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ABSTRACT 

As operation period of Nuclear Power Plants (NPPs) is 

getting longer, necessity of reflecting ageing effect is 

increasing. Especially, when it comes to the piping in NPPs 

such as reactor coolant system piping or steam generator 
tubes, it is vulnerable to stress corrosion crack (SCC) or wear 

due to the fluid with high temperature, high pressure and 

radiation. Accidents related to such cases have been reported. 

Since ruptures of the piping can result in severe accidents, it 

is important to predict and prevent them in advance. Current 

NPPs ageing management is performed with the physical 

model based on generic experimental data, which cannot 

properly consider each NPPs’ different operation 

environment or history. Prognostics using plant specific data 

can compensate this limit of ageing management using the 

physical model. Recently, as usable data of NPPs is 
increasing with the development of instrumentation 

technology, applicability of prognostics for NPPs has been 

increased. Therefore, this paper suggests some prognostics 

methods such as GPM (General Path Model), MCMC 

(Markov Chain Monte Carlo) and Particle filter that can 

consider ageing degradation for the major piping in NPPs. It 

is expected that prognostics results can be used in 

Probabilistic Safety Assessment (PSA) considering current or 

future ageing degradation. 

1. INTRODUCTION

NPPs are usually designed with 40~60 years lifetime, and if 

there are extension of lifetime, the NPP can be operated for 
80 years. Because of this long lifetime, as the operation 

period is extended, ageing degradation effect becomes 

significant.  In case of long period operated NPPs, its failure 

rate or unavailability of components are likely to be higher 

than newly constructed NPPs. The PSA for NPPs uses 

generic failure rate of components. The generic data did not 

reflect ageing degradation effect and has static value. 

However, practically, the failure rate is likely to be increased 

due to ageing effect. The generic data cannot also reflect 

different operation conditions or history of each NPPs. 

Especially, the components such as large piping of reactor 

coolant system or steam generator tubes, which is performing 

important role for safety by preventing leakage of radioactive 

materials and removing decay heat of reactor core 

continuously, are vulnerable to SCC and wear, because of the 

fluid with high temperature, high pressure and radiation. 

Accidents related to such cases have been reported. 

This paper suggests introducing prognostics that can consider 

ageing degradation effect to the steam generator tubes that is 

major piping of NPPs. Basically, prognostics predicts the 

future behavior of ageing degradation by analyzing newly 

observed data of components based on accumulated previous 

failure data, and eventually it predicts the time to failure. As 

instrumentation technology has developed lately, the 

available data are increased in NPPs. Therefore, the 

applicability of prognostics also becomes better.  

This paper introduces concept of applying prognostics to 

major piping in NPPs, current state and further study. 

2. BACKGROUND

Steam generator is located at boundary between primary side 

and secondary side of Pressurized Water Reactor (PWR). It 

removes decay heat of reactor core by heat transfer between 

primary side coolant and secondary side feed water and 

prevent leakage of primary side coolant containing 

radioactive materials. Removing decay heat and preventing 

leakage of radioactive materials are essential part for nuclear 

safety. 

Steam generator is operated under harsh condition that is high 

temperature, pressure and radiation. In practice, the accidents 
due to SCC and wear has reported from domestic and foreign. 

Thus, steam generator tube rupture (SGTR) accident is one 
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of the initial accidents justified in PSA for NPPs, and is 

important part for NPP safety assessment. 

Currently, integrity assessment for steam generator tube is 

performed based on fracture mechanic formulas such as 

‘Paris law’ that is derived from generic experimental data. 

Plant specific operation condition, history and current 
condition of components are not reflected on the formulas. 

Therefore, actual degradation of components is larger or 

lesser than one predicted by physics.  

It can be possible that performing integrity assessment 

reflecting plant specific operation condition and ageing 

degradation by using monitoring data in real time. In this 

study, among the various prognostics methods, we used 

MCMC, GPM and Particle filter that can consider ageing 

degradation. Ageing degradation is characterized by 

parameters such as effect of crack size, vibration and 

temperature. 

3. METHODOLOGY

3.1. MCMC 

MCMC is the method that combining Markov Chain model 

and Monte Carlo simulation (MCS). Markov chain model is 

based on assumption of Markov process; Present state 

includes the information of previous states and next state is 

only dependent on present state. According to the assumption, 

if we have the information of present state and system state 

transition probabilities, it is possible to predict next state. The 

transition probabilities can be represented as matrix. MCMC 

method introduces MCS to Markov chain model. Using huge 

number of random sampling number from MCS, MCMC 
performs system state transition simulation based on the 

transition probabilities matrix with time steps. Meanwhile, it 

is assumed that each states affect to system degradation, so 

extent of system degradation can be calculated with 

frequency of each states that is counted during the transition 

simulation. The extent of degradation is calculated at every 

time step of the simulation. The simulation is stopped when 

the extent of degradation exceeds the system threshold, and 

eventually, the end of the simulation time step is time to 

failure.  

Procedure of MCMC can be divided by two parts; Training 

part and Test part. At training part, it obtains system state 
transition probabilities and regression model calculating 

extent of degradation by analyzing previous failure data. At 

test part, it predicts time to failure by analyzing currently 

observed monitoring data based on training part’s 

information.   

3.2. GPM/Bayes 

GPM/Bayes is the method that introducing Bayesian linear 

regression to GPM method. GPM needs physical model to 

perform prognostics. Whereas, GPM/Bayes can perform 

prognostics without physical model, if there are sufficient 

data. GPM/Bayes obtains posterior distribution of time to 

failure with prior information obtained from previous failure 

data’s degradation path and likelihood obtained from 

monitoring data by using Bayesian linear regression. 

Likewise MCMC, GPM/Bayes also can be divided by two 
parts; Training part and Test part. At training part, it obtains 

regression model parameters from each previous failure data 

sets, and combine those parameters. Equation 3.1~3.5 show 

the above process. The combined parameter is used as a prior. 

(Equation 3.6) 

𝑌 = 𝑏𝑋 (3.1) 

𝑌 = [
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⋮
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(3.4) 

𝑏 = (𝑋𝑇𝑋)−1𝑋𝑇𝑌 (3.5) 

𝑏~𝑁(𝑏0, 𝛴𝑏); 𝑝𝑟𝑖𝑜𝑟 (3.6) 

At test part, posterior information is obtained. Newly 

observed monitoring data is used as likelihood, and it is 

combined with the prior information. (Equation 3.7~3.9) 

Finally, posterior information is obtained with Equation 3.10. 

With the posterior information, future degradation path is 

extrapolated, and time to failure is obtained. 

𝑌∗ = [
𝑌′
𝑏0

] (3.7) 

𝑋∗ = [
𝑋′
𝐼𝑝

] (3.8) 
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𝛴∗ = [
𝛴𝑦 0

0 𝛴𝑏
] (3.9) 

𝑏̂ = (𝑋∗𝑇𝛴∗−1𝑋∗)−1𝑋∗𝑇𝛴∗−1𝑌∗; 𝑝𝑜𝑠𝑡𝑒𝑟𝑖𝑜𝑟 (3.10) 

3.3. Particle filter 

Particle filter represents posterior distribution of model 

parameter with finite particles and its weight with using MCS. 

Particle filter is performed with three steps as follow. First 

step is predicting step. Posterior distribution of previous step 

becomes prior distribution of current step, and preliminary 

posterior is obtained by applying the prior to an ageing 
degradation model. Second step is updating step. By using 

newly observed data as likelihood, it applies weight to the 

preliminary posterior. Final step is resampling step. In this 

step, samples are redistributed by overlapping or removing. 

Then finally, posterior distribution is obtained. 

4. RESULT

This section briefly shows process of prognostics in practice 

by introducing case study that is currently performed. We 

have performed prognostics for steam generator tube as case 

study for verifying an applicability. We obtained degradation 

data from PASTA (Probabilistic Algorithm for Steam 
generator Tube Assessment) program that performs 

assessment of integrity of steam generator tube. The data is 

represented as growth of burst probability over time. 

4.1. MCMC 

MCMC is performed by analyzing transition of system states. 

Therefore, justifying the system states is needed. And the 

states should be represented as discrete number. In this case, 

the data has continuous value. Therefore preprocessing of 

raw data is needed. We justified the system state as a growth 

rate of burst probability, grouped the growth rate with certain 

range, and assigned discrete number to those groups. After 

that, prognostics is performed through the training and test 
parts as mentioned in previous section. Figure 1 briefly shows 

the procedure of MCMC for steam generator tube. 

4.2. GPM/Bayes 

Unlike MCMC, GPM/Bayes does not need preprocessing of 

data. It performs prognostics by analyzing degradation path 

of raw data. At training part, it selects proper regression 

model, and obtains parameters for each degradation paths, 

that is previous failure data sets, by fitting each paths to the 

model. Then, prior information is obtained by combining 

those parameters. Next, at test part, newly observed 

monitoring data is used as likelihood. With the prior and 
likelihood, posterior information that is updated with 

information of current target component is obtained. Finally, 

with updated model, future time to failure can be predicted. 

Figure 1. Procedure of MCMC for steam generator tube. 

4.3. Particle filter 

Particle filter is performed with physical model, unlike 

MCMC and GPM/Bayes. Because, it considers not only data 
but also information of physical model, it is possible to 

prognoses more accurately. In this study, we selected Paris 

law (Equation 4.1) that is widely used in material science to 

describe growth of fatigue crack as an ageing degradation 

model.  

𝑑𝑎

𝑑𝑁
= 𝐶(∆𝐾(𝑎))𝑚 (4.1) 

Where, 𝑑𝑎/𝑑𝑁 is the crack growth rate 

(a: crack length, N: number of loading cycle) 

∆𝐾(𝑎) is the stress-intensity factor 

𝐶,𝑚 are empirically derived constants 

In equation 4.1, we arbitrarily changed distribution of 𝐶 

and 𝑚 that is derived empirically, and performed updating 

procedure for the model parameter by reflecting newly 

observed data as likelihood. 

5. CONCLUSION

The purpose of this study is to introduce prognostics to the 

major piping in NPPs. Currently, integrity assessment of 
piping in NPPs is performed based on fracture mechanic 

formulas, but it seems that prognostics can support the 

current tasks by updating reliability of the components. In 

this study, we use MCMC, GPM, Particle filter methods, and 

we introduced the concept of applying prognostics to steam 

generator tubes. In an aspect of establishing maintenance plan, 

the result of prognostics presenting time to failure is effective. 

Furthermore, if we reflect the result to PSA, it will be possible 
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to evaluate risk changing with time in long-term period 

perspective.  
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