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Due to the high modal coupling of the cooling turbine bearing in environment control
system, it is very difficult to extract the vibration signal feature and construct the recognition
model on different feature. A running state evaluation method of the turbine bearing is proposed
based on the feature vector with limited testing data in this paper. Firstly, aiming at some failure
modes in several typical faults of turbine bearing, three time domain feature parameters and
seven frequency domain feature parameters are chosen to construct feature vector for
discrimination. Then, the feature vectors of different fault testing data are dimensional reduced
based on the principal component analysis method. Based on above, the support vector machine
(SVM) model of the turbine bearing running state is proposed for monitoring and predicting
the occurrence and development of typical turbine bearing failure modes. Experimental results
suggest that the bearing running state evaluation method proposed in this paper can improve
the prediction accuracy effectively.
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1 Introduction

The rolling bearing widely used in rotating machinery is an extremely critical
component that usually determines the useful lifetime of equipment, especially in
cooling turbine. The unexpected fault of rolling bearing could lead to critical damage
of rotating machinery, thus its effective and reliable bearing running state evaluation
method is needed to guarantee the healthy state of rolling bearing.

Generally, the current bearing running state evaluation method can be categorized
into three major classes, namely model-based (or physics-based) and data-driven
methods [1-2]. For a specific system (such as a rolling bearing), the model-based
method establishes a mathematical model to generate prediction estimates, however,
the accurate model is very difficult to derive and hardly meets the requirement of real-
time running in practice. Considering a bearing as a single-degree-of-freedom vibratory
system, Qiu [3] built a stiffness-based prognostic model to predict the failure lifetime
of bearing. Through analyzing the measured condition data, the data-driven method can
estimate the health degradation and fault evolution of rolling bearing. Through
combining with particle filtering and Bayesian algorithm, Chen [4-5] proposed neuro-
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fuzzy-based integrated prediction methods to carry out machine health condition
prediction.

Besides, some advanced prediction methods are also applied to bearing running
state evaluation. Liu [6] presented multistep neuro-fuzzy predictor to forecast the future
states of the bearing health condition. Considering uncertainty, Chen [7] studied on the
bearing condition prediction based on an interval type-2 fuzzy neural network approach.
Zhang [8] developed a degradation indicator of rolling bearing based on HMM. Support
vector regression is also used to monitor the bearing degradation and predict the
remaining useful life of bearing [9-10].

In the paper, the state evaluation methods of turbine bearing in environment
controlling system is investigated. Especially, the feature extraction and processing
methods of bearing vibration signals are also studied, which can predict the occurrence
and development of typical bearing faults and obtain the reliable state evaluation
methods. The method provided in this paper will provide the references for enhancing
the accuracy of rolling bearing running state judgment.

2 Bearing running state evaluation methods

2.1 The extraction of bearing vibration feature vectors

Bearing running state can be divided into 4 levels: normal, abnormal, fault and
failure. With the evolution of the bearing state, the bearing vibration feature parameters
will change according to certain rules.

The damage fault of rolling bearing generally bring up periodic pulse impact and
modulation phenomenon of vibration signals, which represents modulation sidebands
spacing evenly on the both sides of characteristic frequency in the frequency spectrum.
After employing the envelope spectrum analysis method to extract modulation
information, it can estimate the damage location and degree of parts by analyzing its
strength and frequency.

A feature vector is selected to accomplish the estimate analysis of bearing running
state, which is consisted of three time domain feature parameters extracted from time
domain signals and seven frequency domain feature parameters abstracted from
envelope spectrum of the signals.

Time domain feature parameters:

1. Peak-peak value v1- the difference value between the minimum and maximum
values of a signal in one cycle, which describes the variation range of signal value and
is suitable for fault diagnosis like pitting damage with instantaneous impact and low
rotating speed.

V1=Xmax-Xmin (1)

2. Effective value (RMS) v2- the root of the vibration energy in a cycle, which
reflects the magnitude of vibration energy. It is suitable for recognizing the fault whose
vibration amplitude changes slowly with time such as wear fault. The effective value is
sensitive to the random abnormal vibration waveform on surface crack and it can make
a proper evaluation of its measurement value.
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X = /-%—J.OT X (t)dt )

3. Kurtosis v3, the 4th order center distance normalization. Due to various uncertain
factors, the vibration signal amplitude distribution approaches normal distribution, and
the kurtosis is about 3. With the developing of fault, the kurtosis value increases. The
advantage of this method is independent of the rotating speed, size and load of bearing,
and it is especially keenness to the impact signal. Kurtosis is suitable for surface damage,
such as pitting fault, particularly the diagnosis of early fault.

L [x(t)—fJ“ p(x)dlx .

o

where, x(t) is instantaneous amplitude, X is the mean value of amplitude, p(x) is
probability density, o is the standard deviations .

The characteristic frequency of bearing is determined by shaft rotating speed,
bearing geometry dimension and damage position (outer ring, inner ring, rolling body).
According to the fault characteristic frequency, it is detected that whether there is a
fault and determined where the fault location is. Assuming there is no relative sliding
between the raceway and rolling, and there is no deformation when they are under radial
and axial load. The main feature frequency is as follows:

Inner ring rotating frequency f, :
f =n/60 (1)
The passing frequency of the rolling body on the outer raceway f,, :
1 d
foo =§(1—Bcosaj f, (2)
The passing frequency of the rolling body on the inner raceway f,; :

1 d
fi; =§(1+Bc03aj f, 3)

The passing frequency of the rolling body on the cage (i.e. the autorotation

f, = %{1— [%}2 cos? a} f 4

Rotating frequency of cage (i.e. the revolution frequency of the rolling body) f. :

frequency of the rolling body) f, :

f. :1(1—£c03aj f. (5)
2 D
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where, d is ball diameter, D is bearing pitch diameter, & is contact angle.
Accordingly, the amplitudes of inner ring rotating frequency fr, and its 2, 3 times
frequency; the passing frequency of the rolling body on the outer raceway fuo; the
passing frequency of the rolling body on the inner raceway fii; cage rotating frequency
fc and autorotation frequency of the rolling body f, are selected and defined as 7
frequency characteristic parameters (v4- v10), respectively.
Hence, the feature vector of bearing vibration signals are employed as follows:

v={vl v2 - Vv10} (6)

2.2 Feature vector processing method based on principal component analysis (PCA)

The eigenvalues of bearing test signals are not isolated, but with a high degree of
correlation between each other. Under the normal conditions, this correlation is
controlled by basic rules, such as mass conservation and energy conservation. It would
be destroyed if certain feature vectors change. The correlativity between each feature
vector can be obtained by PCA method for fault detection and diagnosis.

v, eRY

At normal operation conditions, supposing indicates the feature vector

of bearing vibration signals in state i, X eR" represents a measurement matrix

consisted of feature vectors of n samples, what would be gained by normalizing X as
follows,

X =[X-1u"|D* (7

. . . T
where, | is n-dimensional column vector composed of 1, u=[ul,...,up] ,

n

D, =diag(c?,...,02) are mean vector and variance matrix. In order to simplifying the

deviation, X isstill represented as X .

According to PCA method, matrix X is decomposed as follows:

X = y+X=TP" +TP' (8)
where, TeR™, PeR™ are partition matrix and load matrix of principal element;
TeR™™ | PeR™™ are partition matrix and load matrix of residual error,

respectively. The column vectors of P are the feature vectors corresponding to the

top | largest eigenvalues A, of covariance matrix R I is the number of principal

components contained in the PCA model, which have direct effect on the quality of
model, and the effective of fault detection and diagnosis. There are two methods to
confirm the number of principal components, which is principal component
contribution rate and minimum reconstruction error variance. The former is relatively
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simple, and the result would be much more preferable as long as the threshold
contribution rate is reasonable. The criterion of selecting principal component by the
principal component contribution rate method is as follows:
i
P
k=1_>Cl (9

5

where, Cl is threshold contribution rate, Cle [0,1] . Because the principal components

contribution rate is generally large, Cl can be set as Cl=95%.
Once the model is built, a new sample vector can be decomposed into two parts:

X=X+X (100

where,
X=PP"x =Cx (1)
Xx=PP'x=(1-C)x =Cx (12)

where, | is an identity matrix .

X and x are the projection of X on principal component subspace (PCS) and

residual subspace (RS) respectively. C and C are corresponding projection matrix.

Consequently, measurement data space is divided into PCS and RS by PCA method,
where the normal values are contained in PCS, and the fault and noise data are contained
in RS.

3 Experiment investigation

3.1 Introduction of test rig

The rotator test rig is shown in Fig.1, which is simplified environment control
turbine system and driven by a motor, and the working speed is 200-3000rpm which is
controllable.

Fig.1 Test rig

The transducers arrangement is shown in Fig.2. Sensor 1 is eddy current transducer,
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which is placed horizontally perpendicular to the axis; Sensor 2 and 3 are acceleration
transducer, which is laid vertically and horizontally perpendicular to the axis
respectively. The parameters of bearing is shown in Table 1.

Fig.2 Test rig

Table 1 bearing parameters
Pitch radius Diameter of rolling Quantity of rolling Contact angle
body body
61.4 111 13 25

3.2 Comparison of fault features

Different cracks are arranged on the cage, inner and outer raceway of the test
bearing, which are shown in Fig.3-5.

(a) 0.5mm width (b) 2mm width
Fig.4 Different crack at inner ring
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(a) 0.5mm width (b) 2mm width
Fig.5 Different crack at outer ring
The corresponding vibration signals and its analysis results of sensor 3 are shown
in Fig. 6-8.
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(a) Half slit (b) Complete slit
Fig.6 Vibration signals comparison under different preseted crack on cages
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By comparing the characteristic of the signals when slit the bearing cage from half
to complete, it is obvious that Peak-peak value and RMS value increase significantly,
but kurtosis decreases from 5 to 4 with the crack is growing up. From the envelope
spectrum results, the peak values of double rotating-frequency, together with inner and
outer ring passing frequency of rolling ball increase significantly, but rotating frequency
of cage decrease slightly.
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Fig.7 Vibration signals comparison under different preseted crack on inner ring

By comparing characteristic of the signals when the crack of inner ring increases
from 0.5mm to 2mm, it is obvious that Peak-peak value and RMS value increase
significantly, but kurtosis decreases from 5 to 4. The amplitude of each frequency raises
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obviously at the envelope spectrum results.
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(a) 0.5mm width

(b) 2mm width

Fig.8 Vibration signals comparison under different preseted crack on outer ring

By comparing characteristic of the signals when the crack of outer ring increases
from 0.5mm to 2mm, it is obvious that Peak-peak value and RMS value increase
significantly. Meanwhile, the kurtosis value increases from 5 to 10. The envelope
spectrum results shows the most of its frequency component is the outer ring passing
frequency of rolling ball, and the frequency characteristic is more obvious companying

with the expansion of the crack .
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3.3 State analysis and prediction

30 groups of feature vectors are selected, among which, 10 groups belong to
normal bearing, 10 groups belong to outer ring slight damage fault and 10 groups
belong to outer ring severe damage fault. The feature vectors are shown in Table 2.

Table 2. Feature vectors of the test results

vl V2 v3 v4 v5 v6 \Z4 v8 V9 v10

0.293 | 0.036 | 2.925 | 0.001 | 0.001 | 0.001 | 0.002 | 0.002 | 0.002 | 0.001

0.336 | 0.038 | 3.011 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.001

0.328 | 0.037 | 3.021 | 0.001 | 0.001 | 0.001 | 0.002 | 0.002 | 0.002 | 0.002

0.313 | 0.038 | 3.019 | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 | 0.002 | 0.001

0.305 | 0.038 | 2.920 | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 | 0.002 | 0.001

0.297 | 0.036 | 3.045 | 0.001 | 0.001 | 0.001 | 0.002 | 0.002 | 0.002 | 0.002

0.334 | 0.039 | 2.980 | 0.001 | 0.001 | 0.001 | 0.003 | 0.001 | 0.004 | 0.003

0.392 | 0.041 | 3.191 | 0.001 | 0.000 | 0.001 | 0.003 | 0.001 | 0.001 | 0.003

0.334 | 0.038 | 2.998 | 0.001 | 0.001 | 0.001 | 0.002 | 0.001 | 0.002 | 0.002

0.174 1 0.017 | 3.172 | 0.000 | 0.000 | 0.000 | 0.001 | 0.000 | 0.001 | 0.000

1.344 1 0.194 | 4.378 | 0.028 | 0.004 | 0.003 | 0.101 | 0.004 | 0.001 | 0.001

1.405 | 0.195 | 4.275 | 0.030 | 0.003 | 0.004 | 0.097 | 0.003 | 0.001 | 0.001

2.278 | 0.312 | 4.778 | 0.005 | 0.005 | 0.007 | 0.134 | 0.009 | 0.001 | 0.003

2.287 | 0.317 | 4.652 | 0.002 | 0.003 | 0.003 | 0.012 | 0.002 | 0.001 | 0.001

2.313 | 0.316 | 4.752 | 0.001 | 0.004 | 0.002 | 0.012 | 0.002 | 0.001 | 0.001

2.326 | 0.317 | 4.657 | 0.001 | 0.004 | 0.002 | 0.012 | 0.003 | 0.001 | 0.001

2.432 1 0.324 | 4.590 | 0.001 | 0.004 | 0.002 | 0.012 | 0.002 | 0.002 | 0.002

2.320 | 0.316 | 4.665 | 0.003 | 0.006 | 0.007 | 0.115 | 0.007 | 0.001 | 0.002

2.298 | 0.316 | 4.606 | 0.004 | 0.007 | 0.008 | 0.154 | 0.009 | 0.001 | 0.001

2.379 | 0.322 | 4.761 | 0.003 | 0.003 | 0.006 | 0.153 | 0.008 | 0.002 | 0.002

4,953 | 0.511 | 9.694 | 0.092 | 0.077 | 0.035 | 0.276 | 0.033 | 0.007 | 0.018

5.109 | 0.517 | 9.312 | 0.140 | 0.105 | 0.045 | 0.394 | 0.037 | 0.008 | 0.019

5.089 | 0.518 | 9.273 | 0.095 | 0.071 | 0.031 | 0.277 | 0.032 | 0.005 | 0.016

4.956 | 0.513 | 9.533 | 0.093 | 0.074 | 0.039 | 0.226 | 0.026 | 0.011 | 0.022
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4.948 | 0.516 | 9.466 | 0.096 | 0.074 | 0.038 | 0.276 | 0.030 | 0.011 | 0.021

5.275|0.520 | 9.810 | 0.095 | 0.076 | 0.041 | 0.273 | 0.029 | 0.011 | 0.025

5.165 | 0.513 | 10.047 | 0.089 | 0.082 | 0.040 | 0.274 | 0.034 | 0.004 | 0.026

5.184 | 0.516 | 10.458 | 0.091 | 0.079 | 0.037 | 0.238 | 0.032 | 0.006 | 0.025

5.106 | 0.514 | 10.309 | 0.092 | 0.075 | 0.035 | 0.243 | 0.032 | 0.007 | 0.023

4.669 | 0.468 | 7.683 | 0.051 | 0.069 | 0.027 | 0.223 | 0.025 | 0.009 | 0.029

The high dimensional data should be handled by dimension reduction by PCA
method, and a proper number of principal components should be selected to ensure the
minimum of the feature information loss. By calculating, the variation information of
first two principle components are 91.7% and 4.3%, which should be reversed.

Table 3 Validating data

Group vl v2 v3 v4 5) V6 v7 v8 v9 v10

1 0.34 | 0.04 | 3.01 | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.002 | 0.001

2 2.28 | 0.31 | 4.73 | 0.003 | 0.006 | 0.007 | 0.116 | 0.001 | 0.002 | 0.007

3 5.27 | 0.52 | 9.64 | 0.095 | 0.075 | 0.039 | 0.264 | 0.001 | 0.002 | 0.021

To validate the evaluation method, three feature vectors shown in Table 3 are
selected, which belong to normal bearing, outer ring slight damage fault and outer ring
severe damage fault, respectively. From the results shown in fig.9, it is effective using
the evaluation method to give the fault mode and running state.
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Fig. 9 Diagnosis results

4 Conclusion

In this paper, a running state evaluation method of the turbine bearing is proposed based
on the feature vector with limited testing data.

The feature vector constructed by three time domain feature parameters and seven
frequency domain feature parameters is effective in recognizing the fault type and the state of
the running bearing.

Experimental results suggest that the proposed method in this paper has potential in
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improving the accuracy to predict the state of running bearings
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