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ABSTRACT 
Steel railway bridges are exposed to repeated train loads 
which often cause fatigue failure. To guarantee the target 
fatigue life, bridge maintenance such as local inspection and 
repair should be properly provided based on accurate fatigue 
life prognosis, but it is a challenging task because there are 
various sources of uncertainty associated with bridges, train 
loads, environment, and maintenance work. For the optimal 
risk-based maintenance, it is thus essential to predict the 
probabilistic fatigue life of a steel railway bridge and update 
the life prognosis information based on the results of local 
inspection and repair. In this research, a probabilistic 
approach is proposed to estimate the fatigue failure risk of 
steel railway bridges and update the prior information of 
fatigue life prognosis after bridges are inspected and 
repaired. The proposed method is applied to a generic steel 
railway bridge, and the effects of local inspection and repair 
on the probabilistic fatigue life prognosis is discussed 
through parametric studies. 

1. INTRODUCTION

Steel bridges which are important nodes in a railway 
transportation network are prone to the risk of fatigue failure. 
It is thus necessary to predict the fatigue life accurately so 
that appropriate decisions on optimal bridge maintenance 
can be made for a target period. However, such fatigue life 
prognosis is a challenging task because it requires 
considering the impact of inspection and repair, which are 
affected by various sources of uncertainty. 

Recently, Lee & Song (2014) proposed a new method for 
fatigue life prognosis of structures. In their research, 
however, the proposed method was applied to a structure 
where the loading could be simplified to have a constant 
amplitude. Furthermore, it was possible to update the prior 
life prognosis information after structural inspection only, 
but not after repair. Therefore, in this research, the 
formulation in Lee & Song (2014) is further developed so 
that it can handle varying-amplitude loads and can update 
the life prognosis information of steel railway bridges after 

inspection and repair. To demonstrate the proposed method, 
it is applied to a numerical example of a generic steel 
railway bridge, and the fatigue life of the bridge is evaluated 
under various scenarios of inspection and repair. 

2. PROPOSED METHODOLOGY

After a short review of the fatigue life prognosis method 
proposed by Lee & Song (2014), this paper explains how 
the method is further developed. 

First, consider the following crack propagation model (Paris 
and Erdogan 1963): 

 mKC
dN

da
 (1)

where a denotes the crack length, N is the number of load 
cycles, C and m are the material parameters, and ∆K denotes 
the range of the stress intensity factor. Using Newman’s 
approximation (Newman & Raju 1981), this stress intensity 
factor range can be calculated as 

  aaYSK  (2)

where ΔS and Y(a) denote the stress amplitude and the 
geometry function, respectively. 

By substituting Eq. (2) into Eq. (1), the following equation 
can be obtained: 

   dNSCda
aaY

m
m 



1
(3)

If the load amplitude ΔS is a constant, Eq. (3) can be 
developed to an equation for fatigue life prognosis, as 
described by Lee & Song (2014). However, when a train 
passes over a bridge, the stress fluctuates and has various 
amplitudes. With various stress amplitudes ΔSi and the 
corresponding number of cycles ni, the time duration T 
required for a crack propagation from the initial crack length 
a0 to the crack length ac can be estimated as 
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where ν0 is the frequency of train loading, and Namp is the 
total number of stress amplitudes. 

Using Eq. (4), the failure of a structural member within a 
given time interval [0, Ts] can be expressed by a limit-state 
function shown below. 

  0 sTTg X (5)

where X denotes the vector of random variables 
representing uncertainties. 

For the fatigue failure event of interest E, the probability can 
be updated after multiple events of inspection and repair, by 
use of conditional probability. According to Jiao & Moan 
(1990), these inspection and repair events can be classified 
into two types: equality and inequality types, depending on 
whether a crack is detected (and measured) or not. 
Considering inspections and repairs are generally made at 
multiple locations, there are three possible combinations: 
inequality, equality, and mixed cases. The detailed 
formulations of the limit-state functions and probability 
update for these three cases are provided in Lee & Song 
(2014). 

3. NUMERICAL EXAMPLE

The proposed method of fatigue life prognosis is tested 
through its application to a generic steel railway bridge. The 
bridge is assumed to consist of over thirty members, and it 
is not feasible to monitor all the members. Therefore, in this 
research, only 5 structural members that show the highest 
levels of axial stress under a generic train are selected for 
life prognosis. The 5 members are named Members 1, 2,…, 
5 in the decreasing order of their maximum stresses, and 
their maximum stresses are estimated to be 32.8, 32.5, 21.3, 
20.7, and 20.7 MPa, respectively. 

The statistical information of random variables is 
determined through a comprehensive literature survey (Lee 
& Song, 2014, Lee & Cho 2016, Jiao & Moan 1990), and it 
is summarized in Table 1. Moreover, it was confirmed 
through a preliminary analysis that the correlation between 
random variables gave a negligible impact to the result of 
fatigue life prognosis. Thus, for the sake of simplicity, all 
random variables are assumed to be independent in this 
example. 

In addition, the following deterministic parameters are used: 
Paris law parameter (m) = 3.344, L-bracket width = 650 mm, 
critical crack length (ac) = 12.7 or 19.05 mm, and average 
train traffic = 20/day. For the geometry function Y(a) in Eq. 
(2), an equation for I-beams described in Lee & Cho (2016) 
is introduced. 

4. ANALYSIS RESULTS

Fig. 1 shows the reliability indices of the 5 selected 
members at various periods of service time. Overall, the 
reliability indices of the bridge decrease as the service life 
increases, which means that the probability of failure 
increases as the use of the bridge increases. 

Figure 1. Reliability indices of the 5 selected members. 

According to Lee & Cho (2016), the American Association 
of State Highway and Transportation Officials (AASHTO) 
Bridge Design Code recommends a target reliability index 
of 3.5 (i.e., a failure probability of 2.33 × 10−4) with a 
service life of 75 years for steel members. With this target 
reliability index (a black line in Fig. 1), the fatigue lives of 
all the 5 members are calculated. The fatigue lives of 
Members 1 and 2 are evaluated as 75.4 and 78.2 years, 
respectively, whereas the fatigue lives of the other members 
are estimated to be longer than 100 years. This is mainly 
because the stresses of Members 1 and 2 are much larger 
than those of the other members. Therefore, the analysis 
results of only Members 1 and 2 are presented hereafter. 

Table 1. Statistical properties of random variables. 
Random 
variable 

Mean c.o.v. 
Distribution 

type 
Paris law 
parameter C

1.537 × 10−12 

m/cycle/(MPa·mm)m 
0.226 Lognormal

Initial crack 
length 

0.11 mm 1.0 Exponential

Initial crack 
length in 
repaired 
member 

0.11 mm 1.0 Exponential

Detectable 
crack size 

1.0 mm 1.0 Exponential

Crack 
measureme
nt error 

0 *0.1 Normal

Live load 
scale factor

1 0.1 Lognormal

(*: standard deviation) 
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For maintenance events, in this study, hypothetical scenarios 
of local inspection and repair are assumed, as listed in Table 
2 (TI: inspection time & ad: detectable crack size). 

Using the proposed method, the fatigue lives of Members 1 
and 2 can be estimated. Table 3 summarizes the result. 

In Scenario 1, the fatigue lives of the two members increase, 
because no crack is detected even after 50 years. The 
updated lives increase further in Scenario 2, because no 
crack is detected even with a better crack-detecting device 
(i.e., a smaller mean of the detectable crack size ad). In 
Scenario 3, no crack is detected even though an inspection is 
made at a later time than in Scenario 1, which increases the 
fatigue lives. In Scenario 4, the fatigue lives more increase 

than in Scenario 1, because no crack is detected at any of the 
members. 

From Scenario 5 to Scenario 7, the measured crack size 
increases from 0.1 to 1.0 mm. It is clearly observed that the 
longer the crack size measured, the more likely the members 
are to fail. In addition, the fatigue lives of Members 1 and 2 
in Scenarios 5–7 are shown in Table 2. 

In Scenario 8, it is clearly seen that the updated fatigue lives 
becomes larger in Scenario 8 than in Scenario 7 even though 
the same crack size is observed at the same inspection time 
point. This is due to the additional inequality events (i.e., no 
more cracks being detected at the other locations) observed 
in the mixed case for Scenario 8. However, after Members 1 
and 2 are repaired, the lives are significantly increased. 

5. CONCLUSION

This study presents a new method for the fatigue life 
prognosis of steel railway bridges. The proposed method 
can handle a varying-amplitude load and can update the risk 
of fatigue failure for steel railway bridges after inspection 
and repair. To demonstrate the proposed method, it is 
applied to a numerical example of a generic railway bridge. 
As a result, the effects of various inspection and repair 
scenarios on the reliability updating are investigated in the 
numerical example, such as the number of inspections, 
crack-detecting resolution, inspection interval, inspection 
location, measured crack length, and repair 

ACKNOWLEDGEMENT 

This study was supported by a grant (17SCIP-B066018-05) 
from the Smart Civil Infrastructure Research Program 
funded by the Ministry of Land, Infrastructure and 
Transport (MOLIT) of the Korean government and the 
Korea Agency for Infrastructure Technology Advancement 
(KAIA). 

REFERENCES 

Jiao, G., & Moan, T. (1990). Methods of reliability model 
updating through additional events. Structural Safety, 
vol. 9, no. 2, pp. 139-153. 

Lee, Y.-J., & Cho, S. (2016). SHM-based probabilistic 
fatigue life prediction for bridges based on FE model 
updating. Sensors, vol. 16, no. 3, pp. 317. 

Lee, Y.-J., & Song, J. (2014). System reliability updating of 
fatigue-induced sequential failures. Journal of 
Structural Engineering, vol. 140, no. 3, pp. 04013074. 

Newman, J. C., & Raju, I. S. (1981). An empirical stress 
intensity factor equation for the surface crack. 
Engineering of Fracture Mechanics, vol. 15, pp. 185-
192. 

Paris, P. C., & Erdogan, F. (1963). An effective 
approximation to evaluate multinormal integrals. 
Structural Safety, vol. 20, pp. 51-67. 

Table 3. Fatigue life prognosis results 

Scenario 
Fatigue life (years) 

Member 1 Member 2 
Design 

life 
75.4 78.2

1 88.8 84.2

2 97.9 88.1

3 92.5 85.8

4 94.2 88.8

5 73.3 75.3

6 63.6 70.7

7 54.2 65.3

8 61.6 65.4

9 > 100 > 100

Table 2. Assumed scenarios of inspection and repair. 
Scenario 
number 

Scenario description 

1 
No crack is detected in Member 1 
(TI = 50 years & mean of ad = 1.0 mm) 

2 
No crack is detected in Member 1 
(TI = 50 years & mean of ad = 0.5 mm) 

3 
No crack is detected in Member 1 
(TI = 75 years & mean of ad = 1.0 mm) 

4 
No crack is detected anywhere 
(TI = 50 years & mean of ad = 1.0 mm) 

5 
0.1 mm crack is found in Member 1 
(TI = 50 years) 

6 
0.5 mm crack is found in Member 1 
(TI = 50 years) 

7 
1.0 mm crack is found in Member 1 
(TI = 50 years) 

8 
1.0 mm crack is found in Member 1, but 
nowhere else 
(TI = 50 years & mean of ad = 1.0 mm) 

9 
0.5 mm crack is found in Member 1, but 
nowhere else, and Members 1 and 2 are repaired
(TI = 50 years & mean of ad = 1.0 mm) 
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