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ABSTRACT 

In this study, compressive sensing approaches for condition 

monitoring are proposed to demonstrate their efficiency in 

handling a large amount of data and the improved damage 

detection capability. A built-in rotating system was used for 

demonstration. Data were then compressively sampled to 

obtain compressed measurement. For damage detection, 

Variance considered machine (VCM) algorithm was 

employed to classify failure modes of rotating systems. The 

experimental results showed that the proposed method could 

effectively improve the data processing speed and the 

accuracy of condition monitoring of rotating systems. 

1. INTRODUCTION

Condition monitoring is a technique that measures the 

vibration signal of the machinery and detects damage in the 

rotating body [1]. Extensive research efforts have focused on 

damage detection and classification [2]. In order to diagnose 

the target system accurately,  many sensors with a high-

sampling frequency are deployed, which requires to process 

a huge amount of data. . Donoho [3] proposed a compressive 

sensing technique to overcome such difficulties. With 

compressive sensing, the length of the measurements is 

significantly shorter than that of the original signal. 

In this study, compressive sensing is applied to condition 

monitoring. Various damage sensitive features were 

extracted from the  compressive measurement and damage 

detection and discrimination were conducted by using a 

statistical  and machine learning algorithm. 

2. COMPRESSIVE SENSING

In 2006, Donoho[3] proposed compressive sensing that could 

recover signals without measuring the signals a certain level 

in the Nyquist sampling frequency under a certain condition 

i.e , Sparsity.

 This sparse signal can be recovered into the original signal 

by the compressive sensing employing Eq(1) 

y = Φx  (1) 

 Where y refers to the signal measured though compressive 

sensing and x refers to the original signal. Here, Φ is matrix 

of the compressed measurement, which is applied to the 

amount of data held by x to yield a small amount of 

compressed data y. Matrix Φ  shall satisfy the restricted 

isometry property(RIP) condition that matrix Φ  projects 

signal x with uniform energy, and the signal projected with 

constant energy can be reliably compressed and recovered. 

For a compressive measurement matrix that saticsfies the 

above condition, the random Gaussian matrix with 

independent and identical distributions are mainly used. 

 In this study, signal features were extracted from the 

compressive measurement without the reconstruction process. 

3. STATISTICAL CONDITION MONITORING TECHNIQUE

3.1. Selection of signal features appropriate for condition 

monitoring 

Twenty signal features are used to quantitatively represent 

the status of a rotating system. The selected signal features 

are widely used signal features in condition monitoring, and 

are the same as those used in the studies by Youn et al. [4]. 

As listed in Table 1, twenty health signal features were 

extracted, where N refers to the number of measured data 

samples and x(n) refers to a data value in each sample.  
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3.2.  Variance Considered Machine (VCM) 

 VCM is a classification algorithm which considers variance, 

averages, and the maximum margin between the data 

groups.[5] 

According to Bayes’ theorem, the posterior probability 

P(ck|x) is calculated in Eq. (2) using the class conditional 

probability density function P(x|ck) and the prior probability 

P(ck).  

P(ck|x)=
P(x|ck)P(ck)

𝑃(𝑥)
    (2) 

The error probability can be calculated using Eq. (3). 

P(error)=P(x ∈ R2,c1)+P(x ∈ R1,c2) 

=∫ P(x|c1)P(c1)
 

R2
dx + ∫ P(x|c2)P(c2)

 

R1
dx    (3) 

Figure 1. Variance of error probabilities according to the 

decision point x*

In Fig. 1, the area represented by the diagonal lines is the first 

part of the error probability equation, and the gray area is the 

second  part of the equation. The error probability changes 

depending on the position of x*; the error probability 

becomes minimal by reducing the error by  that of the 

reducible error (red triangle) when x* moves from xA to xB. 

This is the Bayesian optimal boundary that minimizes the 

error probability.  VCM has applied the Bayesian decision 

theory to SVM. 

4. EXPERIMENTAL DEVICE AND PRCEDURE

For experiments, the RK4 system was used, as shown in Fig. 

2. In the experiment, three conditions were applied: normal,

misalignment damage, and bearing damage. For the bearing

damage, a normal bearing was replaced with  three stage

damaged bearings to simulate the damage. Accelerometers

were attached at both ends and at the center of the structure

to acquire the data, and 5kHz and 25kHz sampling

frequencies were used. After the signal measurements,

compressed signals were obtained  using the compressive

operation matrix.

Figure 2. Rotational system 
 

5. EXPERIMENTAL RESULTS

5.1. Comparison of the compressed measurement and 

original data 

The results of the condition monitoring using the compressed 

measurements are compared to the original data.. For the 

damage, misalignment damage was used. Fig. 3 shows the 

comparison result of the P13 signal features. When damage 

occurrs, high frequency components clearly indicate the 

presence of damage. However, it was difficult to distinguish 

the damage by using the data measured at a low sampling 

frequency (5 kHz). With the higher sampling frequency, the 

difference in the distribution of the signal features due to the 

damage could be observed. The difference in the distribution 

of the signal features also could be verified for the 

compressed data. It should be noted that the compressive data 

used in this analysis (c) is 1/5 of the original data length, 

which is the same as that measured at the sampling frequency 

of 5 kHz.. 

(a)      (b) 

Table 1. Signal features in time domain 
Features Formula Features Formula 

P1 
∑ 𝒙(𝒏)𝑵

𝒏=𝟏

𝑵
P11 

∑ 𝒙(𝒏)𝟒𝑵
𝒏=𝟏

𝑵(𝑷𝟐𝟒)

P2 √
∑ (𝒙(𝒏) − 𝑷𝟏)𝟐𝑵

𝒏=𝟏

𝑵 − 𝟏
P12 𝐦𝐚𝐱(𝐱) +

𝒎𝒂𝒙(𝒙) − 𝒎𝒊𝒏(𝒙)

𝟐(𝑵 − 𝟏)

P3 𝐦𝐚𝐱|𝒙(𝒏)| P13 𝐦𝐢𝐧(𝐱) +
𝒎𝒂𝒙(𝒙) − 𝒎𝒊𝒏(𝒙)

𝟐(𝑵 − 𝟏)

P4 √
∑ (𝒙(𝒏))𝟐𝑵

𝒏=𝟏

𝑵
P14 

𝑷𝟒

𝑷𝟏

P5 (
∑ √|𝒙(𝒏)|𝑵

𝒏=𝟏

𝑵
)𝟐 P15 

𝑷𝟒

𝒎𝒂𝒙(𝒙(𝒏))

P6 
∑ (𝒙(𝒏) − 𝑷𝟏)𝟑𝑵

𝒏=𝟏

(𝑵 − 𝟏)𝑷𝟐𝟑
P16 − ∑ 𝑷(𝒙𝒊)𝒍𝒏𝑷(𝒙𝒊)

𝑵

𝒊=𝟏

 

P7 
∑ (𝒙(𝒏) − 𝑷𝟏)𝟒𝑵

𝒏=𝟏

(𝑵 − 𝟏)𝑷𝟐𝟒
P17 

𝑷𝟒

𝟏
𝑵

∑ |𝒙(𝒏)|𝑵
𝒏=𝟏

P8 
𝑷𝟒𝟐

𝟏
𝑵

∑ |𝒙(𝒏)|𝑵
𝒏=𝟏

P18 

𝑷𝟓

𝟏
𝑵

∑ |𝒙(𝒏)|𝑵
𝒏=𝟏

P9 
𝑷𝟓𝟐

𝟏
𝑵

∑ |𝒙(𝒏)|𝑵
𝒏=𝟏

P19 
∑ (𝒙(𝒏) − 𝑷𝟏)𝟐𝑵

𝒏=𝟏

𝑵 − 𝟏

P10 
∑ 𝒙(𝒏)𝟑𝑵

𝒏=𝟏

𝑵(𝑷𝟐𝟑)
P20 

∑ |𝒙(𝒏)|𝑵
𝒏=𝟏

𝑵
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(c) 

Figure 3. Measured data at sampling frequency of                

5 kHz (a), 25 kHz (b) and One fifth of the data 

measured at sampling frequency of 25 kHz (c)  

5.2. Fault Diagnosis of Rotating Systems using VCM 

Without using the reconstruction process, the  features are 

extracted from the compressive measurements. The extracted 

features were then used for diagnosis of the rotating system.  

The optimal features were selected based on the Z-score 

method. The VCM process is shown in Fig. 4. In Fig. 4(a), 

the x axis represents the P13 feature, the y axis represents the 

P5 feature, and each state is projected into a 2D space.

(a) (b)

(c) (d)

Figure 4. Flow of Variance Considered Machine (VCM) 

Fig. 4(b) shows the normal and damage data classified using 

SVM. We analyzed the histogram of the left and right data 

group that were separated by the hyperplane generated by 

SVM. The output is shown in Figs. 4(c) and 4(d). The blue 

line in Fig. 4(c) indicates the position of the hyperplane in 

SVM, and the red line in Fig. 4(d) (which is the Bayesian 

optimal boundary that minimizes the error probability) 

indicates the position of the hyperplane in the VCM. After 

changing the position of the hyperplane, machine learning 

was performed using 700 training data sets and 380 test data 

sets. 

Table 2. Estimation of 3D damage classification 

performance 

Normal state Bearing damage Misalignment 

SVM 96% 100% 94% 

VCM 98% 100% 98% 

Table 2 lists the results of the classification using SVM and 

VCM for the normal state, bearing damage, and 

misalignment groups. When SVM was used, the accuracy 

rate of the normal group was 96%, that of the bearing group 

was 100%, and that of the misalignment group was 94%. 

However, the accuracy rate improved with the application of 

VCM. The accuracy rate of the normal group was 98%, that 

of the bearing group was 100%, and that of the misalignment 

group was 98%. Therefore, it was confirmed that the fault 

detection capability of the VCM is superior to that of SVM. 

6. CONCLUSION

In this study, compressive sensing was applied to condition 

monitoring of a rotational system. For damage classification 

a new machine learning algorithm, referred to as Variance 

Considered Machine(VCM), is applied to classify the failure 

modes of rotating systems. The experimental results showed 

that the proposed method could effectively improve the data 

processing speed and accuracy of the condition monitoring of 

rotating systems. 
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