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ABSTRACT 

Effective feature extraction of rotating machinery has been a 

hot topic in the prognosis and health management. However, 

it is a challenging problem to extract periodic impulses 

under heavy background noise and other interference. In the 

last decade, deep learning and dictionary learning have been 

promising methods to extract feature information, which 

have made great achievement in the field of image, video 

denoising, etc. In this paper, via fusing the deep learning 

with dictionary learning, an algorithm called deep stack 

dictionary learning is proposed. This algorithm is trained in 

a layer-wise greedy manner so as to suppress the noise and 

highlight periodic impulses.  

1. INTRODUCTION

Due to heavy background noise and random interference, it 

is a challenging task to develop effective signal processing 

techniques that extract fault characteristic from the 

measured vibration signals validly (Lei, Lin, He and Zi, 

2011). Different from traditional representation algorithms, 

dictionary learning and deep neural network have received a 

lot of interest recently. Inspired by them, in this paper, we 

propose deep stack dictionary learning (DSDL) to extract 

the weak fault feature from the original vibration signals. 

The proposed algorithm mainly has two merits: 1). 

Dictionary learning can adaptively learn fault feature from 

the original signal without any prior knowledge. 2). A deep 

greedy layer-wise stack (GLWS) strategy (Bengio, Lamblin, 

Popovici and Larochelle, 2007) further improves the feature 

of learned periodic impulses, and extracts weak fault feature 

in the early stage. The effectiveness and robustness of the 

new method are validated by simulated signals and the 

vibration data measured from bearing test rigs. 

The rest of the paper is organized as follows: the theory of 

K-SVD and GLWS is briefly introduced in Section 2. Then

the proposed deep stack dictionary learning algorithm is 

illustrated in detail in Section 3. In Section 4, the 

effectiveness of the proposed method is validated using 

numerical simulation and datasets from rolling element 

bearings. Finally, conclusions are drawn in Section 5. 

2. THEORETICAL BACKGROUND

In this section, we briefly introduce the theory of K-SVD 

and greedy layer-wise stack training, which are the 

theoretical basis of the proposed algorithm.  

2.1. K-SVD 

K-SVD, as one of the most popular dictionary learning

algorithms, is proposed by Aharon, Elad and Bruckstein,

(2006). Given training signals y, it can be considered as

solving the follow optimization problem iteratively:
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In the first stage, one can fix dictionary D and aim to find 

the best coefficient matrix x by decoupled to N distinct 

problems, which can be described as follows: 
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In order to solve Eq.(2), greedy pursuit algorithms like 

orthogonal matching pursuit (OMP) (Tropp & Gilbert, 2007) 

can be used for finding a sub-optimal solution. In the second 

stage, one can search for a better dictionary given the 

representation coefficient, the penalty term can be rewritten 

as 
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The SVD or other approximate optimization method can be 

used to update D column by column. A complete 

description of K-SVD theory could be found in (Aharon at 

al., 2006; Rubinstein, Zibulevsky and Elad, 2008). 

2.2. Greedy layer-wise stacked training 

The strong representation ability of deep neural networks is 

attributed to its stacked hidden layers and GLWS training 

method. The GLWS was firstly introduced (Hinton & 

Salakhutdinov, 2006) to train a deep belief network (DBN) 

in 2006, whose basic idea is that after training the structure 

of current layer, the output can be used as the input to train 

the basic structure of subsequent layer. The basic structure 

of DBN and deep stacked autoencoder are restricted 

Boltzmann machine and autoencoder, respectively. We 

illustrate the idea of this method through deep stacked 

autoencoder in this paper.  

An autoencoder (Vincent, Larochelle, Bengio and Manzagol, 

2008) is a symmetrical neural network, which consists of 

two phases including encoder and decoder. The basic 

structure is shown in Figure 1, where encoder takes an input 

x and transforms it to a hidden representation h via a non-

linear mapping as follow: 

( )f h Wx b   (4) 

where fθ is a non-linear activation function, h is the encoder 

vector obtained from x. Then, decoder network maps h back 

to the inputs in a similar way as follows: 

'( ' ')g x' W h b (5) 

Model parameters including θ= [W, b, W’, b’] are optimized 

to minimize the reconstruction error between x’ and x. 

… …

…

Encoder Decoder

Input data Hidden Layer Input data reconstruction

Figure 1. The structure of an autoencoder 

The stacked autoencoder (SAE) is a deep neural network 

consisting of multiple layers of basis autoencoder (see 

Figure 2), in which the algorithm of greedy layer-wise 

training plays an important role. The outputs of each layer 

are wired to the inputs of each successive layer. In addition, 

the greedy layer-wise training method improves the training 

process so that the network hardly falls into local optimum 

solution.  

OutputsInput data HL 1 HL 2 HL N-1

Autoencoder 1 Autoencoder 2 Autoencoder N

{W1,b1}

… {W1
T
,b1} … … … … …

…

HL N

Figure 2. The structure of stack autoencoder (HL is short for 

Hidden layer) 

3. DEEP STACK DICTIONARY LEARNING

Figure 3(a) shows the schematic diagram for dictionary 

learning, Y is the data, D is the dictionary and X is the 

feature of Y in D. Since a single level of dictionary learning 

yields a shallow feature representation of data, the concept 

of deep dictionary learning (DDL) has been recently 

proposed (Tariyal, Majumdar, Singh and Vatsa, 2016), 

which aims to learn deeper latent representations, see Figure 

3(b). The idea of DLL is to learn multiple levels of 

dictionaries in a greedy fashion, in which the features from 

first layer (X1) can be used as input to the second layer, and 

so on. Mathematical expressions at the second layer can be 

written as: 

1 2 2( )Y D D X (6) 

where φ is activation function, it can be linear or non-linear. 

Extending this idea, a multi-level DLL problem can be 

expressed as： 

1 2( (... ( )))N NY D D D X   (7) 

Because of space limitations, a detailed description and 

optimal solution of DDL could be found in (Tariyal et al., 

2016; Singhal & Majumdar, 2017). 

Input

Y

=
D X

Dictionary
Sparse

representation

(a)

Input

Y

=
D1 X2

Dictionary
Sparse

representation

D2

Dictionary

(b)

Figure 3. (a) Dictionary learning; (b) Deep dictionary 

learning 

Considering the characteristics of the mechanical signal, we 

propose another deep stack dictionary learning (DSDL) 

algorithm, which is different from the method proposed by 
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Tariyal at al. (2016). In DSDL, the product of dictionary and 

representation from previous layer acts as the input of 

subsequent layer. The algorithm of DSDL diagram is 

displayed in Figure 4, where improved K-SVD (Rubinstein 

at al., 2008) as dictionary learning approach is integrated 

our method. Firstly, we apply improved K-SVD for original 

vibration signal and obtain sub-dictionaries and 

representation. In this process, in order to enhance the 

proximity between the measured signal y and its denoised 

vision z, it is better to add the log likelihood global term and 

the mathematical expression is as follows: 
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where first term is data fidelity term, the second and the 

third term are prior terms of the estimated signal. Ri is an 

operator that extracts patches from z, λ is the Lagrange 

multiplier. Although this optimization is nonconvex, we can 

utilize block coordinate minimization algorithm to solve the 

problem iteratively. Firstly, z is fixed, and the optimization 

problem is degraded to classical dictionary learning model, 

so we can obtain the xi and D via the K-SVD algorithm. 
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Once all ˆ
ix are obtained, one can update z through solving

the following optimization problem: 
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This is a simple quadratic problem, therefore, we can get a 

closed-form solution: 
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And updating ẑ  as the inputs of each successive later. The 

complete algorithm is summarized in algorithm 1. 

Input

Y1

=
D1 X1

Dictionary
Sparse

representation

Y2 = D2 X2

Layer 1  DL

Layer 2  DL

K-SVD

K-SVD

Y3 ...=...

Figure 4. The structure of deep stack dictionary learning 

Algorithm1: Deep Stack Dictionary Learning for 

extraction of periodic impulses 

Input: original vibration signal y 

Output: extracted fault feature ẑ

Initialization: number of iteration iter, length of segments 

N, initial dictionary D, the number of atoms M 

For each layer dictionary learning 

1. Extract Patches: Extract the patches from the examples

and get data matrix.

2. Dictionary learning: Apply the improved K-SVD for

input matrix, obtain sub-dictionary and corresponding

coefficients.

3. Update inputs: sub-dictionary and representation are

integrated as the input of successive layer.

Extract periodic impulses: ˆ
last layerz

4. NUMERICAL SIMULATION

In this part, a numerical simulation is designed. When 

localized defects are generated on the rotating components, 

periodic impulses will be generated in the vibration signal. 

However, the periodic impulses are always submerged by 

heavy background noise. Therefore, the simulated signal is 

designed as follows: 

( ) ( ) ( )k k

k

y t A s t kT n t    (12) 

Where y is the measured vibration signal, n is zero mean 

Gaussian noise, s(t) denotes the impulses excited by a 

mechanical defect, where Ak is the amplitude of the kth 

impulse, T is the period of the impulsive signal, τk is the 

error from the position of the impulse and is a small random 

number. Generally, this term could be described by an 

exponentially decaying sinusoid with the following form: 

2 2( ) sin(2 1 )rf t

rs t e f t
  

  (13) 

where fr specifies the resonance frequency excited by the 

impact, ξ is the decay rate of the impulses. 

Table 1. Simulation parameters 

T ξ fr f Ak 

0.1 0.02 1500 10000 1.5 

The parameters used for this model are described in Table 1. 

The waveforms of defect impulses and synthetic signal are 

illustrated in Figure 5, respectively. The signal to noise ratio 

(SNR) of simulation signal is -12.12, such that the fault 
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impulses cannot be visualized from the final signal in Figure 

5(b). The extracted impulsive signal via DSDL can be 

illustrated in Figure 6. The results demonstrate that our 

method has outstanding performance in extracting feature 

information from original vibration signal. 

Figure 5. Simulated signal (a) defect impulses; (c) synthetic 

signal 

Figure 6. Feature signal by DSDL 

5. EXPERIMENTAL VALIDATION

In this part, the vibration signal collected from locomotive 

bearing test rigs, which will be used to demonstrate the 

effectiveness of the DSDL. 

Figure 7. The locomotive bearing test bench 

The experiments were made on a bearing test rig specialized 

for fault detection of locomotive bearings. The test rig 

consists of hydraulic motor, a driving wheel and a 

locomotive wheel and the overview is illustrated in Figure 7. 

To collect the vibration signal, a tri-axial PCB 

accelerometer with sensitivity of 100mVg-1 is mounted of 

the shaft end during the running process. An inner race fault 

was seeded and the ball-pass frequency of inner race (BPFI) 

is 80.675Hz. The sampling frequency is 76.8 kHz and the 

time length of the data is 0.5s. 

Figure 8. Raw signal of locomotive bearing 

Figure 9. (a) Results of applying K-SVD to raw signal; (b) 

the envelope spectrum of (a) 

Figure 10. (a) Results of applying DSDL to raw signal; (b) 

the envelope spectrum of (a) 

The raw signal is shown in Figure 8, in which we could not 

find any useful fault information due to heavy noise. Figure 

9 and Figure 10 display the extracted periodic impulses and 

envelope spectrum through K-SVD and our algorithm, 

respectively. We found that the K-SVD cannot extract clear 

fault characteristic frequency. By comparison, our algorithm 

almost perfectly matches the original impulsive signals. The 

bearing inner race fault-related signatures and its harmonics 

are identified from Figure 10, which demonstrates that the 

proposed algorithm is effective and capable to extract the 

periodic defect impulses and remove the environment noise 

and other interference.  

6. CONCLUSION

In the paper, a deep stack dictionary learning algorithm is 

proposed for fault diagnosis of rotating machinery. Utilizing 
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DSDL, we can obtain more expressive and robust feature 

which represent mechanical fault. Meanwhile, the 

effectiveness of our method is demonstrated by simulation 

signal and experimental data of locomotive bearing. Our 

future work will accelerate our algorithm and combine our 

algorithm with self-taught learning. 

ACKNOWLEDGEMENT 

This research is supported by the National Nature Science 

Foundation of China (Grant No. 51421004, 51405373), and 

the China Postdoctoral Science Foundation (2014M562400), 

which are highly appreciated by the authors. 

REFERENCES 

Lei, Y., Lin, J., He, Z., & Zi, Y. (2011). Application of an 

improved kurtogram method for fault diagnosis of 

rolling element bearings. Mechanical Systems and 

Signal Processing, vol. 25, pp. 1738-1749. 

doi:10.1016/j.ymssp.2010.12.011 

Bengio, Y., Lamblin, P., Popovici, D., & Larochelle, H. 

(2007). Greedy layer-wise training of deep

networks. Advances in neural information processing 

systems, vol. 19. 

Aharon, M., Elad, M., & Bruckstein, A. (2006). $ rm k $-

SVD: An algorithm for designing overcomplete 

dictionaries for sparse representation. IEEE 

Transactions on signal processing, vol. 54, pp. 4311-

4322. doi:10.1109/TSP.2006.881199 

Tropp, J. A., & Gilbert, A. C. (2007). Signal recovery from 

random measurements via orthogonal matching 

pursuit. IEEE Transactions on information theory, vol. 

53, pp. 4655-4666. doi:10.1109/TIT.2007.909108 

Rubinstein, R., Zibulevsky, M., & Elad, M. (2008). 

Efficient implementation of the K-SVD algorithm using 

batch orthogonal matching pursuit. Cs Technion, vol. 

40, pp. 1-15. 

Hinton, G. E., & Salakhutdinov, R. R. (2006). Reducing the 

dimensionality of data with neural 

networks. science, vol. 313, pp. 504-507. doi: 

10.1126/science.1127647 

Vincent, P., Larochelle, H., Bengio, Y., & Manzagol, P. A. 

(2008). Extracting and composing robust features with 

denoising autoencoders. InProceedings of the 25th 

international conference on Machine learning. July 5-9.

ACM. doi:10.1145/1390156.1390294 

Tariyal, S., Majumdar, A., Singh, R., & Vatsa, M. (2016). 

Deep Dictionary Learning. IEEE Access, vol. 4, pp. 

10096-10109. doi:10.1109/ACCESS.2016.2611583 

Singhal, V., & Majumdar, A. (2017). Majorization 

Minimization Technique for Optimally Solving Deep 

Dictionary Learning. Neural Processing Letters, pp. 1-

16. doi:10.1007/s11063-017-9603-9

BIOGRAPHIES  

Jinyang Jiao is currently working toward the Ph.D. degree 

in mechanical engineering at the State Key Laboratory for 

Manufacturing System Engineering, Xi’an Jiaotong 

University, Xi’an, China. His research interest include 

machinery condition monitoring and intelligent fault 

diagnostics of rotating machinery. 

Ming Zhao is currently a lecturer at School of Mechanical 

Engineering, Xi’an Jiaotong University, China. He received 

his BS, MS and PhD degrees from Xi’an Jiaotong 

University, in 2006, 2009, and 2013, respectively. He is 

working as a postdoctoral fellow and research associate in 

Center for Intelligent Maintenance Systems, University of 

Cincinnati, Ohio. His research interests include no-

stationary signal processing, rotor dynamics and fault 

diagnosis of rotating machinery. 

Jing Lin is a professor at State Key Laboratory for 

Manufacturing System Engineering, Xi’an Jiaotong 

University, China. He obtained his BSc, MSc and PhD 

degrees respectively in 1993, 1996 and 1999, all in 

mechanical engineering. He was working as a postdoctoral 

fellow and research associate from July 2001 to August 

2003, respectively in University of Alberta, Canada, and 

University of Wisconsin-Milwaukee, USA. From 

September 2003 to December 2008, he was working as a 

research scientist at Institute of Acoustic, Chinese Academy 

of Science, under the Sponsorship of the Hundred Talents 

Program. He also obtained the National Science Fund for 

Distinguished Young Scholars in 2011. Now his research 

directions are mechanical system reliability, fault diagnosis 

and prognostics. 

227




