational information, stock levels and 

supply chain data for a long time (Khan et al, 2014b). 

However, now with big data applications, more data patterns 

can help manage and efficiently collate data behavior, which 

was previously a challenging task due to lack of infrastructure 

or software services. This had led to a 40% increase in the job 

market from 2009 to 2011 (Foster et al, 2008). 

This paper explores the use of cloud-based machine learning 

framework to allow a cost-effective intelligent fault 

monitoring systems for aerospace maintenance. We argue 

that a novel framework is required for reconfiguring 

applications, as well as mechanisms for making better 

decisions at the system-level (may this be achieved through 

partial or full autonomy). In the nominal environment, such 

problems require advanced capabilities to monitor in-service 

operations, record and share expert knowledge, and address 

critical aspects of on-board software. To highlight the 

importance of advanced intelligent decision-making, recent 

industry efforts, have begun investigating machine learning 

(ML) to improving and analyzing telemetry data (Kwon et al,

2016). In this context, the authors present their perspective on

identifying open research problems in how ML efforts can

help improve fault discovery for the aerospace industry.

The rest of the paper is structured as follows: Section 2 

highlights some key industrial requirements in terms of 

maintenance of high value assets and the ever-increasing 

health management gap due to the nature of the problem. 

Section 3 presents an industrial perspective and advocates the 

benefits of cloud based solutions, followed by the need to use 

of artificial intelligence (AI) concepts for improvements. 

Section 4 discuss the cloud-based decision support system 

and notes the benefits and limitations of using such a platform 

for fault diagnosis purposes; followed by discussion and 

conclusions. 

2. THEORETICAL BACKGROUND 

2.1. Big Data Analytics 

Data analytics are essential to plan and create decision 

support systems for optimizing underlying infrastructure. 

This involves not only processing of online real time data, in 

search for certain events, but also historical data sources, 

previously saved, to help find data patterns. Cloud providers 

are paramount for availability and durability for resources, 

where data is replicated across multiple servers in different 

geographical locations. Elasticity can help allocate more 

resources on-the-fly to handle increased demand. Big data 

processing gives companies a competitive advantage for 

efficient analysis and predicting costs through system-life 

(Yasumoto et al, 2016). This also brings new challenges to 

processing large amount of data in a bandwidth-limited, 

power-constraint, unstable and dynamic environment 

(Sharma et al, 2013). When failures are too complex to 

diagnose and isolate based on operating organizations. This 

allows using cloud platforms to carry out the analysis with 

the help of other participating organizations and maintain a 

knowledge based system. Further work used data processing 

toolkits to forecast and redistribute resources on the fly 

(Kiran et al, 2015). But there is still lack of research in 

providing multiple users from varying backgrounds to write 

and deploy optimized data processing applications is still 

needed. Tailored solutions for online and batch data 

processing can keep non-functional attributes such as cost 

and network complexities satisfied. Current industry focus of 

using Spark SQL have aided in faster processing 

counteracting the Hadoop processing model weaknesses. 

Cloud computing provides stakeholders with means through 

which various applications requirements from computing 

resources, infrastructure, business processes, and related 

dependencies can be offered as a service. These services can 

be accessed from anywhere and be deployed wherever they 

are required. For health management and fault analysis, a 

cloud service can overcome limitations of handling large data 

sets, often located in various repositories. However, this 

introduced challenges of utilization, network bandwidth, 

resource provisioning, improving application-network 

interaction and performance characteristics. Furthermore, 

such technology can be used to produce models of the 

decision-making process. Traditionally, experts used process 

variables to make recommendations. However, with a cloud 

solution, stakeholders can collect communication, 

component information and data analysis tools, incorporate 

device status data, such as condition, performance, 

utilization, and degradation information, for decision 

making. 

Such analytics are not just description of the data when it gets 

"big" (e.g. in terabytes a day). It comprises of many facets 

such as how to organize this data, how to label different kinds 

of it (structured, unstructured, semi-structured, internal and 

external), which technologies that are used to store it and 

retrieve it. Therefore, “Big Data” is broader concept then just 

data that happens to be big. 

2.2. Cloud-based Machine Learning 

As Big Data represents content, Cloud Computing is more 

concerned about the infrastructure. It is a paradigm for 

computing “on-the-fly”, where almost everything can be de-
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materialized with the user not having to worry a lot about the 

infrastructure and process optimizations. Since intelligence is 

a vast discipline with multiple algorithms, each can be 

optimized for particular application domains. Collection and 

analysis of health monitoring data and fault diagnosis can 

also consider several well researched intelligence methods; 

ranging from classical statistical methods – such as linear and 

logistic regression – to neural network and tree-based 

techniques1. Other options include making use of hybrid and 

adaptive systems, that make use of fuzzy controllers and 

network-based predictors. Exhaustive reviews on various 

developments can be found in published books by Pascual 

2015 and Michalski et al, 2013. These techniques can be 

recognizing patterns, help cluster and classify data to extract 

features to perform regression (or reinforcement learning) for 

anomaly detection problems. In sudden fluctuating 

conditions, such as the ones considered in 

pervasive computing, systems are expected to adapt their 

behavioral models according to current conditions, anytime 

and everywhere, e.g., a mobile device can be context-aware 

if it can acquire, process and use this information depending 

on the operational functionality to the current context of use 

– like sending location, video feeds, away status message, etc.

Such information is then openly shared over the network with

other devices, thus improving not only their situational

awareness but also providing opportunities to interact with

other devices. However, the main issue with these systems

rests with that way the information is presented and conveyed

to others. Many applications have moved to the cloud for

more efficient context awareness (Wan et al, 2014). This is

due to the diversity in the types of information. Therefore,

any fault diagnostic activity will require recognition and

context awareness whilst being hosted on the cloud solution.

Recent advances in parallelization using GPUs, virtual

machine and containers have reduced these issues

considerably (Navarro et al, 2014). But there is a need adapt

these methods or cloud implementation with distributed data

sources and to optimize network provisions. One option is the

parallelization of workloads which can improve memory

consumption and reduce the complexity of decision

processing.

Using cloud based ML solution can help with a wide range 

of analytics, giving designers and maintainers a great 

opportunity to investigate the symptoms and possible root 

cases that lead to failure events. This also allows 

compensating for failures until the next maintenance activity 

takes place. Although geographically distributed solution can 

be applied to a variety of activities for maintenance 

technology development, currently their use is limited to 

design (Khan et al, 2015). As preventative maintenance 

strategies are becoming more mission-critical, the collections 

of condition monitoring and environmental data in faulty 

1  e.g., these include feed-forward networks, such as 

multilayer perception, Radial-Basis Function networks, Self-

situations has become indispensable, and hence such 

solutions will have a wider industry application. These bring 

new challenges but do ultimately improve system reliability 

and safety. The use of AI methods has become increasingly 

extended, using them will enrich decision support through 

means as coordinating data delivery, analyzing data trends, 

prognosis, quantifying uncertainties, predictive user needs, 

presenting appropriate data forms and decision making. Even 

though current maintenance research is focusing on 

implementing such concepts on a local platform, a cloud-

based implementation can provide more processing 

flexibility, increased system collaboration and overall 

improve competitiveness. Such concepts would move away 

from reactive maintenance concepts into more proactive 

practices, providing vital information on root causes, that are 

unavailable from traditional tests and aid in overall 

maintenance decision making. In general, this decade has 

seen an incredible level of investment to enable AI 

capabilities in cloud platforms – organizations such as 

Amazon, Google, Microsoft and IBM are at the forefront of 

many platform service (PaaS) solutions. Currently, there 

seem to be predominately two groups of cloud AI 

technologies:  

• Cloud ML platforms such as Azure Machine Learning,

AWS Machine Learning.

• Google Cloud ML which helps to machine learning

models using a specific technology: Also supports open

source libraries such as TensorFlow (Abadi et al, 2015),

but not other frameworks such as Theano, Torch and

Caffe.

Therefore, there is a need to develop interfacing mechanisms 

to integrate AI capabilities without having to invest in 

sophisticated AI infrastructures. As AI technologies evolves, 

cloud platforms should shift from this level of basic support 

for AI capabilities to a model in which AI programs are as 

widely supported as web and databases are today. This is not 

only required for health management and fault diagnosis, but 

in all technological disciplines. 

2.3. Intelligent Fault diagnosis 

Machine learning algorithms can be used to predict behavior 

such as ‘which component fault will cause what failure X 

with what probability P’. Detecting anomalies cuts down 

costs and troubleshooting time in complex infrastructures. 

Also, actively predicting failures enables engineers to 

anticipate and proactively perform better maintenance 

scheduling. Making these decisions in real-time requires 

massive data processing power and time, such as to digest all 

relevant datasets to recognize multiple assets that affect the 

system. Various intelligence methods can be used to classify 

specific activities, the nature of the fault (i.e. soft, hard, 

Organizing Map, Kohonen-Networks or Support Vector 

Machines. 
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incipient, low, high) and detect critical situations or failures. 

However, these algorithms often come with a heavy price on 

computation and memory requirements to evaluate models 

during test and run-time. Consider the following scenarios of 

unsuccessful fault diagnosis during component repairs (Khan 

et al 2014a): 

▪ A fault cannot be reproduced with real conditions:

the fault is considered as a one off and the system is

declared serviceable. The fault will reappear later

because the origin has not been identified.

▪ The maintainer decides to replace a component

because they consider that it is the root-cause of a

fault. After a few tests on the new component, the

system is declared serviceable. Nevertheless, the

fault still reappears after a while, thus the cause has

not been clearly identified.

▪ The same fault reoccurs, but this time in another part

of the system.

Repair challenges require assets to be operationally available 

for a maximum amount of time. If they are undergoing 

maintenance, they are not earning revenue and are consuming 

resources such as spares and man-hours. This introduces 

pressure on the aerospace technicians and maintenance 

operators to be as efficient and effective in delivering best 

possible availability and operational performance. To meet 

these demands, several possible suspect units might be 

replaced in order to ensure that the fault has been removed, 

although only one of the units may be faulty but the several 

units will now need to be bench tested or repaired with the 

obvious associated costs.  

Industries are using big data analytics to help predict faults 

before they compromise the systems. Due to the high cost of 

the equipment maintenance due to their complexity, it is 

necessary to ‘simplify’ modern maintenance management 

systems. The conventional condition-based maintenance 

(CBM) to reduce maintenance activities and operate 

according to the indication of an equipment condition. Khan 

(2015) demonstrated that the major problems facing modern 

aerospace engineering are high inventory cost for spare parts, 

pre-planning maintenance work for complex equipment 

under a complex environment and avoiding the risk of major 

failure and eliminating unforeseen circumstances of 

equipment or systems. Analyzing raw data, subcomponent 

behaviors and fault detection techniques the process can be 

automated reducing the cost and improving machine 

performance. 

2 It is therefore necessary when any maintenance system is 

designed, and before it becomes operational, to thoroughly 

test it, in order to identify any potential problems. 

3. AN INDUSTRIAL PERSPECTIVE

For safety-critical applications, there is a need to implement 

an effective fault monitoring system to collect (relevant) data 

from various sensor sources and carry out the necessary 

signal processing including the extraction of key features, 

fault diagnosis and prediction. Based on this analysis, the 

system capable to recommend further actions according to 

user requirements. This phase plays an important role in 

adding resilience to the overall setup and for regulating 

availability during service operation. During diagnosis, a 

number of recommended actions might be issued including 

fault alarms, alternatives to maintain availability, in-service 

feedback, etc. Depending on the recommendation, the human 

operator may either choose to delay any action – if the failure 

can be tolerated until the next scheduled maintenance, or take 

an immediate action e.g. in the case of failures that can affect 

safety.  

Traditionally, visual inspection routines were carried out 

during scheduled maintenance. These practices relied heavily 

on expert knowledge and experience of the maintenance 

personnel (Khan, 2015). However, with the drive towards 

industry 4.0 concepts, information systems such as internet 

of things and cloud computing, have become instrumental 

technologies for enabling improved system performance and 

resilience (Lee et al, 2014, Lee et al, 2015 and Jazdi, 2014). 

Yet, no matter how well a maintenance system is designed, 

there is always the possibility that it will contain deficiencies 

(due to decisions and trade-offs in design) that can lead to 

difficulties in the quality of maintenance in service. Also, 

most fault diagnosis systems operate independently for each 

other and not sharing any information2. 

Fortunately, some technologies such as Web Service 

Description Languages (WSDL), ontologies, Service 

Oriented architecture languages (SOA), have been developed 

to enable interoperability and knowledge sharing (Jung, 

2011). The ultimate responsibility for recognizing, 

interpreting, and compensating for deficiencies in the 

diagnosis process, rests with human maintainers (Campbell 

and Reyes-Picknell 2015). These maintainers are fallible and 

arising subsequent issues3 have been shown to be statistically 

significant, i.e. “they do not get it right all of the time”. 

Considering the size of assets in modern industrial domains, 

even trying to understand the physical behavior of these 

‘large’ systems, it seems unrealistic to believe that ubiquitous 

and integrated system level decisions can be made. 

Especially, when the operating conditions, and even the 

maintenance environment, are always subjected to 

unpredictable fluctuations which can have unforeseen 

consequences. 

3  Such as poor design of human tasks, poorly perceived 

maintenance operating procedures and inadequate training, 

as well as the pressures of the job.   
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As a result, there is a lot of emphasis on collecting vast 

amounts of maintenance datasets – which is expected to be 

stored, processed and optimize the operation. It should be 

noted that these datasets are useless unless some meaning for 

analytics can be extracted from them. Therefore, many 

organizations aim to invest for processing large datasets (also 

termed as big-data) for fault diagnostic purposes to gain 

better understanding of their systems failures and how to deal 

with them (Chen and Zhang, 2014). This indicates the 

development of online technology which allows to send and 

receive data, whilst building an ecosystem. Here, the aim is 

to continuously feed performance data in order to build an 

ecosystem with built-in sensors, diagnostic and prognostic 

monitoring software routines which would train themselves 

depending on their operating and performance data to the 

original equipment manufacturers (OEM) central data 

warehouse for processing. For example, it is possible to 

collect flight data (and related statistics) from an aircraft and 

transmit it via satellite networks to a central data repository 

(Cope and Kaufman, 2003). In this way, a manufacturer will 

be able to predict asset failures by recognizing any early 

indications of incipient faults and help in maintenance 

scheduling. The overall process hence can be optimized to 

reduce warranty costs, maintain spare parts and system 

availability, and fulfil stakeholder requirements. E.g. such 

information can be utilized to identify individual 

components’ performance from the rest of the fleet. This can 

help to quantify a components’ remaining useful life or its 

reliability going forward. Therefore, data plays a significant 

role in influencing the next generation of products by 

identifying existing issues with current implementation 

across the fleet, feeding this information back to design to 

improve quality.  

Another requirement is concerned with the fact that assets 

might be located in various geographical locations around the 

world, which may often communication with each other e.g. 

aircrafts. Each asset would produce condition monitoring 

data depending on its use, environmental conditions and 

predefined user requirements. Depending on the 

communications architecture, a centralized system will 

collect all this data in order to process and analyze it 

accordingly. Depending on the maintenance granularity, the 

central system will be able to make system level decisions 

about the overall health condition of the application and 

related cost implications (Khan, 2015). This information 

could also be shared with on-site maintenance personnel or 

even the operating customer if required to help facilitate the 

diagnosis process or to correlated information with expert 

knowledge to investigate unknown failure incidents. 

Likewise, it is also required to identify and order replacement 

components (or other resources) from a strategic point of 

view to ensure availability is maintained. Within this whole 

process, there are various other factors such as reliability 

requirements, maintenance levels, built in tests results, 

environmental and condition monitoring data; which could 

be used to provide decision makers with a more complete 

picture about the health of the system (Cai et al, 2014).  

4. CLOUD-BASED DECISION SUPPORT SYSTEMS

Figure 1 is an illustration of a typical the data flow and 

communication routes that are relevant within a maintenance 

environment. The illustration includes a data collection 

system, that receives data from various sources, which may 

include component monitoring, diagnostic information, 

alarming conditions – which can help identify false alarms. 

Data may also be generated depending on models developed 

from a priory information. Finally, cost models can also be 

developed and included (Othman et al, 2014). 

Figure 1: Initial Cloud setup/architecture 

When data is collected, it needs to be conditioned to be 

compatible with the common format. It is converted before it 

can be stored or be used by for any ‘training’ or application 

control to be available for any authorized user who wishes to 

access the processed information. This includes details of any 

alarms, maintenance schedules, fault analysis results, 

prognostic results, costings, and more, hence enabling users 

to work more efficiently. Considerations associated with data 

collection through various sources include:  

• Providing on-field expert knowledge: it is important to

keep updating this database as novel failure modes

appear during service.

• Typical sensors collect environmental/operating data.

• Past decision history.

• Equipment monitoring data collects data from the

predesigned testability mechanisms such as built in tests

and related equipment monitoring equipment. This

includes degradation profiles and a priori datasets.

• Costing information can be correlated with current cost

models as part of the performance monitoring data.
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• Data provided by third party vendors. This could be the

component history, its manufacturing details, its

testability profile, etc.

The local maintenance system is expected to collection all 

health-related data. Acquisition is an important part of fault 

diagnosis. These consist of various sensors networks that is 

being used to record performance and health of the system, 

along with the environmental information it is operating in. 

A central repository is expected to store all this information 

and carry out necessary preprocessing before communication 

with other services on the platform. Once the data is ready, 

the engineer (or an autonomous system) can request services, 

e.g., to use particular signal processing algorithms. But more

importantly, the platform must focus on maintaining

seamless communication and collaboration services – where

system designers, OEMs, system operators and maintenance

related organizations are all linked together (See Figure 2).

They are expected to share system information, report

faults/failures, FMEA, novel root causes, on to a central data

repository. Other factors which must be considered include

anticipating bottlenecks and accounting for such instances

can help maintain health management services, even if there

is network congestion and component failures. Since there is

increased data movement as compared to traditional methods,

this growing demand must warrant dedicated network

performance.

5. DISCUSSION

Collected data can be provided to various personnel, 

processed in various formats, and be used by a diverse range 

of applications for different purposes. As a consequence, 

some of this information might be used by maintenance 

support organizations to develop proprietary software which 

may not be able to recognize others applications – due to a 

lack of a standard in the industry. Similarly, if information is 

processed of cost/budgeting purpose, it might not be in a 

format which is compatible with health monitoring 

applications. A maintenance personnel and diagnostic 

monitoring equipment being used often have access to a 

priori data stored through experience, process models or 

budgeting applications. Finally, the time taken to monitor 

large systems, such as a fleet of aircraft, and to monitor 

individual failures on each one, makes it difficult to make 

decisions with regards to availability requirements. An AI 

cloud based platform can overcome these challenges by 

accessing data from various geographic locations and its 

subsequent real-time implementation. It can request and 

process information, and store this knowledge in a common 

format that can be accessed and used by other collaborating 

organizations. Such integration promises improved personnel 

safety, higher process throughput and equipment uptime, 

reduction in false alarms, cost reductions, improved 

availability and the ability to carry out operations according 

to design and manufacturing warranty limits. The ability to 

locate failure root causes also improves the quality of 

troubleshooting activities. Some other notable research issues 

associated with the concept includes: 

• Knowledge Gathering

• Loss of connectivity

• Lack of real-time data

• Extrapolation of data

• Cost of analysis

• Appropriate visualization methods

AI has already influenced a generation of cloud computing 

infrastructure. An exciting proposition about this technology 

is the use of the internet of things (IoT) also termed as 

industry 4.0. From this perspective, IoT capabilities should 

be materialized as backend services that can be used from 

mobile applications (and other IoT devices) that use to 

provide services that enable the backend capabilities. On the 

other hand, AI applications are required to not only provide 

sophisticated backend services but specific runtime 

optimized for processing-intensive requirements of AI 

solutions. Despite these momentarily limitations, AI cloud 

based concepts have a lot of potential for the maintenance 

industry and practices, with more research opportunity to 

enable its implementation. 

Figure 2: Cloud-based layers involved for fault diagnosis and health monitoring 
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Figure 3: Architecture overview 

Figure 3 shows an overall architecture for processing 

fictitious engine data. This architecture is being implemented 

over Amazon’s Elastic Compute Cloud (EC2)4 infrastructure 

to collect data and run diagnostics. Sensor data and failure 

monitoring reports into a single streaming database using the 

Amazon EC2 service - Kinesis. Kinesis allows data to be 

collected as a stream and perform real-time processing. Once 

processed, the data is divided into two subgroups: first for 

detecting anomalies and second for batch processing to find 

long term behavior patterns. Both actions can be done on 

separate Amazon services. Once calculations are done, the 

information can visually be analyzed in detail. 

6. CONCLUSION

Traditionally, system maintenance and performance 

monitoring were carried out independently. Each solution 

attempted to optimize its own functional area, sometimes 

ignoring the effect its actions might have on the other 

functional areas. As a result, a low-priority equipment 

problem has the potential to cause a larger problem (or 

failure) whilst attempting to maintain availability 

requirements. Cloud Computing makes AI more accessible; 

even if there is a lack the computing power (to run many AI 

applications proficiently) by the end-user’s hardware.  

By using such services, various stakeholders can have access 

to a broader range of options to provide solutions for overall 

equipment data monitoring, process performance data, and 

process control monitoring data. Similarly, diagnostics 

performed on a high value asset can be considered during 

operational service to provide a better diagnostic analysis. 

Cloud based solutions also allow computation and data 

storage to multiple redundant off-site locations available on 

the network, presenting an opportunity for application 

software to be operated using internet-enabled devices 

through portable devices (such as smart phones).  

Reducing the downtime for maintenance activities can help 

maintain availability requirements. Such solutions can be 

used to influence aerospace maintenance industry standards 

towards developing centralized maintenance regimes. 

However, there is a need to address further developments in 

4 is a web service that provides secure, resizable compute 

capacity in Amazon’s Cloud computing environment. 

existing infrastructure for large processing and frameworks 

where ongoing research trends indicate that AI capabilities 

will become a fundamental part of health monitoring. 
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