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ABSTRACT 

This paper introduces a design methodology for resilient-

based control reconfiguration of Unmanned Autonomous 

Systems (UAS) when extreme disturbances, such as a largely 

growing fault or component failure mode occur. It is 

documented that more than 40% of Class air mishaps are 

attributed to Unmanned Aerial Vehicles (UAVs). There is an 

urgent need to improve the operational integrity, resilience 

and reliability of such critical assets. An optimal control 

approach with Differential Dynamic Programming (DDP) 

and Model Predictive Control (MPC) is introduced in this 

paper as a means for control authority redistribution and 

reconfiguration; therefore, the system continues performing 

its mission while compensating for the impact of the extreme 

disturbances. Prognostic knowledge is considered in a 

quadratic cost function of the optimal control problem as a 

soft constraint. A trade-off parameter is introduced between 

the prognostic constraint and the terminal cost. An 

autonomous ground operable under-actuated hovercraft is 

used to demonstrate the efficacy of the proposed 

reconfiguration strategy, and it is extendable to other cyber 

physical systems. 

1. INTRODUCTION AND BACKGROUND

UAS, such as unmanned aerial, ground, surface, and 

underwater vehicles, are being extensively utilized in 

research and application domains exploring potential uses 

and developing new ones.  One of the primary concerns of 

practical UAS utilization in real operations is safety 

(Downes, 2015). In many applications, human operators are 

still necessary to help address unforeseen and extreme 

disturbances, such as component faults that lead to failure. 

The motivation for this research is founded upon the idea of 

system resilience for system safety and reliability under 

extreme disturbances. System resilience is defined as: 

Definition [Resilience]: The intrinsic ability of a system to 

adjust its functioning prior to, during, or following changes 

and disturbances, and thus, to sustain required operations 

even after a major mishap or in the presence of continuous 

stress (Hollnagel, Woods, and Leveson, 2007). 

Balchanos (2012) thoroughly reviewed various resilience-

related research findings and addressed an assessment 

method of complex dynamic system resilience, which 

embraces system capability. Tran (2016) also suggested a 

resilience assessment method based on time-dependent 

system reliability by using a probabilistic measure. 

According to the definition of resilience, situational 

awareness, prediction, planning, and action are necessary 

capabilities for a resilient system. On one hand, fault 

diagnosis and failure prognosis aim to detect accurately with 

specified false alarm rate the initiation of a fault while 

prognosis attempts to predict the system’s Remaining Useful 

Life (RUL). (Vachtsevanos, Lewis, Roemer, Hess, and Wu, 

2006). A particle filtering-based diagnosis and prognosis 

framework has been highlighted as a popular approach 

(Brown, Bole, and Vachtsevanos, 2010), and its details can 

be found in Orchard’s dissertation (2006).  

On the other hand, proper adjustments to control actions can 

assure resilient behaviors. Specifically, for a fault and failure 

in a critical component, a Fault Tolerant Control System 

(FTCS) has been researched for decades. It was motivated by 

commercial aircraft accidents (Zhang & Ziang, 2008). Zhang 

and Ziang (2008). Clements (2003) developed a hierarchical 

control architecture showing the interconnections among 

fault detection & identification, set-point controller, control 

redistribution, control gain adaptation, and component 

restructuring. Ge, Kacprzynski, Roemer, and Vachtsevanos 

(2004) introduced a higher level of adaptive system 

framework by using an Automated Contingency 

Management (ACM) concept. Drozeski, Saha, and 

Vachtsevanos (2005) proposed a three-tier hierarchical 

control scheme as Active FTCS. Tang, Kacprzynski, Goebel, 

Saxena, Saha, and Vachtsevanos (2008) extended the ACM 

framework by integrating it with a prognostics module. Tang, 

Hettler, Zhang, and DeCastro (2011) extended further and 

tested a Prognostics and Health Management (PHM) 
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enhanced ACM framework with a real-time mobile robot test 

application. Brown, Georgoulas, Bole, Pei, Orchard, Tang, 

Saha, Saxena, Goebel, and Vachtsevanos (2009) proposed 

prognostics enhanced low-level reconfigurable control for an 

electrical component. Bole, Tang, Goebel, and Vachtsevanos 

(2011) described a fault adaptive control architecture, and 

Bole (2013) addressed uncertainties in prognostics and 

reconfigurable control allocation strategies.  

As a theoretical foundation, this study takes the hierarchical 

reconfiguration architecture developed by Drozeski et al. 

(2005), and focuses on the middle-level reconfiguration 

module. The following sections of the paper cover the 

proposed resilient-based reconfiguration strategy in Section 

2, the proof of concept using an under-actuated hovercraft 

example in Section 3, and summary of the contribution and 

future work in Section 4. 

2. TECHNICAL APPROACH

The main contribution of this research effort is a middle-level 

reconfigurable control framework, as shown in Figure 1. The 

configuration borrows from the comprehensive three-level 

reconfiguration architecture proposed by Drozeski et al. 

(2005) and Brown et al. (2009), as illustrated in Figure 2.  

Under small disturbances, the low-level reconfiguration 

module compensates for the effects of small disturbances by 

adjusting set points for the actuator components. In the case 

of extreme disturbances, however, due to the severe 

degradation of the system capability, the system is not able to 

satisfy mission requirements; thus, it cannot perform / 

complete the given mission. To resolve this issue, the middle-

level reconfiguration module is introduced to extend and 

recover the system capability by reconfiguring the guidance 

and control strategy. The system capability recovery in terms 

of an extended RUL is achieved at the expense of degraded 

system performance. It is noted that the proposed 

reconfiguration strategy does not entail any hardware 

changes (replacement or insertion of new hardware). It 

addresses only the software components of the framework. 

Therefore, the trade-off between the performance 

requirements and increased RUL must be carried out properly 

in the middle-level reconfiguration module. This trade-off is 

the essence of the middle-level reconfiguration. 

Figure 2. Reconfigurable control architecture with three tier 

strategies (modified and redrawn based on Figure 3 in 

Brown et al., 2009) 

2.1. Requirements 

The middle-level reconfiguration strategy aims to extend the 

system capability (Time to Failure) by trading off 
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Figure 1. Overview of the proposed methodology on a closed-loop control schematics. 
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performance attributes. The strategy involves only the 

system’s software assuming that the hardware complement 

remains as designed. Then, the recovered system capability 

has to satisfy mission requirements. In addition, the middle-

level reconfiguration can be carried out properly only if a 

system is controllable under extreme disturbances. Dorf and 

Bishop (1998) defined the system controllability 

requirements.  

2.2. Resilient-based Reconfiguration Strategy 

The middle-level consists of system-level Guidance, 

Navigation, and Control (GNC) modules. The guidance and 

control laws have a major impact on generating desired 

control forces and/or torques. Once an ongoing disturbance is 

diagnosed as being extreme – thus, the low-level 

reconfiguration is not sufficient to achieve stated mission 

objectives – the middle-level reconfiguration routine is 

activated. This paper assumes that the diagnostics and 

prognostics information, as well as the decision from the low-

level reconfigurable controller, are given.  

As a means for control reconfiguration, optimal control 

theory is a powerful tool for deriving control policies, and it 

is the backbone of the reconfiguration strategy in this study. 

DDP, developed by Jacobson and Mayne (1970), is used to 

solve a general nonlinear optimization problem. The key 

attribute of DDP is the fact that it performs simultaneously 

trajectory optimization and control signal generation. DDP is 

a finite time horizon control algorithm; thus, it is natural to 

borrow and apply a MPC method until the system meets the 

success criteria of a given mission.  

Figure 3 represents the schematics of the middle-level 

reconfigurable control framework. If the system is 

controllable under an extreme disturbance, the finite-time 

optimal control law generates and applies the first input 

sequence; it is iterated next with the updated states until a 

given target is met. System performance degradation is 

inevitable as the recovery actions compensate for such 

extreme disturbances. Therefore, system performance must 

be evaluated and compared with the required performance 

criteria. If the reconfiguration level does not meet the 

specified performance criteria, the top-level of the control 

hierarchy is activated to achieve mission adaptation.  

2.2.1. Formulation 

A general optimal control problem is stated as:  find the 

optimal input,  ∗, minimizing a nonlinear cost functional as 

follows: 

∗ argmin  (  ) (1) 

where  ∈ ℜ𝑛  is a control input (desired force/torque)

vector,  ∈ ℜ𝑚 is a state vector, and  (∙) is a nonlinear cost

function. A finite time horizon optimal control problem is 

formulated as: 

Figure 3. Flowchart of the proposed control reconfiguration. 

( (  )   ) 

[ ( ( )  ( )  )   ( (  )   )] 
(2) 

subject to: 

𝐹( ( )  ( )) 

( ( )  ( )) ≤ 0 

(3) 

where    is an initial time and    is the terminal time.  (∙) is a 

scalar running cost,  (∙)  is a scalar terminal cost, 

𝐹( ( )  ( )) represents the nonlinear system dynamics as 

an equality constraint for the optimization problem, and 

 ( ( )  ( )) is a general function for inequality constraints. 

This optimal control problem can be solved by a DDP 

approach. By exploiting Bellman’s principle, the cost values 

are propagated backward in time if we know  ( (  )   ) 

(Bellman, 1957). Bellman’s principle in a discrete-time 

domain is expressed in Equation (4). 

( ( 𝑘)  𝑘)

 ( 𝑘)
[ ( ( 𝑘)  ( 𝑘)  𝑘)𝛥 ( ( 𝑘+1)  𝑘+1)]

(4) 

Cost functions are usually formulated as quadratic functions 

of states and control inputs, as shown in Equations (5) and 

(6). 

( (  )   )
1

2
( (  ) − 𝒓)

𝑇
𝐾 ( (  ) − 𝒓) (5) 

where 𝒓 is a target state vector, and 𝐾  is a weighting matrix. 

It represents the weighted energy of a terminal state error, 

expressed as the difference from a given target. 
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( ( 𝑘)  ( 𝑘)  𝑘)

1

2
( 𝑘)

𝑇𝐾 ( 𝑘)
1

2
( 𝑘)

𝑇𝑅 ( 𝑘)
(6) 

where 𝐾 and 𝑅 are weighting matrices. The right hand-side 

of Equation (6) refers to the energy of the states and control 

inputs, respectively, at each time instance.  

As a constraint, the system capability must be sufficient to 

meet stated mission requirements. 

system capability ≥ requirements (7) 

The qualitative constraints must be expressed as measurable 

quantities. Candidates are energy, controllability, 

maneuverability, stability, etc. By the assumption that system 

capability is related to system control authority, the inequality 

constraint can be expressed as: 

 ( 𝑘) >  req. (8) 

subject to: 

  ( 𝑘) ( ( 𝑘)  ( 𝑘)  𝑘) (9) 

where  ∈ ℜ𝑚2  is the system capability-relevant state vector,

and  req. is the state vector for mission requirements.  ( 𝑘)

is modeled as a function of  ( 𝑘) and  ( 𝑘)  as in Equation

(9). In general, hard constraints in states, specifically at a 

terminal time, are difficult to handle in MPC. An alternate 

approach is to set them as soft constraints by integrating them 

into a cost function. Then, Equations (5) and (6) can be 

rewritten as Equations (10) and (11): 

( (  )   ) 

1

2
( (  ) − 𝒓)

𝑇
𝐾 ( (  ) − 𝒓)

 𝜌
1

2
(  )

𝑇
𝐾 
𝑅 (  )

(10) 

( ( 𝑘)  ( 𝑘)  𝑘)

1

2
( 𝑘)

𝑇𝐾 ( 𝑘)
1

2
( 𝑘)

𝑇𝑅 ( 𝑘)

 𝜌𝑅
1

2
( 𝑘)

𝑇𝐾𝑅 ( 𝑘)

(11) 

where 𝐾 
𝑅  & 𝐾𝑅  are weighting matrices, and 𝜌  & 𝜌𝑅  are

reconfiguration parameters. In the case that system 

controllability is satisfied even after the component 

failure, 𝜌𝑅 will be a main driver for the trade-off. Now, we

can concatenate the state variable vectors into one long state 

vector and several weighting matrices into two large 

matrices:  

[  ]𝑇 (12) 

𝐾 [
𝐾 𝟎

𝟎 𝜌 𝐾 
𝑅] 

𝐾  [
𝐾 𝟎
𝟎 𝜌𝑅𝐾

𝑅] 

where the new state vector is  ∈ ℜ𝑚+𝑚2  . Then, Equations

(10) and (11) are reorganized as Equations (5) and (6).

Determining the weighting matrices and importance

parameters is heavily dependent on the controller designer’s

experience. It is noted though that what is affecting the

optimal control performance are ratios between weighting

parameters. As a starting point, it behooves to normalize them

with reference values (e.g., maximum) of each variable.

2.2.2. Stability Analysis 

Let us rewrite Equation (2) as: 

 𝑁( (  )  )

∑ ( ( 𝑗)  ( 𝑗)) 𝛥 

𝑁−1

𝑗= 

( ( 𝑁))
(13) 

where  (  )  is the current state,  is the control input 

sequence, and ( ( 𝑁))  is the terminal cost. The cost

function  𝑁( (  )  )  evaluates costs for 𝑁  discrete time

segments at   (  ) . Define  ∗( (  ))  the optimal control

input sequence given the initial condition,  (  ), and  𝑁
∗(∙)

the costs along the optimal control input,  ∗(∙)  at any given

current state. Considering discrete system dynamic 

constraints, 

 ( 𝑘+1) ( ( 𝑘)  ( 𝑘)) (14) 

where  ( 𝑘) ∈ 𝕌, and 𝕌 is a feasible input set,  𝑁
∗(∙) can be

considered as a Lyapunov function if, 

𝑁
∗( ( 𝑘+1)) −  𝑁

∗( ( 𝑘)) ≤ 0 (15) 

for all  𝑘. Then, the MPC, with the cost function expressed as 

Equation (13), is stable. The proof is as follows: 

Suppose that there exists an optimal control input,  ∗( 𝑘)
[ ∗( 𝑘)  ∗( 𝑘+1) ⋯ ∗( 𝑘+𝑁)], and the corresponding

state,  ∗( ( 𝑘)), sequences at  𝑘. Now, consider the control

input sequence at time   𝑘+1 as: 

( ( 𝑘+1))

[ ∗( 𝑘+1) ⋯ ∗( 𝑘+𝑁)  ( 𝑘+𝑁+1)]
(16) 

Equation (16) is not an optimal control sequence because 

 ( 𝑘+𝑁+1) ∈ 𝕌 is not optimal. By the definition of the cost

function, 

( ( 𝑘+𝑁+1)) ( ( 𝑘+𝑁)  ( 𝑘+𝑁))𝛥 

≤   
∗( ∗( 𝑘+𝑁))

(17) 

Therefore, 
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𝑁 ( ( 𝑘+1) ( ( 𝑘+1)))

≤  𝑁
∗( ∗( 𝑘)) − ( ( 𝑘)  

∗( 𝑘))𝛥
(18) 

Finally, 

𝑁
∗( ∗( 𝑘+1)) ≤  𝑁 ( ( 𝑘+1) ( ( 𝑘+1)))

≤  𝑁
∗( ∗( 𝑘)) − ( ( 𝑘)  

∗( 𝑘))𝛥
(19) 

Proof of Equation (15) is found in (Pannocchia, Rawlings, 

and Wright, 2011). 

3. THE EXPERIMENTAL CONFIGURATION

The proposed design methodology of the middle-level 

reconfigurable control has potentials to cyber physical 

systems, which entail software and hardware integration, in 

that the reconfiguration manages software components. To 

demonstrate its efficacy, an autonomously operable under-

actuated hovercraft was used as a testbed (Kim et al., 2013; 

Sconyers et al., 2013). The hovercraft dynamics model was 

derived on the basis of a ground-fixed coordinate system, as 

depicted in the right side of Figure 4. The hovercraft operates 

with two differential thrust fans with electrical motors and a 

LIDAR sensor for simultaneous localization and mapping.  

Figure 4. The autonomously operable hovercraft with two 

differential thrusts (left), and 2D hovercraft dynamics and 

kinematics representation (right). 

3.1. Hovercraft Dynamics Model 

The hovercraft is assumed to move in two-dimensional planar 

motion; thus, it is an under-actuated system given two input 

controls. Equations (20) are the system dynamics model;   

and   are absolute positions on the ground fixed coordinate, 

𝜃 is a heading angle, 𝑋  is a velocity, �̈� is an acceleration,   

is the mass, 𝐽 is the moment of inertia of the hovercraft,   is 

the distance between a thruster and an imaginary longitudinal 

line crossing the mass center while assuming that the mass 

center coincides with the geometric center, and 𝐹𝑙  & 𝐹𝑟  are

left and right thrust forces, respectively. Based on the system 

dynamics equations, the state is {  𝜃 𝜃 }
𝑇

, and

the input is {𝐹𝑙  𝐹𝑟}
𝑇 . Han, and Zhao (2004) evaluated

the underactuated hovercraft controllability. The analysis 

showed that the existence of the yaw torque can guarantee the 

system controllability. It implies that one thrust motor failure 

does not affect the controllability as long as the other motor 

can produce proper torque values.  

Table 1 shows the system properties used for the following 

experiments. 

 ̈ − 𝐹𝑙 ∙ cos 𝜃  𝐹𝑟 ∙ cos 𝜃

 ̈ − 𝐹𝑙 ∙ sin 𝜃  𝐹𝑟 ∙ sin 𝜃

�̈� −
𝑟

𝐽
𝜃 (𝐹𝑟 − 𝐹𝑙)

(20) 

Table 1. System properties. 

Parameters Values Description 

m (𝑘 ) 11.8 Vehicle mass 

J (𝑘 ∙  2) 1 Moment of Inertia 

d ( ) 0.25 Moment arm 

dt (-) 0.05 Frictional damping (translation) 

dr (-) 0.005 Frictional damping (rotation) 

Fmax (N) 2 Control input constraint (max.) 

Fmin (N) -2 Control input constraint (min.) 

3.2. Fault Growth Model 

A fault growth dynamics model is given as a function of time 

and actuator control inputs as:  

𝜎 ( )  𝜌𝜎 ∙  ∙
2 𝜎 𝜔𝜎( ) (21) 

where 𝜎 is the state of a fault on the right thrust motor, 𝜔𝜎( )
is noise, 𝜌𝜎 is a coefficient representing the fault growth rate

with respect to an actuator control input, and 𝜎  is a control-

independent parameter. As a dimensionless representation, 

the fault severity is ranked from 1 to 10 with one as a healthy 

condition and 10 as an indication of a component failure. At 

the fault severity 10, the motor control thrust force is no 

longer active. For simplicity, the impact of the fault mode on 

the effective thrust force is assumed inversely proportional to 

the severity of the fault, as shown in Equation (22).  

Table 2 shows the fault growth model parameters that were 

used in the following tests.  

𝐹actual
𝐹desired

𝜎⁄ (22) 

Table 2. Parameters for the fault growth model. 

Parameters Values Description 

𝜌𝜎 2.5 Control input effect coef. 

𝜎 0.02 Operational time effect coef. 
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3.3. Energy Consumption Model 

The system capability in this example is expressed as the 

traveling distance for the vehicle starting at the origin and 

terminating at a goal point, and it is closely tied to the system 

energy and the energy consumption model. The electric 

energy consumption rate is modeled as a quadratic function 

of control inputs. 

𝑒 ( )  𝜌𝑒 ∙  ( )
𝑇 ( )  𝜔𝑒( ) (23) 

where 𝑒( ) is the cumulative amount of energy consumed, 

𝑒 ( )  is the energy consumption rate, and 𝜔𝑒( )  is noise.

Notionally, the maximum energy available is set to 300 in the 

example (dimensionless). If the total consumption reaches its 

maximum value, it is impossible to move the hovercraft any 

longer; thus, it becomes uncontrollable. For the experiment, 

𝜌𝑒 was set to 10.

3.4. Nominal GNC 

A nominal-phase GNC module consists of the line-of-sight 

(LOS) guidance law and the dynamic inversion nonlinear 

controller addressed by Kim et al. (2013). The LOS guidance 

law forces the system to reduce the errors in the heading angle 

and the shortest distance between the current position and a 

trajectory path, at each control time instant. The controller 

controls the desired surge velocity and the heading angle. 

4. SIMULATION RESULTS AND DISCUSSION

The hovercraft test mission is to move from a starting point, 

(0, 0), to a target point, (80, 80). A fault occurs in the right 

thrust motor during the operation initiated at 50 sec., and its 

severity monotonically increases as modeled in Equation 

(21). Figure 5 depicts the hovercraft position and heading 

trajectories (a) under healthy condition, (b) with the nominal 

controller under faulty condition, and (c) with the proposed 

reconfigurable controller under faulty condition. In the 

reconfigurable controller, 𝜌  and 𝜌𝑅  were set to 100. As

expected, the nominal controller could not handle such an 

extreme fault and could not reach the target point at the end. 

With the reconfigurable controller, on the contrary, the 

hovercraft reached the target, but it exhibited an oscillatory 

behavior in the middle of the operation. This behavior is 

attributed to the redistributed control authority. As illustrated 

in Figure 6, the reconfigurable controller endowed agility 

characteristics to the healthy thrust motor while suppressing 

the usage of the faulty one. At  𝑘+𝛿, the actual force exerted 

from the right faulty thrustor was less than the left healthy 

thrustor. Instead of exerting more effort on the faulty thrustor, 

the controller forced to turn the vehicle right until the heading 

angle pointed backward, and then produced a reverse thrust 

on the left motor to turn the vehicle heading back to the 

forward direction as well as to proceed in the direction of the 

target point. This control strategy repeated until the 

hovercraft reached the given target. 

Figure 6. Pictorial representation of the redistributed 

optimal control sequence. 

Through reconfiguration, system capability was recovered 

from the impaired condition, although the system 

performance was degraded.  Figure 7 compares the system 

 + 

+ 

 + 

+ 

 + 

Figure 5. Hovercraft position trajectory result comparisons: (a) healthy condition; (b) nominal controller under faulty 

condition; and (c) reconfigurable controller under faulty condition. 

(a)  (b)  (c) 
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performance between normal and faulty conditions. After 50 

seconds, as a critical fault mode was initiated and evolved, 

the speed to get to the target decreased; thus, the mission 

completion time was almost doubled compared to the healthy 

case. Energy consumption rate decreased after the fault 

mode, but due to the longer operational time, total energy 

consumption was slightly greater than the normal case. The 

trade-offs are obvious, as suggested previously. 

Table 3 shows the comparisons of system capabilities in 

maximum traveled distances available and corresponding 

traveling time. As an extreme fault mode occurs, system 

capabilities by the nominal controller dramatically decreased 

to less than one third of the maximum traveling distance 

available. This was mainly due to an excessive usage of the 

faulty motor as the nominal controller attempted to maintain 

its heading angle; thus, the energy consumption was 

expedited and the component failed quickly. After 

reconfiguration, the maximum traveling distance recovered 

although not fully. To extend the distance, the mission was 

completed at a slower rate. Table 4 shows the impact of the 

reconfiguration parameters. The larger the values, the more 

penalties are assigned to the cost function. Finally, the 

maximum computational time for a single control input was 

0.16 seconds on a regular desktop computer. It demonstrates 

the potential for the practical applicability of the proposed 

reconfiguration framework. 

Figure 7. Solid red is reconfigured trajectory under faulty 

condition; and dashed blue is normal trajectory. 

Table 3. Comparisons of system capabilities. 

Capability Healthy 
Faulty 

No Reconf. Reconf. 

Max. distance (m) 177.61 55.87 143.41 

Time to mission 

complete (sec.) 
241 Incomplete 422 

Time to the 

component failure 

(sec.) 

- 75.5 480.5 

Table 4. Impact of the reconfiguration parameter. 

Capability 
Reconfiguration Parameters 

0 100 200 

Max. distance (m) 103.50 143.41 194.38 

Time to mission 

complete (sec.) 
Incomplete 422 527 

Time to the 

component failure 

(sec.) 

No failure 480.5 482.5 

5. CONCLUSION

The middle-level reconfigurable control and control authority 

redistribution framework introduced in this paper 

demonstrated its essential capability to improve system 

resiliency by handling an extreme disturbance properly. The 

proposed framework was tested via the under actuated 

hovercraft simulation. The results demonstrated the efficacy 

of the approach. Future work is intended to address 

uncertainties, which may degrade the performance of the 

reconfiguration strategy. Also, adaptive mechanisms for 

systems to autonomously manage the level of reconfiguration 

online will help systems to be more resilient. Furthermore, 

integration of the low and high-level reconfiguration policies 

will improve the overall system performance.   
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