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ABSTRACT 

To improve the efficiency of fault diagnosis, a novel 

granular computing algorithm is developed to reduce 

computational cost. It is realized by extracting and 

partitioning on the complete graphs, and in the process of 

graph generation, the graph partition based on 

dimensionless similarity (GPDS) method is proposed to 

overcome the influence of attributes with different 

dimensions. The algorithm is named graph partition based 

on dimensionless similarity. Moreover, similarity threshold 

determination method based on frequency distribution 

histogram is proposed to reduce the dependency on the 

experiences of experts. Meanwhile, a weighted relative error 

is proposed to measure quantitatively the distribution 

change of original data after being compressed. Finally, 

different characteristic data are applied to verify the theories. 

The experimental results indicate that the compressed 

training samples can maintain the classification accuracy. 

Furthermore, the elapsed time can be obviously reduced. 

Therefore, the GPDS method can be used in fault diagnosis 

properly 

Keywords: Granular Computing; Graph Partition; 

Dimensionless Similarity; Weighted Relative Error; Fault 

Diagnosis 

1. INTRODUCTION

With the development of modern industry, fault diagnosis 

technologies are widely used. Due to the rapid improvement 

of sensor technology and intelligence algorithms, the fault 

diagnosis based on data-driven has been widely used in 

solving particle large and complicated equipments (Zheng & 

Gao, 2015). Undoubtedly, numerous application cases of 

fault diagnosis field have indicated that it can be used to 

improve the efficiency of troubleshooting, shorten the 

maintenance period, reduce the maintenance costs and 

ensure production safety. However, many similar or 

repeated monitor data reflecting the same running state of 

equipments are recorded, which will obviously increase the 

sample size, and the computational efficiency of diagnosis 

algorithms will be reduced. So quick and accurate diagnosis 

has become a new research direction in fault diagnosis. 

Granular computing (GrC) is new intelligent computing 

theory based on partition of problem concepts (Skowron &  

Stepaniuk, 2001). Granular computing can be used to 

reduce complex problems for obtaining the satisfactory 

approximate solutions at a lower computational cost. 

Meanwhile, it can be used to hide or reveal some details of 

the problems by changing the size of granulation. At present, 

there are three theories about granular computing, i.e. 

quotient space (Zhang & Zhang, 1992 and 2003), rough set 

(Z. Pawlak, 1991), and computing with words (Zadeh, 

1996 and 1997). The detailed comparisons between 

aforementioned three theories have been discussed in (Y. Li, 

2007; Zhang et al., 2004; Zhao & Yang, 2007). Moreover, 

some machine learning approaches, e.g. correlation 

calculation, decision tree, clustering algorithms and neural 

networks are used to generate granular computing model 

(Tang et al., 2005; Zhong et al., 2007;  Anjum et al., 2009;  

Park et al., 2009), the theories analyze the realization 

process of granular computing from different angles. It is 

well known that granular computing opens up a new 

direction for intelligent computing. 

The purpose of this research is to reduce the training 

samples and thus improve that the calculation efficiency. 

Considering the characteristics of monitor data, granular 
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computing can realize the data compression properly. But in 

practice, accuracy is a prerequisite for fault diagnosis, so the 

accuracy should not be changed after data compression. 

Compared with three main theories mentioned above, the 

granular is constructed in this paper depending on graph 

partition based on dimensionless similarity (GPDS) rather 

than equivalence class, or fuzziness of semantic expression. 

Thus, the granulation is described according to similarity, in 

essence, lower similarity means coarser granular, and higher 

similarity means finer granular. Therefore, the granular 

computing can be realized from a new angle. 

The proposed granular computing method is designed to 

follow the principle of maintaining the original spatial 

distribution of data. In this condition, an evaluation index 

based on weighted relative error is designed to 

quantitatively measure the distribution change of original 

data after compression. Accordingly, although the number 

of training samples is reduced, the spatial distribution 

characteristic is similar to the original distribution, which is 

conducive to identify the fault data with relative lower 

computational cost.  

The rest of the paper is organized as follows. In Section 2, 

dimensionless similarity is defined and the graph is 

generated by using monitoring data. In Section 3, the GPDS 

is introduced in details. Section 4 introduces the application 

of granular and weighted relative error. After that, the 

application problems have been used to verify the 

performance of GPDS. Finally, Section 5 draws conclusions. 

2. SIMILARITY DEFINITION AND GRAPH GENERATION

2.1. Similarity Definition 

Actually, many definitions of similarity have been used to 

measure the similar relationship of vectors, such as, 

Minkowski distance, Mahalanobis distance, Manhattan 

distance, Chebyshev distance, Pearson correlation 

coefficient, and cosine similarity [15-18]. These definitions 

measure the similarity according to different theories. 

Generally, Euclidean distance has been widely used, and 

several popular algorithms are computed by Euclidean 

distance (Neto, 2014; Zheng et al., 2015; Airteimoori & 

Kordrostami, 2010) 

Euclidean distance is in the interval [0, +∞), where the 

lower value means the more similarity, vice versa. In order 

to describe the granulation and divide the granular level 

conveniently, the similarity based on Euclidean distance is 

set in the interval (0, 1], “1” represents two vectors are 

identical; if the Euclidean distance of two vector is infinite, 

the similarity will be zero. In previous researches, Zhang 

(2000) and von Luxburg (2007) respectively proposed 

similar calculation approaches of exponential similarity. 

Huang (2007) proposed a calculation approach of inverse 

distance similarity. These similarities are in the interval (0, 1] 

which had been applied in practical computations.  

Based on our work, we find that the similarities based on 

the traditional Euclidean distance have obvious defect when 

processing the vectors with different dimensions. 

Specifically, different dimensions in a vector mean the 

elements are in different numerical distribution ranges, 

which will easily lead to the similarity approach zeros. 

Undoubtedly, it has limited the application of similarity 

significantly. In this study, a dimensionless similarity is 

proposed to overcome the problems. If X denotes a samples 

set, X=[x1, x2, …, xn], and xi =[xi1, xi2, …, xid], |xi|=d, and d

is the dimension of each sample.  

Traditional similarities only consider the similar relation 

of two samples separately, and the dimensionless similarity 

sufficiently considers the influence of all samples on 

calculating Euclidean distance. Thus, the range of each 

attribute is introduced to eliminate dimension so that data 

have the same caliber. Accordingly, the dimensionless 

similarity between xi and xj is designed as follows: 

 
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1

1 2 1 2

1
( ) exp
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max( , , , ) min( , , , )

d
ik jk

i j

k k
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r x x x x x x



  
  

    
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 (1) 

where rk represents the range of the k-th column. In Eq. (1), 

although S(xi, xj) is also in the interval (0, 1], the defect of

similarity based on the traditional Euclidean distance is 

overcome. 

2.2. Graph Generation 

Graph partition is used to generate granular. In this theory, a 

triple can be used to describe the graph system (GS), which 

can be defined as follows: 

 ,s,GS X M ,                (2) 

where X denotes the nonempty samples set formed by 

objects, it is called a universe of discourse, X=[x1, x2, …, xn], 

n=|X|; s is similarity threshold. Lower similarity generates 

coarser granular, and higher similarity generates finer 

granular. M is similarity matrix, the element of similarity 

matrix 
, {0,1}i je  , it can be calculated by Eq.(3): 

,

( ), ( )

0,otherwise

i j i j

i j

S S s
e


 


x , x x , x
    (3) 

Due to 
2 2i j j i  x x x x , and 

2
0i i x x , similarity 

matrix is expressed in Eq .(4): 
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Actually, similarity matrix is upper triangular matrix, and all 

diagonal elements are 0. In the similarity matrix, if eij≠0, a

line will connect two samples xi and xj, and the value of eij 

is the weight of the line. Otherwise, there is not any 

connecting lines between two samples. According to the 

GS, the graph G of objects can be generated, and G = (X, 

M), actually, where X represents the set of points, and M 

represents the set of edges. 
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(c) Similarity distribution calculated by the method (Huang et al. 2007)

Figure 1. Comparison of similarity distribution calculated 

by different methods 

A difficult and important issue is how to determine the 

similarity threshold s (Zhang et al., 2000; Luvburg, 2007; 

Huang et al., 2007). Generally, s can be given by trial-and-

error method, or experts according to real problem. 

However, the method depending on the experts’ experiences 

is inevitably subjective. In this paper, the numerical 

determination method based on the frequency distribution 

histogram is proposed, which can be used to illustrate 

frequency distribution of similarity matrix. In the proposed 

method, the interval (0, 1] is divided into 10 equal 

subintervals, and then the quantity of elements belonging to 

each subinterval can be counted. Normally, the distribution 

of all elements is similar to normal distribution. In practice, 

the similarity threshold s can be adjusted depending on the 

frequency distribution histogram. 

The advantage of proposed method is that it can give the 

distribution of similarity matrix intuitively, which is 

conducive to reduce the dependency on the experiences of 

experts, meanwhile, the granular generation can be realized. 

Furthermore, the data of bearing outer and inner race fault 

(Zheng et al., 2016) will be used to verify the merit of 

dimensionless similarity by comparisons with the methods 

cited from Refs. (Zhang, 2000) and (Huang et al., 2007), the 

two kinds of fault respectively contain 60 samples, and the 

attributes of sample have different dimensions. The 

comparisons of similarity frequency distribution are shown 

in Figure1.  

According to Figure 1, due to the influence of different 

dimensions, the similarity calculated by the methods from 

Refs.  (Zhang, 2000) and (Huang et al., 2007) can hardly be 

used from the engineering standpoint, and the distributions 

are not norm distribution. The comparison results indicate 

that dimensionless similarity is rational and effective for 

engineering practice. 

3. GRAPH PARTITION METHOD BASED ON SIMILARITY

In the graph theory, graphs containing no loops or multiple 

edges will be referred to as simple graphs, and the graph G 

generated by GS is a weighted simple graph. In the graph G, 

the trivial subgraph Gts having no connections with other 

points will be regarded as granular that only containing one 

point. Furthermore, except all trivial subgraphs, the 

subgraph Gs of graph G will be used to extract the complete 

subgraph Gcs, and then based on certain rules, the granular 

will be generated, which is a process of granular computing 

in this paper. Therefore, how to find all complete subgraphs 

in the graph Gs is very important, especially for the complex 

data sets. The algorithm for extracting all complete 

subgraphs is developed by the similarity matrix, and it can 

be described as follows:  

// find all complete subgraphs 

CG={ }; // CG denotes the set of complete subgraphs 

for i=1 : n -2 
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if sum(M(i , :))≠0 

Xs={ }; Xs={xj | j=i+1,…,n, eij≠0}; // Xs is a subset of X 

Xs={xi, Xs};  

Ms is a |Xs|×|Xs| similarity submatrix generated by Xs; 

tag=0; // tag is a counting sign; 

in the Ms, if ∀  e=0, tag=tag+1, and then store two

samples relating to e in the position matrix P2×tag; // P 

indicates the two samples have no connection, so the two 

samples can not exist in a same complete graph 

if tag=0 // it means all objects connect with each other 

CG={{Xs}, CG}; 

else 

CGt={}; CGt={Xs}; // CGt is used to store samples sets 

temporarily 

for t=1 : tag 

for k=1 : |CGt| 

∃P(t , :)∈CGt(k);

CGt(k)= CGt(k)- P(t , 1);  

and CGt(|CGt|+1)= CGt(k)+ P(t , 1) - P(t , 2); 

end  

end 

CG={CGt, CG}; 

end 

end 

end 

∀CG(i)∈CG(j), s.t. i, j=1,2,…, |CG|, j≠i, delete CG(i); // if 

containing relation of any two subsets in CG is existence, 

delete one subset 

// the program for finding all complete subgraphs runs to 

completion 

Based on the previous procedure, all complete subgraphs are 

stored in CG. And for granular, it can be generated using the 

trivial and complete subgraphs. So for the trivial subgraphs, 

the granular is constructed as follows: 

Gr={}; // Gr is the set of granular 

Gr={{xi}| i=1,2,… ,n, sum(M(i, :))+sum(M(:, i))=0}; // xi 

constitutes a Gts in the graph G 

For the complete subgraphs, the process of generating 

granular is relatively complicated. To solve the problem, 

three rules are proposed for coping with CG. Firstly, the 

subset containing the most elements will form a granular, 

and the purpose is to avoid generating the granulars 

containing only one sample. Secondly, the subsets 

containing the same number of elements will depend on the 

weights, and the subset with higher weight value will form a 

granular. Furthermore, once a subset is selected as a 

granular, and some elements existing in other subsets will 

be deleted. Thirdly, if a subset only contains one element, it 

will also form a granular. The process will be repeated until 

each sample is assigned to a granular. The process of 

granular generation is graph partition. Therefore, the 

granular is constructed as follows: 

while |CG|>0 

CGt={}; // CGt is used to store complete subgraph with 

most elements temporarily 

CGt={CG(i) | arg max(|CG(i)|), s.t. i=1,2,…, |CG|};

if |CGt|=1 

Gr={CGt, Gr}; // execute the first rule. 

else 

    // CGt is re-assign a complete subgraph with highest 

weight 

CGt={CGt (j) | arg max(sum(
t t( ) ( )j jCG CG

M )), s.t. 

j=1,2,…, |CGt|}; // execute the second rule.

    Gr={CGt, Gr}; 

end 

the complete subgraph CGt forming a granular will be 

deleted from CG; 

∀CG(k)∩CGt ≠ ∅, s.t. k=1,2,…, |CG|, delete {CG(k)∩CGt}

from CG(k); 

∀CG(l)∈CG(k), s.t. l, k=1,2,…, |CG|, l≠k, delete CG(l); 

//eliminate containment relations 

∀ |CG(k)|=1, s.t. k=1,2,… , |CG|, Gr={CG(k), Gr}, then 

delete CG(k); 

end 

So far, the whole process of generating granulars is ending, 

and it will be demonstrated by a representative case. There 

are 10 samples in this case, X=[x1, x2, …, x10]. The similarity 

matrix is given as follows: 
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10 10

0 0 0 0 0 0 0 0 0 0

0 0 0.97 0.95 0.97 0 0 0 0 0

0 0 0 0.98 0.94 0 0 0.93 0 0

0 0 0 0 0.96 0.93 0.97 0 0 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0.97 0 0.98 0.91

0 0 0 0 0 0 0 0 0.98 0

0 0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0 0.93

0 0 0 0 0 0 0 0 0 0


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 
 
 
  

  
 
 
 
 
 
 
  

M

. 

According to matrix operation, x1 constitutes a trivial 

subgraph, so it forms a granular automatically, i.e. 

Gr={{x1}}. The subgraph constituted by the other objects is 

used to extract all complete subgraphs. Take x 2 and x 3 as an 

example, for x 2, Xs={x2, x3, x4, x5},  

so 

0 0.97 0.95 0.97

0 0 0.98 0.94

0 0 0 0.96

0 0 0 0

s

 
 
 
 
 
 

M , 

and all e in Ms are not equal to 0, that means tag=0, so 

CG={{x2, x3, x4, x5}}. On the other hand, for x3, Xs={x3, x4, 

x5, x8},  

so 

0 0.98 0.94 0.93

0 0 0.96 0

0 0 0 0

0 0 0 0

s

 
 
 
 
 
 

M . 

In this example, on the contrary, tag=2, it can deduce that 

the position matrix 
4 8

5 8

 
  
 

x x
P

x x
. Accordingly, Figure 2 

describes the process. 

CGt={Xs}={{x3, x4, x5, x8}}

CGt={{x3, x4, x5 }, {x3, x5, x8}}∵P(1,:)=[x4, x8]

CGt={{x3, x4, x5 }, {x3, x5}, {x3, x8}}∵P(2,:)=[x5, x8]

∵CGt (2)∈CGt (1) CGt={{x3, x4, x5 }, {x3, x8}}

Figure 2. Demo diagram of extracting complete subgraphs 

Hence, the CG={{x2, x3, x4, x5}, {x3, x8}, {x4, x6, x7}, {x6, 

x7, x9}, {x6, x9, x10}}. Then Figure 3 can be used to describe 

the process of generating granulars. Finally, the 10 samples 

can generate 5 granulars, and Gr={{x1}, {x2, x3, x4, x5}, 

{x8}, {x6, x7, x9}, {x10}}. 

∵ (1) (1) (2) (2)
sum( ) sum( )

 


CG CG CG CG
M M

 Gr={{x1}}

Gr={{x1},{x2, x3, x4, x5}}∵|CG(1)|=4

delete CG(1)

CG={{x8}, {x6}, {x6, x7}, {x6, x7, x9}, {x6, x9, x10}}

absorb subset

CG={{x8}, {x6, x7, x9}, {x6, x9, x10}}

∵|CG(1)|=1 Gr={{x1},{x2, x3, x4, x5},{x8}}

delete CG(1)

CG={{x6, x7, x9}, {x6, x9, x10}}

Gr={{x1},{x2, x3, x4, x5},{x8},{x6, x7, x9}}

delete CG(1)

CG={{x10}}

∵|CG(1)|=1 Gr={{x1},{x2, x3, x4, x5},{x8},{x6, x7, x9},{x10}}

CG={ }

delete CG(1)

Figure 3. Demo diagram of generating granulars 

It is shown in the case that a large number of similar 

samples form granulars can keep the diversity of granulars. 

Moreover, the granular formed by single sample maintains 

the original distribution of data. Of course, once more 

samples are processed, the intuitive graph partition 

depending on mankind is impossible to cope with the 

complicated big data. In this situation, huge calculation 

work can be only realized through matrix operation rules by 

the aid of advanced computer. So the granular computing 

using graph partition is achieved depending on matrix 

operation rules proposed above.  

4. THE APPLICATION OF GRANULAR AND ITS EVALUATION

After generating the granular, it is unnecessary for all 

samples to participate in training, because the granular can 

replace the corresponding samples. It will reduce training 

samples and improve computational efficiency significantly. 

Therefore, application of the granular into fault diagnosis is 

important. Meanwhile, the evaluation system is designed for 

judging the spatial distribution under the changing of 

training data. 
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4.1. Application of Granular in Fault Diagnosis 

In fault diagnosis, training samples satisfying a certain 

similarity can form a granular. Since many samples are 

close to each other in the fault feature space, its 

contributions to judging the fault pattern are basically 

similar. Accordingly, it is reasonable for a typical sample to 

represent all samples to participate in training; this will help 

to improve computational efficiency properly. 

In this paper, the samples in same granular can be 

replaced by one data in the geometric center of the granular, 

and the data is designed as granular center (gc) sample. For 

the i-th granular Gr(i), the granular center sample can be 

calculated by: 

( )

1

gc
( )

Gr i

j

j

Gr i




 x

x ,             (5) 

where xj is the sample in the i-th granular. Obviously, 

granular center sample is in the central position of a small 

neighboring area that formed by the samples in term of 

spatial distribution, and it can reflect the same fault pattern 

feature compared with other samples synthetically. 

4.2. Evaluation for the Spatial Distribution Change 

The spatial distributions of fault patterns are embodied in 

the original samples, and the samples in the same 

neighboring area may represent the same kind of fault 

pattern. Undoubtedly, any remarkably change to the original 

samples, i.e., deleting, moving, replacing, can change the 

spatial distribution of fault pattern, which will influence the 

recognition of unknown samples. After replacing the 

samples, the change to original samples needs to be 

evaluated.  

In this paper, the original samples center xoc is equal to 

the mean value of all samples, it can be calculated by the 

expression similar to Eq. (5). When the replacing is made, 

the statistics of the distances from xoc to both the original 

samples and the replacement samples must be changed, and 

the statistics should include Min, Mean, Max and STD 

(standard deviation) of distances. Furthermore, the statistics 

about original and new samples can respectively constitute 

two vectors sos and sns. Accordingly, based on the 

comparisons between sos and sns, their obvious difference 

means larger variation of spatial distribution; on the 

contrary, it means the smaller variation. That is the principle 

of a qualitative evaluation system.  

In practice, the difference between sos and sns can be 

measured quantitatively. In this study, a weighted relative 

error is designed as a criterion for evaluating the spatial 

distribution change. The weights of the statistics are 

distinguishing, and the changes of Min and Max are 

respectively single indicators. Relative small changes mean 

that the detailed distribution is maintained better. On the 

contrary, they don’t necessarily imply the obvious change in 

distribution. Thus, the weights of the changes of Min and 

Max are smaller than the changes of Mean and STD, and the 

weight vector for the changes of Min, Mean, Max, and STD 

is [0.1,0.4,0.1,0.4]ω . Eventually, the weighted relative 

error (eWR) can be calculated by: 

os

os ns

WR

1 os

( ) ( )
( ) 100%

( )i

i i
e i

i

 
    
 

s s s

ω
s

,               (6) 

5. APPLICATION EXPERIMENTAL AND PERFORMANCE

COMPARISONS

In order to verify the applicability of the proposed method, a 

typical 2-dimensional nonlinear data “twomoons” and a 

high-dimensional practical condition monitoring data of 

certain equipment, whose relative information are listed in 

Table 1, are used. The training and test numbers are selected 

randomly. Meanwhile, according to Eq. (1), similarity 

ranges of the two data are shown in Table 1. 

5.1. Verify the Rationality of Parameter eWR 

Different similarity thresholds will generate coarser or finer 

granular. According to the previous analysis, granular 

computing for data compression must cause the spatial 

distribution change of data. Table 2 shows the situation of 

generating granular based on the different similarity 

thresholds. With the decreasing of similarity threshold, the 

number of granular is decreased. An extreme case is that all 

samples are classified as a granular which makes eWR=100%. 

Especially, for 2-dimensional data, few granular do not 

necessarily imply the smaller eWR. However, for the high-

dimensional monitoring data, when the number of granular 

is reduced, the eWR is also decreased. Generally, the 

changing trend of eWR is increased with the decreasing of 

similarity threshold, as shown in Figure 4.  
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Figure 4. Change relationship between similarity threshold 
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and eWR 

Table 1. The relative information about data sets 

Name Dimensions Categories Train samples Test samples Similarity range 

Twomoons 2 2 
1002 

(668+334) 

500 

(333+167) 

[0.5679 0.9999] 

[0.5667 0.9993] 

Monitoring data 10 2 
1334 

(667+667) 

628 

(333+295) 

[0.3242 0.9754] 

[0.3406 0.9783] 

Table 2. Situation of generating granular based on different similarity thresholds 
Twomoons Monitoring data 

Similarity threshold Granular (sample) 

Number 
eWR Similarity threshold Granular (sample) 

number 
eWR

[0.9783 0.9777] [154 106] [4.30% 2.03%] [0.9429 0.9464] [595 598] [1.39% 2.44%] 

[0.9683 0.9677] [87 74] [3.90% 2.36%] [0.9329 0.9364] [522 554] [4.61% 4.34%] 

[0.9583 0.9577] [64 51] [6.94% 3.31%] [0.9229 0.9264] [438 496] [7.70% 6.97%] 

[0.9520 0.9510] [47 39] [7.57% 2.81%] [0.9129 0.9164] [366 442] [11.60% 9.79%] 

[0.9420 0.9451] [38 34] [7.07% 5.18%] [0.9029 0.9064] [307 377] [11.96% 13.54%] 

[0.9320 0.9351] [32 25] [8.86% 4.87%] [0.8929 0.8964] [246 319] [14.26% 18.03%] 

[0.9220 0.9251] [23 23] [10.71% 5.69%] [0.8729 0.8764] [162 237] [22.59% 24.46%] 

[0.9120 0.9151] [21 18] [10.32% 7.10%] [0.8529 0.8564] [104 182] [22.64% 29.09%] 

[0.9020 0.9051] [17 15] [9.92% 5.17%] [0.8429 0.8464] [91 156] [23.25% 34.91%] 

[0.8520 0.8551] [11 11] [19.23% 17.43%] [0.8029 0.8064] [42 95] [39.44% 43.28%] 

Furthermore, some spatial distributions about data set 

“Twomoons” will be drawn in a two-dimensional plane 

(Figure 5) for demonstrating the applicability directly. 

Figure 5 demonstrates that the detailed distributions of 

subgraphs are similar to the original spatial distribution. The 

larger weighted relative error is, the more obvious change in 

spatial distribution will be. Therefore, eWR corroborates the 

conclusion reflected in Figure 5. Accordingly, the parameter 

eMR is reasonable for measuring the change to the original 

samples. 

5.2. Influence of GPDS on classification algorithms 

For keeping classification accuracy, the validity and 

rationality of granular computing for reducing 

computational cost will be verified. For classification 

algorithms based on iteration operations, the number of 

iteration is always influenced by the number of training 

samples. Support vector machine (SVM) optimized by 

particle swarm optimization (PSO) (Zheng, 2013), the 

learning vector quantization (LVQ) network (Biswal et al., 

2014), the back propagation (BP) network (Ali et al., 2015), 

and the kernel multi-team competitive optimization (k-

MTCO) (Zheng, 2016) are used to verify the applicability of 

granular computing. Some more detailed information can be 

found in the cited references. Especially, the population 

sizes of PSO and iteration number are set as 20 and 100. 

The population size of K-MTCO and the iteration number 

are set as 80 and 600, respectively; the error goals for BP 

and LVQ network are set as 0.001, and the iteration 

numbers for them are set as 1000 and 200, respectively. 2 

data sets are scaled to be in interval [0, 1], which helps to 

reduce the search range and to improve the algorithm 

efficiency. Furthermore, all calculations are carried out 

under the same setting. 

No free lunch (NFL) theorem indicates that any pattern 

classification algorithm cannot hold the superiority in its 

blood, it is impossible to be effective for all problems 

(D'Orsi et al., 2001). Because the classification principles 

and operation rules are completely different, the recognition 

accuracies calculated by the four algorithms are obviously 

differences. Figure 6 and Figure 7 demonstrate that the 

classification results and elapsed times of these four 

algorithms are based on two data sets. Meanwhile, Figure 7 

show that the elapsed time is always decreased with the 

reduction of training samples.  

For 2-dimensional nonlinear separable data, BP and SVM 

are superior to LVQ and K-MTCO. Under the precondition 

of rapid convergence, the computational cost of BP and 

LVQ are relatively lower. Moreover, the number of training 

samples has a significant influence on the accuracies of 

LVQ and K-MTCO, and the influence does not show any 

regularity with the change of training samples. 

Essentially, Figure 6 indicates that the lower eWR does not 

necessarily imply the higher accuracy. The difference of 

classification principles and the change of spatial 

distribution of data lead to the accuracy change with the 

quantity change of training samples. Especially, some 

deleted samples may reduce the misclassification of the 

algorithms. Therefore, how to determine the proper 

similarity thresholds is very important, and the future work 

will focus on it. However, the experimental results and 
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performance comparisons have shown the applicability of 

the proposed method. Generally, the granular computing 

based on GPDS can really improve the computational 

efficiency under the precondition of keeping classification 

accuracy, and it can be used to improve the efficiency of 

troubleshooting and shorten the maintenance period 

properly. 
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Figure 5.  Comparison of the change of spatial distribution 
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6. CONCLUSIONS

In this paper, main conclusions obtained in the study are 

summarized as follows: 

(1) The dimensionless similarity is proposed to overcome

the influence of data with different dimensions, and

similarity threshold determination method based on

frequency distribution histogram is proposed to reduce the

dependency on the experiences of expert. The results show

that the proposed methods are rational and effective for

engineering practice.

(2) The granular computing based on graph partition is

designed to compress the original data; it can maintain the

spatial detailed distribution of original data properly.

Moreover, the parameter eMR is proposed to measure the

change of the original samples.

(3) The granular computing is used in the field of fault

diagnosis. The computational efficiency is improved with

the decreasing of training samples, and the proper

compressed training samples can maintain the classification

accuracy and a more reasonable result will be obtained. But,

the influence of different number of training samples on the

accuracies does not show any regularity. Therefore, how to

determine the proper similarity thresholds is very important

and thus the future work will focus on it.

NOMENCLATURE 

X         samples set 

x a sample 

d dimension of a sample 

r range of a column 

S similarity 
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GS graph system 

s similarity threshold 

M similarity matrix 

G a graph 

Gts trivial subgraph 

Gcs complete subgraph 

Gr set of granular 

xoc original samples center 

sos           the statistics about original samples 

sos           the statistics about new samples 

eWR weighted relative error 
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