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ABSTRACT 

In this paper, an interesting observation on the noise-
dependent performance of prognostics algorithms is 
presented, as well as a method of evaluating the accuracy of 
prognostics algorithms without having the true degradation 
model is presented. We found that the randomness in the 
noise leads to very different ranking of the algorithms for 
different datasets. In particular, even for the algorithm that 
has the best performance on average, poor results can be 
obtained for some datasets. In absence of true damage 
information, we propose a metric, mean squared 
discrepancy (MSD), which measures the difference between 
the prediction and the data. It is shown that the ranking by 
MSD is strongly correlated with ranking with true 
degradation model. This may be particularly useful when 
information is available from multiple sites of damage for 
the same application. 

1. INTRODUCTION

Model-based prognostic approaches can provide a better 
performance than data-driven approaches when a 
degradation model is available (An et al., 2015). However, 
we have not found studies of the effect of randomness in the 
data on the ranking of algorithms, which is the objective of 
the present paper. 

Classical metrics such as the prognostic horizon,    
accuracy, (cumulative) relative accuracy and convergence 
(Saxena et al., 2010) require the knowledge of true damage 
degradation information, which in practice is not available. 
In this paper, we focus on four most commonly used model-
based algorithms and verify their performance through a 
simple degradation model with multiple simulated 
measurement datasets. 

The conventional metric, the mean squared error (MSE) 
measuring the difference between predicted and the true 
crack size, is firstly utilized to rank the four algorithms in 
terms of accuracy assuming the true information on crack 

growth is available. We examine how much the ranking 
changes from one dataset to another due to randomness in 
the noise. We assume that difference in performance from 
one dataset to another is caused by specific realizations of 
the noise, which may be friendly to one algorithm and 
unfriendly to another. Then a new metric based on 
measurement data, called mean squared discrepancy (MSD), 
which measures the difference between predicted crack 
sizes and measured data, is proposed to be a performance 
indicator in the absence of true crack size. Based on our 
numerical tests, it shows that the performance of one 
algorithm varies from one dataset to another. No method 
can perform consistently well and always be the best for 
handling all datasets. The ranking based on the mean 
squared error (MSE) can be mostly preserved when the 
ranking based on the mean squared discrepancy (MSD) is 
used. The former requires the true model while the latter 
does not. This indicates that MSD can be considered to rank 
the algorithms when the true crack size is not available. 

2. STRATEGY FOR COMPARISON AND METRICS FOR 

PERFORMANCE

When multiple predictions are available from different 
algorithms, it is important for the users to evaluate their 
performance. In this paper, we assess the performances of 
algorithms based on multiple randomly simulated datasets. 
In this section, the strategy for implementing performance 
comparison taking into account the randomness in data is 
introduced firstly, followed by the metrics used for 
performance evaluation. 

2.1. Strategy for implementing performance comparison 

We use a moving time window as an experiment strategy, as 
shown in Fig. 1, to examine how well a given algorithm 
predicts future crack propagation with increasing number of 
measurement data. In Fig. 1, the solid blue curve represents 
the true crack size, (denoted by a in the following text and 
equations), red dash line the median crack size predicted by 
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the algorithm (denoted by â ) based on the first Nf data 
points, black solid dots the fitting data, and red asterisks the 
validation data (denoted by av). Three different time 
windows for three different datasets are shown. 

Figure 1 Schematic illustration of moving time window 
strategy. 

2.2. Dealing with randomness in data 

The strategy in Section 2.1 is developed for one algorithm 
using one dataset. We randomly generate Nd datasets with 
the same noise level to assess the algorithms’ performance 
in different realizations of noise. These Nd datasets act as a 
database shared by all algorithms. For each dataset, the 
moving time window strategy is used, i.e., the previous Nm 
data are used to identify the parameters while the following 
Nv data are used for validation. There could be multiple time 
windows when using one dataset to test one algorithm. 

2.3. Metrics for performance evaluation 

Mean squared error (MSE) 

The mean squared error (MSE) integrated over the time 
window is used to measure the accuracy of an algorithm. 
MSE is defined as 
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where a is the true crack size, â the predicted crack size, 
and subscript the time step (refer to Fig.1 for illustration).  

Mean squared discrepancy (MSD) 

In practice, the MSE is unavailable since the true crack size 
cannot be available. A straightforward way is to compare 
the predictions with data. The difference between prediction 
and data is referred to as discrepancy. We consider the mean 
squared discrepancy (MSD) as a possible candidate for 
performance metric, as 
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where av is the validation data, and â the predicted crack 
size by the algorithm. In the numerical case study, we will 
show the feasibility of using MSD as the performance 
indicator to rank the algorithms for an individual dataset. 

3. NUMERICAL CASE STUDY

In this section, we investigate the four algorithms by 
assessing their prognostic performance to Nd=100 randomly 
generated measurement datasets. For each dataset, we test 
the prognostic behavior of each algorithm and rank them in 
terms of metrics. 

3.1. Ranking of prognostics algorithms is sensitive to 
noise in data 

We first show that even for our simple degradation model, 
when dealing with multiple measurement datasets from 
different realizations of random noise, the performance of 
an algorithm varies from one dataset to another, and none of 
the methods performs best for all datasets. The accuracy 
metric MSE is used to assess the performance of the 
algorithms.  

Table 1 compares the average MSE over 100 datasets for 
the three time windows (i.e.,Nf=10, 20, and 30, 
respectively). Table 1 shows that in terms of average 
performance, BM and PF outperform the other two while 
NLS yields the largest MSE, especially in the earlier stage 
when very few data are available. For BM, PF and EKF, the 
MSE is not monotonically reduced as more measurements 
are used but tend to be large at the steep section of the crack 
growth curve. This indicates the prediction error increases 
when the crack grows fast. For NLS, the MSE in the Nf=10 
and Nf =20 are large. The reason is that MSE of NLS 
method has some abnormal large values. These outliers of 
large MSE contribute to the average value, which makes the 
average MSE much greater than other three algorithms.  

Table 1 Average MSE (in m2) over 100 datasets with 
different numbers of measurement data 

Methods Nm=20 (Nf =10) Nm=30 (Nf =20) Nm=40 (Nf =30) 
BM 1.20e-6 6.54e-7 3.02e-6 
PF 1.22e-6 7.85e-7 4.52e-6 
NLS 0.27 0.034 1.04e-4 
EKF 2.91e-6 2.54e-6 5.48e-5 

Next, we rank the four algorithms in terms of their MSE for 
each dataset. To present the results we use letters B, P, N, 
and E to index the methods BM, PF, NLS, and EKF, 
respectively. There are 24 possible permutations of rank, 
and the number of times each permutation appears is 
presented in Table 2 for Nf=10, 20, and 30. For example, for 
Nf=10, 11 permutations out of the 24 occur. Among these, 
the ranking PBEN, which indicates PF > BM > EKF > NLS, 
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occurs the most frequently. It is interesting to note that even 
NLS, the worst performer on average, outperforms the 
others for nine out of the 100 datasets. 

The above discussion illustrates that even with a simple 
crack growth model, the performance rank of the methods 
varies from dataset to dataset, even if the difference among 
datasets comes only from random noise with the same noise 
level. In addition to the rank, random noise can also lead to 
a large different in algorithm performance, that is to say, the 
best algorithm on average can have a very poor accuracy for 
some datasets. Specifically, from Table 2, we see that PF is 
the best algorithm on average; i.e., PF is the best 127 times 
out of 300 (51, 34, and 42 times in Nf=10, 20, and 30 cases, 
respectively). However, Table 2 also shows that for nine 
cases out of 300 datasets PF is the worst algorithm. 

In summary, the performance of prognostics algorithms 
strongly depends on a specific dataset. Therefore, it may not 
have much sense to say one algorithm is better than the 
other. It would be better to choose the best algorithm based 
on a given specific dataset. We also see that the number of 
measurements can make a big difference in the ranking. For 
example, particle filter is the best 51% of the time for 
Nf=10, 34% of the time for Nf=20, and 42% for Nf=30. 

Table 2 Statistics of MSE rank, MSE-Means Square 
Error. 
Nm=20 (Nf=10) Nm=30 (Nf=20) Nm=40 (Nf=30) 
Cases Times Cases Times Cases Times 
EBPN 6 ENBP 1 EPBN 1 
NEPB 1  EPBN 2  EBPN 3 
NEBP 1  EBPN 4  NPBE 2 
NPBE 5 EBNP 1 NBPE 5 
NBPE 4 NEPB 1 PNEB 2 
PNBE 2 NPBE 3 PNBE 3 
PBEN 39 NBPE 5 PEBN 2 
PBNE 10 NBEP 5 PBEN 9 
BPNE 10 PNBE 1 PBNE 26 
BPEN 20 PEBN 5 BNPE 8 
BEPN 2 PBEN 21 BPNE 25 

PBNE 7 BPEN 14 
BNPE 4
BNEP 1
BPNE 9
BPEN 27
BEPN 3

3.2. Discrepancy can rank the algorithms in absence of 
true damage information 

In practice, the MSE is unavailable since the true model 
parameters are unknown and thus the true crack size. We 
attempt to use another metric to assess the performance of 
algorithms. A straightforward way of evaluating the 
performance is to compare the predictions with validation 
data, which is the MSD presented in Section 2.3. To verify 
our hypothesis, we consider the correlation between MSD 
and MSE. It was found that in general, MSD is highly 
correlated with MSE for all algorithms in all time-window 

scenarios, meaning that MSD could be considered as a 
performance indicator to assess the algorithm performance. 

When MSE is unknown, we naturally ask whether MSD can 
be used to rank the algorithms in terms of accuracy. This 
can be achieved by studying how consistent the rank based 
on MSE is with that based on MSD. Specifically, for each 
dataset, we rank the four algorithms based on their MSE. 
This is the actual rank in terms of accuracy. Then we re-
rank the algorithms based on their MSD, which is referred 
to as predicted rank, and compare these two ranks to see to 
what extent they match. 

The standard approach for comparing ranks would be to use 
the Spearman correlation coefficient. We opt instead for a 
weighted measure DR of the discrepancy in ranking, which 
assigns a weight of 4 to a discrepancy in the first place and 1 
to a discrepancy in the last place. The weight is introduced 
to take into account the importance of mistaking different 
positions. We assume that the importance of mismatching 
the i-th position diminishes with increasing i. Higher weight 
is assigned for smaller i-th position for accounting this 
importance. Therefore, the smaller DR is, the better the two 
ranks match each other. 
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The statistics of the DR for the 100 datasets are given in 
Table 3 where DR=3 corresponds to switching 3rd and 4th 
positions, DR = 5 to switching 2nd and 3rd, and DR = 7 to 
switching 1st and 2nd. It is seen from the table that out of all 
300 datasets, 232 have a perfect agreement in rank and 49 
others have a single adjacent permutation so that only 19 
have a substantial difference in rank. 

Table 3 Statistics of match extent of MSE rank and MSD 
rank 

Nm=20 (Nf=10) Nm=30 (Nf=20) Nm=40 (Nf=30) 

DR times DR times D
R 

times 

0 81 0 65 0 86 
3 1 3 4 3 1 
5 2 5 6 7 11 
7 11 7 13 9 1 
15 1 10 1 15 1 
21 4  15 2 

21 6
25 3

We further probe the correlation between MSD and MSE 
with different magnitude of the noise level. We test other 
two noise levels, i.e.,  =0.3mm and  =2.85mm, which are 
equivalent to 3.75% and 35% coefficient of variation (COV) 
with respect to the initial crack size (8mm). In fact, given 
initial crack size 8mm, 35% is almost the largest COV we 
could try, because for larger COVs negative values of crack 
length appear. It is found that the correlation between MSE 
and MSD in both two noise levels are high, except the case 
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of EKF with 35% COV noise level in the case of Nf=10, 
which is relatively low (0.64). In addition, in both two noise 
levels, the match extent between MSE rank and MSD rank 
are satisfactory. The results indicate that the MSD rank is 
tolerant to a relatively large measurement noise. 

4. CONCLUSION

In this paper, the four most commonly used algorithms, 
Bayesian method, particle filter, nonlinear least squares, and 
Extended Kalman filter, are applied on a simple crack 
growth model with simulated random measurement noise. 
We investigate their performance statistically by testing 
their performance using 100 randomly generated 
measurement datasets with the same noise level. The mean 
squared error (MSE) is used as a metric to rank the four 
algorithms in terms of accuracy for each dataset. It is found 
that the performance of prognostics algorithms strongly 
depends on the realization of random noise, and none of the 
algorithms can be the best one in all realizations. It was 
found that on average the two algorithms based on Bayesian 
inference substantially outperformed the other two. 
However, the statistics of MSE rank showed that the 
performance of the algorithms varies substantially from one 
dataset to another even if the data are generated with the 
same noise level. As a result, for some data sets the worst 
on-average algorithm can substantially outperform the best 
one. Since the exact solution is not available in practice, the 
discrepancy between predictions and measurements (MSD) 
has to stand for the actual error (MSE). We found a very 
good correlation between MSE and MSD and that ranking 
the algorithms based on discrepancy with measurements is a 
good stand in for their true rank in terms of accuracy.  
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